Research article Special Issues

Duals of Gelfand-Shilov spaces of type $ K\{M_p\} $ for the Hankel transformation

  • Received: 14 January 2024 Revised: 20 May 2024 Accepted: 21 May 2024 Published: 31 May 2024
  • MSC : 46F05, 46F12

  • For $ \mu \geq-\frac{1}{2} $, and under appropriate conditions on the sequence $ \{M_p\}_{p = 0}^{\infty} $ of weights, the elements, the (weakly, weakly*, strongly) bounded subsets, and the (weakly, weakly*, strongly) convergent sequences in the dual of a space $ \mathcal{K}_\mu $ of type Hankel-$ K\{M_p\} $ can be represented by distributional derivatives of functions and measures in terms of iterated adjoints of the differential operator $ x^{-1} D_x $ and the Bessel operator $ S_\mu = x^{-\mu-\frac{1}{2}} D_x x^{2 \mu+1} D_x x^{-\mu-\frac{1}{2}} $. In this paper, such representations are compiled, and new ones involving adjoints of suitable iterations of the Zemanian differential operator $ N_\mu = $ $ x^{\mu+\frac{1}{2}} D_x x^{-\mu-\frac{1}{2}} $ are proved. Prior to this, new descriptions of the topology of the space $ \mathcal{K}_\mu $ are given in terms of the latter iterations.

    Citation: Samuel García-Baquerín, Isabel Marrero. Duals of Gelfand-Shilov spaces of type $ K\{M_p\} $ for the Hankel transformation[J]. AIMS Mathematics, 2024, 9(7): 18247-18277. doi: 10.3934/math.2024891

    Related Papers:

  • For $ \mu \geq-\frac{1}{2} $, and under appropriate conditions on the sequence $ \{M_p\}_{p = 0}^{\infty} $ of weights, the elements, the (weakly, weakly*, strongly) bounded subsets, and the (weakly, weakly*, strongly) convergent sequences in the dual of a space $ \mathcal{K}_\mu $ of type Hankel-$ K\{M_p\} $ can be represented by distributional derivatives of functions and measures in terms of iterated adjoints of the differential operator $ x^{-1} D_x $ and the Bessel operator $ S_\mu = x^{-\mu-\frac{1}{2}} D_x x^{2 \mu+1} D_x x^{-\mu-\frac{1}{2}} $. In this paper, such representations are compiled, and new ones involving adjoints of suitable iterations of the Zemanian differential operator $ N_\mu = $ $ x^{\mu+\frac{1}{2}} D_x x^{-\mu-\frac{1}{2}} $ are proved. Prior to this, new descriptions of the topology of the space $ \mathcal{K}_\mu $ are given in terms of the latter iterations.



    加载中


    [1] C. Arteaga, I. Marrero, Sobre la topología de los espacios Hankel-$K\{M_{p}\}$, Rev. Acad. Canaria Cienc., 21 (2009), 41–50.
    [2] C. Arteaga, I. Marrero, Structure, boundedness, and convergence in the dual of a Hankel-$K\{M_{p}\}$ space, Integr. Transf. Spec. F., 32 (2021), 174–190. https://doi.org/10.1080/10652469.2020.1813128 doi: 10.1080/10652469.2020.1813128
    [3] J. J. Betancor, A characterization of Hankel transformable generalized functions, Int. J. Math. Math. Sci., 14 (1991), 269–274. https://doi.org/10.1155/S0161171291000303 doi: 10.1155/S0161171291000303
    [4] J. J. Betancor, I. Marrero, Some linear topological properties of the Zemanian space $\mathcal{H}_\mu$, Bull. Soc. Roy. Sci. Liège, 61 (1992), 299–314.
    [5] J. J. Betancor, I. Marrero, New spaces of type $\mathcal{H}_\mu$ and the Hankel transformation, Integr. Transf. Spec. F., 3 (1995), 175–200. https://doi.org/10.1080/10652469508819075 doi: 10.1080/10652469508819075
    [6] J. J. Betancor, L. Rodríguez-Mesa, Hankel convolution on distribution spaces with exponential growth, Stud. Math., 121 (1996), 35–52. https://doi.org/10.4064/sm-121-1-35-52 doi: 10.4064/sm-121-1-35-52
    [7] J. J. Betancor, L. Rodríguez-Mesa, Characterizations of $W$-type spaces, Proc. Amer. Math. Soc., 126 (1998), 1371–1379. https://doi.org/10.1090/S0002-9939-98-04219-1 doi: 10.1090/S0002-9939-98-04219-1
    [8] A. J. Durán, Gelfand-Shilov spaces for the Hankel transform, Indag. Math. (N.S.), 3 (1992), 137–151. https://doi.org/10.1016/0019-3577(92)90002-3 doi: 10.1016/0019-3577(92)90002-3
    [9] S. J. L. Van Eijndhoven, M. J. Kerkhof, The Hankel transformation and spaces of type $W$, Reports on Applied and Numerical Analysis, Department of Mathematics and Computer Science, Eijndhoven University of Technology, 10 (1988).
    [10] A. Friedman, Generalized functions and partial differential equations, Englewood Cliffs, NJ: Prentice-Hall, 1963.
    [11] I. M. Gelfand, G. E. Shilov, Generalized functions, New York: Academic Press, 1 (1964).
    [12] I. M. Gelfand, G. E. Shilov, Generalized functions, New York: Academic Press, 2 (1968).
    [13] I. M. Gelfand, G. E. Shilov, Generalized functions, New York: Academic Press, 3 (1967).
    [14] I. M. Gelfand, N. Y. Vilenkin, Generalized Functions, New York: Academic Press, 4 (1964).
    [15] G. G. Gould, M. R. A. Sardar, A property of the Gelfand-Shilov test-function spaces of type $K\{M_p\}$, J. London Math. Soc., 1 (1969), 545–552.
    [16] M. Hasumi, Note on the $n$-dimensional tempered ultra-distributions, Tôhoku Math. J., 13 (1961), 99–104. https://doi.org/10.2748/tmj/1178244354 doi: 10.2748/tmj/1178244354
    [17] J. Horváth, Topological vector spaces and distributions, I, Reading, MA: Addison-Wesley, 1966.
    [18] A. Kamiński, Remarks on $K\{M_p\}^{\prime}$-spaces, Stud. Math., 77 (1984), 499–508. https://doi.org/10.4064/sm-77-5-499-508 doi: 10.4064/sm-77-5-499-508
    [19] A. Kamiński, D. Perišić, S. Pilipović, On the convolution in the Gel'fand-Shilov spaces, Integr. Transf. Spec. F., 4 (1996), 363–376.
    [20] L. Kitchens, C. Swartz, Convergence in the dual of certain $K\{M_p\}$-spaces, Colloq. Math., 30 (1974), 149–155. https://doi.org/10.4064/cm-30-1-149-155 doi: 10.4064/cm-30-1-149-155
    [21] W. Y. K. Lee, On spaces of type $\mathcal{H}_{\mu}$ and their Hankel transformations, SIAM J. Math. Anal., 5 (1974), 336–348. https://doi.org/10.1137/0505037 doi: 10.1137/0505037
    [22] I. Marrero, A property characterizing Montel Hankel-$K\{M_p\}$ spaces, Integr. Transf. Spec. F., 12 (2001), 65–76. https://doi.org/10.1080/10652460108819334 doi: 10.1080/10652460108819334
    [23] I. Marrero, Multipliers of Hankel-$K\{M_p\}$ spaces, Integr. Transf. Spec. F., 12 (2001), 179–200. https://doi.org/10.1080/10652460108819343 doi: 10.1080/10652460108819343
    [24] I. Marrero, Hankel-$K\{M_p\}$ spaces, Integr. Transf. Spec. F., 13 (2002), 379–401. https://doi.org/10.1080/10652460213522 doi: 10.1080/10652460213522
    [25] I. Marrero, On representation, boundedness and convergence of Hankel-$K\{M_p\}'$ generalized functions, Z. Anal. Anwend., 23 (2004), 731–743. https://doi.org/10.4171/zaa/1219 doi: 10.4171/zaa/1219
    [26] R. S. Pathak, H. K. Sahoo, A generalization of $\mathcal{H}_{\mu}$-spaces and Hankel transforms, Anal. Math., 12 (1986), 129–142. https://doi.org/10.1007/BF02027297 doi: 10.1007/BF02027297
    [27] R. S. Pathak, S. K. Upadhyay, $U_{\mu}^{p}$-spaces and Hankel transform, Integr. Transf. Spec. F., 3 (1995), 285–300. https://doi.org/10.1080/10652469508819085 doi: 10.1080/10652469508819085
    [28] W. Rudin, Functional analysis, 2 Eds., New York: McGraw-Hill, 1991.
    [29] L. Schwartz, Théorie des distributions, I-II, Paris: Hermann, 1978.
    [30] J. Sebastião e Silva, Les fonctions analytiques comme ultra-distributions dans le calcul opérationnel, Math. Ann., 136 (1958), 58–96. https://doi.org/10.1007/BF01350287 doi: 10.1007/BF01350287
    [31] J. de Sousa Pinto, Ultradistributions of exponential type and the Fourier-Carleman transform, Port. Math., 50 (1993), 387–406.
    [32] C. Swartz, The nuclearity of $K\{M_p\}$ spaces, Math. Nachr., 44 (1970), 193–197. https://doi.org/10.1002/mana.19700440116 doi: 10.1002/mana.19700440116
    [33] C. Swartz, Convolution in $K\{M_p\}^{\prime}$ spaces, Rocky Mt. J. Math., 2 (1972), 259–263. https://doi.org/10.1216/RMJ-1972-2-2-259 doi: 10.1216/RMJ-1972-2-2-259
    [34] S. Sznajder, Z. Zieleźny, Solvability of convolution equations in $\mathcal{K}_1^{\prime}$, P. Am. Math. Soc., 57 (1976), 103–106. https://doi.org/10.1090/S0002-9939-1976-0410367-2 doi: 10.1090/S0002-9939-1976-0410367-2
    [35] S. Sznajder, Z. Zieleźny, Solvability of convolution equations in $\mathcal{K}_p^{\prime}$, $p>1$, Pac. J. Math., 68 (1976), 539–544.
    [36] F. Tréves, Topological vector spaces, distributions, and kernels, New York: Academic Press, 1967.
    [37] S. Y. Tien, The topologies on the spaces of multipliers and convolution operators on $K\{M_p\}$ spaces, Ph.D. Thesis, New Mexico State University, Las Cruces, NM, 1973.
    [38] A. H. Zemanian, A distributional Hankel transformation, SIAM J. Appl. Math., 14 (1966), 561–576. https://doi.org/10.1137/0114049 doi: 10.1137/0114049
    [39] A. H. Zemanian, The Hankel transformation of certain distributions of rapid growth, SIAM J. Appl. Math., 14 (1966), 678–690. https://doi.org/10.1137/0114056 doi: 10.1137/0114056
    [40] A. H. Zemanian, Generalized integral transformations, New York: Interscience, 1968.
    [41] Z. Zieleźny, On the space of convolution operators in $\mathcal{K}^\prime_1$, Stud. Math., 31 (1968), 111–124. https://doi.org/10.4064/sm-31-2-111-124 doi: 10.4064/sm-31-2-111-124
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(469) PDF downloads(33) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog