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1 Escuela de Máster y Doctorado, Universidad de La Rioja, 2 Luis de Ulloa St, 26004 Logroño, La
Rioja, Spain
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Abstract: For µ ≥ − 1
2 , and under appropriate conditions on the sequence {Mp}

∞
p=0 of weights, the

elements, the (weakly, weakly*, strongly) bounded subsets, and the (weakly, weakly*, strongly)
convergent sequences in the dual of a space Kµ of type Hankel-K{Mp} can be represented by
distributional derivatives of functions and measures in terms of iterated adjoints of the differential
operator x−1Dx and the Bessel operator S µ = x−µ−

1
2 Dxx2µ+1Dxx−µ−

1
2 . In this paper, such representations

are compiled, and new ones involving adjoints of suitable iterations of the Zemanian differential
operator Nµ = xµ+ 1

2 Dxx−µ−
1
2 are proved. Prior to this, new descriptions of the topology of the space

Kµ are given in terms of the latter iterations.

Keywords: Bessel operator; boundedness; convergence; distribution; generalized function; K{Mp}

space; representation; test function; Zemanian operator; Zemanian space
Mathematics Subject Classification: 46F05, 46F12

1. Introduction

As it is well known, Schwartz developed the theory of distributions in the late 1940’s; a detailed
exposition appears in his monograph [29]. Generalized functions of any kind, as well as their use
to solve the Cauchy problem, were introduced by Gelfand and Shilov around 1953. In the period of
1956–58, these two authors published three volumes (in Russian) on the subject, which were translated
into English during the 1960’s [11–13]. Meanwhile, Friedman disseminated the ideas of Gelfand and
Shilov in his book [10], enhancing them with more recent applications to differential equations, as well
as a more complete treatment of the Cauchy problem.

Several test function spaces that were derived in the framework of the generalized Fourier
transformation belong to the family of Gelfand-Shilov K{Mp} spaces, whose theory was developed
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in [10, 12, 13] in connection with the Cauchy problem for various partial differential equations,
boundary value problems for elliptic equations, and the problem of eigenfunction expansions for
several differential operators. Among them are the spacesDK and S, introduced by Schwartz [29]; the
space H (also denoted byK1), as developed by Sebastião e Silva [30] and later studied by Hasumi [16],
Zieleźny [41], Sznajder and Zieleźny [34], and, somewhat more recently, by de Sousa Pinto [31]; the
spaces denoted by Kp (p > 1), as developed by Sznajder and Zieleźny [35]; and the spaces Sα,A and
WM,a, developed by Gelfand and Shilov themselves [12, 13].

Most of the examples listed above have analogues in the Hankel transformation setting, such as
those considered by Zemanian [38, 39], Betancor and Marrero [5], Betancor and Rodrı́guez-Mesa [6,
7], Durán [8], van Eijndhoven and Kerkhof [9], Lee [21], Pathak and Sahoo [26], and Pathak and
Upadhyay [27]. In order to unify the underlying theory, Marrero introduced [24] and studied [22,
23, 25] the so-called Hankel-K{Mp} spaces, which were intended to play the same role in the Hankel
transformation setting as do the Gelfand-Shilov K{Mp} spaces in the Fourier transformation setting.
The study of Hankel-K{Mp} spaces was continued by Arteaga and Marrero [1, 2].

In [10, p. 37], Friedman asserts the following:

One of the most interesting and important problems in the theory of generalized functions
is the problem of finding the structure of generalized functions by expressing them in terms
of differential operators acting on functions or on measures.

Our aim in this paper is threefold: first, we want to briefly review the existing literature on the structure
of distributions in spaces of type Hankel-K{Mp}; second, we want to obtain new structural results for
these distributions in terms of the Zemanian differential operator Nµ [40, Section 5.3, Equation (3)];
and, third, we want to apply them in the characterization of the bounded subsets and the convergent
sequences in the duals of spaces of type Hankel-K{Mp}.

The paper is organized as follows. In Section 2, the definition and topological properties, along
with some examples of Hankel-K{Mp} spaces, are recalled. Section 3 is devoted to reviewing the
literature on the structural properties of the dual of a space of type Hankel-K{Mp}. The main results
are established in Section 4, where a new description of the topology of a Hankel-K{Mp} space is
obtained; then, in Section 5, where such a description is applied to provide new results on the structure,
boundedness, and convergence of distributions of type Hankel-K{Mp}.

Throughout the paper, the standard notation in distribution theory will be used. The letter I will
stand for the interval ]0,∞[ and, unless otherwise stated, µ will be a fixed real parameter not less than
−1

2 , while C will represent a suitable positive constant which may vary from line to line.

2. The topology of Hankel-K{Mp} spaces

Definition 2.1. ([24, Definition 2.1]) Let {Mp}
∞
p=0 be a sequence of continuous functions defined on

I =]0,∞[ such that
1 = M0(x) ≤ M1(x) ≤ M2(x) ≤ . . . (x ∈ I).

We say that Kµ is a space of type Hankel-K{Mp}, or just a Hankel-K{Mp} space, provided that Kµ

consists of all of the complex-valued functions ϕ ∈ C∞(I) such that

‖ϕ‖µ,∞,p = max
0≤k≤p

sup
x∈I
|Mp(x)(x−1D)kx−µ−

1
2ϕ(x)| < ∞ (p ∈ N0).
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Kµ is endowed with the locally convex topology generated by the sequence of norms
{
‖ · ‖µ,∞,p

}∞
p=0

. The
dual space of Kµ will be denoted by K ′µ.

What follows are examples of test function spaces of type Hankel-K{Mp} arising in connection with
the generalized Hankel transformation.

Example 2.2. Let
Mp(x) =

(
1 + x2

)p
(x ∈ I, p ∈ N0).

The corresponding Hankel-K{Mp} space is the Zemanian spaceHµ [38], [40, Chapter 5].

Example 2.3. Fix a > 0. If the functions {Mp}
∞
p=0 are allowed to take on the value ∞, then, with the

convention that 0 · ∞ = 0, the Zemanian space Bµ,a [39] can be regarded as a Hankel-K{Mp} space
upon setting

Mp(x) =

1, 0 < x < a

∞, x ≥ a
(p ∈ N0).

Example 2.4. Given α, A > 0, define

Mp(x) =
(
1 + x2

)p
exp

{
α

eA
1
α

(
1 −

1
p

)
x

1
α

}
(x ∈ I, p ∈ N0).

The resulting Hankel-K{Mp} space is the spaceHµ,α,A, as introduced by Betancor and Marrero [5].

Example 2.5. The space χµ, as defined by Betancor and Rodrı́guez-Mesa [6], is the Hankel-K{Mp}

space corresponding to the choice

Mp(x) = exp(px) (x ∈ I, p ∈ N0).

Example 2.6. The space U∞µ,M,a developed by Pathak and Upadhyay [27] is also of type Hankel-K{Mp},
as can be seen upon setting

Mp(x) = exp
{

M
[
a
(
1 −

1
p

)
x
]}

(x ∈ I, p ∈ N0),

where a > 0,

M(x) =

∫ x

0
v(ξ)dξ (x ∈ I),

and the function v = v(ξ) is continuous and increasing on [0,∞[, with v(0) = 0 and v(∞) = ∞.

In the previous examples, the sequence of weights {Mp}
∞
p=0 satisfies at least one of the conditions in

the following definition.

Definition 2.7. The sequence {Mp}
∞
p=0 is said to satisfy condition (·) for · = O, A, M, N, P, provided

that the following hold:

(O) The limit limx→0+ Mp(x) (p ∈ N0) exists.
(A) Given r, p ∈ N0, there exist s ∈ N0 and brp > 0 such that

Mr(x)Mp(x) ≤ brpMs(x) (x ∈ I).
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(M) Each Mp (p ∈ N0) is quasi-monotonic, that is, there exists Cp > 0 such that

Mp(x) ≤ CpMp(y) (x, y ∈ I, x ≤ y).

(N) For every p ∈ N0, there exists r ∈ N0, r > p such that the function

mpr(x) =
Mp(x)
Mr(x)

(x ∈ I)

lies in L1(I) and satisfies
lim
x→∞

mpr(x) = 0.

(P) Given p ∈ N0, there exists r ∈ N0, r > p for which

lim
x→∞

Mp(x)
Mr(x)

= 0.

By imposing appropriate combinations of the above conditions on the weights {Mp}
∞
p=0, Hankel-

K{Mp} spaces can be endowed with interesting properties as topological vector spaces. It should be
remarked that conditions similar to those in Definition 2.7 have been considered by several authors [12,
14, 15, 19, 20, 32, 33, 37] in order to develop a suitable theory of the Gelfand-Shilov spaces of type
K{Mp}.

In fact, under adequate assumptions on the weights {Mp}
∞
p=0, a space Kµ of type Hankel-K{Mp} can

be nuclear [36, Definition III.50.1], Schwartz [17, Definition 3.15.1], Montel [17, Definition 3.9.1], and
reflexive. We excerpt from [24] some of the results available along these lines, as well as those that
reveal the relationship between Kµ and the Zemanian spacesHµ and Bµ (see Examples 2.2 and 2.3).

Proposition 2.8. ([24, Proposition 4.1]) The space Kµ is Fréchet. If the sequence {Mp}
∞
p=0 satisfies (O)

and (P), then Kµ is Schwartz, Montel, and reflexive.

Proposition 2.9. ([24, Proposition 4.3]) Assume that {Mp}
∞
p=0 satisfies conditions (O) or (M). Then,

the injection Bµ ↪→ Kµ is continuous. If, additionally, {Mp}
∞
p=0 satisfies (P), then Bµ is dense in Kµ.

Proposition 2.10. ([24, Proposition 4.4]) Assume that {Mp}
∞
p=0 satisfies (M) and (N).

(i) For every p ∈ N0, there exist r ∈ N0, r > p, and Cpr > 0 such that x ≤ Cpr Mr(x) (x ∈ I).
(ii) If {Mp}

∞
p=0 satisfies (A) as well, then Kµ ⊂ Hµ with a continuous embedding.

Corollary 2.11. ([24, Corollary 4.5]) If {Mp}
∞
p=0 satisfies conditions (A), (M), and (N), then Bµ ⊂ Kµ ⊂

Hµ with a continuous embedding. Moreover, Bµ is dense in Kµ and Kµ is dense inHµ.

Proposition 2.12. ([24, Proposition 4.6]) Under (A), (M), and (N), the topology of Kµ is compatible
with any one of the families of norms

{
‖ · ‖µ,q,p

}∞
p=0

(q ∈ R, 1 ≤ q < ∞), where

‖ϕ‖µ,q,p =

 p∑
k=0

∫ ∞

0

∣∣∣∣Mp(x)
(
x−1D

)k
x−µ−

1
2ϕ(x)

∣∣∣∣q dx


1
q

(ϕ ∈ Kµ).

In this case, Kµ is nuclear, Schwartz, Montel, and reflexive.
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3. The dual space and its topology

Again, by imposing appropiate conditions on the weights {Mp}
∞
p=0, the strong dualK ′µ,b of a Hankel-

K{Mp} spaceKµ can be made nuclear, Schwartz, bornological [17, Definition 3.7.1], complete, Montel,
and reflexive. Additionally, a wide range of structural results and characterizations of the bounded
subsets and convergent sequences in K ′µ are made available.

3.1. The topology of K ′µ

Proposition 3.1. ([24, Proposition 5.1]) Let Kµ be a Hankel-K{Mp} space with a strong dual K ′µ,b.

(i) If the sequence {Mp}
∞
p=0 satisfies (O) and (P), then K ′µ,b is complete, bornological, Schwartz,

Montel, and reflexive.
(ii) If {Mp}

∞
p=0 satisfies (A), (M), and (N), then K ′µ,b is complete, bornological, Schwartz, Montel,

reflexive, and nuclear.

3.2. Structure, boundedness, and convergence in K ′µ

Next, we show that the functionals in the dual K ′µ of a space Kµ of type Hankel-K{Mp} can be
expressed as distributional derivatives of integrable functions and measures. The highest order of
the differential operators that provide such representations is uniform over bounded subsets of K ′µ,b.
Furthermore, the convergence to zero of a sequence in this space is determined by the convergence to
zero, in their respective spaces, of the functions or measures representing the terms of the sequence.

In Propositions 3.2 and 3.3 below, the results on boundedness and convergence will be stated for
the strong topology of K ′µ, but, it must be kept in mind that, under the same conditions, they are
equally valid if the weak or weak* topologies are instead considered on that space. Indeed, by making
appropriate assumptions on the weights, Kµ becomes Montel, and, hence, reflexive (Propositions 2.8
and 2.12). Thus, the weak and weak* topologies of K ′µ coincide, whereas the weak* and strong
sequential convergence are equivalent on this space [36, Proposition II.34.6, Corollary 1]. Furthermore,
given that Kµ is Fréchet (Proposition 2.8), it is also barrelled [36, Definition II.33.1 and Proposition
II.33.2, Corollary 1], and, in this class of spaces, the weak* and strong topologies share the same
bounded sets [36, Theorem II.33.2].

At this point, we are in a position to state the first result on representation, boundedness, and
convergence in the dual ofKµ. To this end, let C(I) denote the space of all of the functions f ∈ C[0,∞[
such that

lim
x→∞

f (x) = 0,

normed with

‖ f ‖∞ = sup
x∈I
| f (x)|.

Its dual C′(I) consists of all of the regular, complex Borel measures σ on [0,∞[, with the total variation
norm |σ|.

Proposition 3.2. Assume that {Mp}
∞
p=0 satisfies (O) and (P).
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(i) [24, Proposition 5.2] A linear functional f belongs to K ′µ if, and only if, there exist p ∈ N0 and
σk ∈ C

′(I) (k ∈ N0, 0 ≤ k ≤ p) satisfying

f =

p∑
k=0

x−µ−
1
2
(
−Dx−1

)k [
Mp(x)σk

]
.

(ii) [24, Proposition 5.4] A set B ⊂ K ′µ,b is bounded if, and only if, each f ∈ B admits the
representation

f =

p∑
k=0

x−µ−
1
2
(
−Dx−1

)k [
Mp(x)σk, f

]
,

with σk, f ∈ C
′(I) (k ∈ N0, 0 ≤ k ≤ p) such that

p∑
k=0

∫ ∞

0
d
∣∣∣σk, f

∣∣∣ ≤ C,

where p ∈ N0 and C > 0 do not depend on f ∈ B.
(iii) [24, Proposition 5.4] A sequence

{
f j

}∞
j=0

converges to zero in K ′µ,b if, and only if, each f j admits
the representation

f j =

p∑
k=0

x−µ−
1
2
(
−Dx−1

)k [
Mp(x)σk, j

]
( j ∈ N0),

with σk, j ∈ C
′(I) (k ∈ N0, 0 ≤ k ≤ p) such that p ∈ N0 does not depend on j and

lim
j→∞

p∑
k=0

∫ ∞

0
d
∣∣∣σk, j

∣∣∣ = 0.

Proposition 3.3. Assume that {Mp}
∞
p=0 satisfies (A), (M), and (N).

(i) [24, Proposition 5.3] A linear functional f belongs to K ′µ if, and only if, for every q, 1 < q ≤ ∞,
there exists p ∈ N0 such that f can be written as

f =

p∑
k=0

x−µ−
1
2
(
−Dx−1

)k [
Mp(x)gk(x)

]
,

with gk ∈ Lq(I) (k ∈ N0, 0 ≤ k ≤ p).
(ii) [24, Proposition 5.5] A set B ⊂ K ′µ,b is bounded if, and only if, given q, 1 < q ≤ ∞, there exist

p ∈ N0, C > 0, and, for each f ∈ B, functions gk, f ∈ Lq(I) (k ∈ N0, 0 ≤ k ≤ p) such that

f =

p∑
k=0

x−µ−
1
2
(
−Dx−1

)k [
Mp(x)gk, f (x)

]
,

with
p∑

k=0

∥∥∥gk, f

∥∥∥
q
≤ C.
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(iii) [24, Proposition 5.5] A sequence
{
f j

}∞
j=0

converges to zero in K ′µ,b if, and only if, for every q,
1 < q ≤ ∞, there exist p ∈ N0 and gk, j ∈ Lq(I) (k ∈ N0, 0 ≤ k ≤ p) such that

f j =

p∑
k=0

x−µ−
1
2
(
−Dx−1

)k [
Mp(x)gk, j(x)

]
( j ∈ N0),

with

lim
j→∞

p∑
k=0

∥∥∥gk, j

∥∥∥
q

= 0.

3.3. Representation through a single distributional derivative

Starting from Proposition 3.3, and adapting a technique of Kamiński [18], Marrero [25] obtained the
results on structure, boundedness, and convergence inK ′µ, labeled below as Theorems 3.4, 3.5, and 3.6,
respectively. Unlike Proposition 3.3, the aforementioned theorems have the advantage of allowing the
elements of the dual to be expressed as the distributional derivative of a single continuous function
under the same differential operator.

Theorem 3.4. ([25, Theorem 2.4]) Assume that {Mp}
∞
p=0 satisfies conditions (A), (M), and (N). Then,

the following statements are equivalent:

(i) The functional f lies in K ′µ.
(ii) There exist k, p ∈ N0 and a function F, continuous on I, such that

f = x−µ−
1
2
(
Dx−1

)k
F(x) (3.1)

and
M−1

p F ∈ Lq(I) (3.2)

for any q, 1 ≤ q ≤ ∞.
(iii) There exist k, p ∈ N0 and a function F, continuous on I and satisfying (3.1), such that (3.2) holds

for some q, 1 ≤ q ≤ ∞.
(iv) There exist k, p ∈ N0 and a function F, continuous on I and satisfying (3.1), such that (3.2) holds

for q = ∞.

Now, we shall state a characterization of boundedness in K ′µ.

Theorem 3.5. ([25, Theorem 2.5]) Assume that {Mp}
∞
p=0 satisfies conditions (A), (M), and (N). Then,

the following four statements are equivalent:

(i) The set B ⊂ K ′µ is (weakly, weakly*, strongly) bounded.
(ii) There exist k, p ∈ N0, C > 0, and, for each f ∈ B, a function g f , continuous on I, such that

f = x−µ−
1
2
(
Dx−1

)k
g f (x) (3.3)

and ∥∥∥M−1
p g f

∥∥∥
q
≤ C (3.4)

for any q, 1 ≤ q ≤ ∞.
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(iii) There exist k, p ∈ N0, C > 0, and, for each f ∈ B, a function g f , continuous on I and
satisfying (3.3), such that (3.4) holds for some q, 1 ≤ q ≤ ∞.

(iv) There exist k, p ∈ N0, C > 0, and, for each f ∈ B, a function g f , continuous on I and
satisfying (3.3), such that (3.4) holds for q = ∞.

Finally, convergence in K ′µ is described.

Theorem 3.6. ([25, Theorem 2.6]) Assume that {Mp}
∞
p=0 satisfies conditions (A), (M), and (N). Then,

the following statements are equivalent:

(i) The sequence
{
f j

}∞
j=0

converges (weakly, weakly*, strongly) to zero in K ′µ.
(ii) There exist k, p ∈ N0 and F j, continuous on I, such that

f j = x−µ−
1
2
(
Dx−1

)k
F j(x) ( j ∈ N0) (3.5)

and
lim
j→∞

∥∥∥M−1
p F j

∥∥∥
q

= 0 (3.6)

for any q, 1 ≤ q ≤ ∞.
(iii) There exist k, p ∈ N0 and F j, continuous on I and satisfying (3.5), such that (3.6) holds for some

q, 1 ≤ q ≤ ∞.
(iv) There exist k, p ∈ N0 and F j, continuous on I and satisfying (3.5), such that (3.6) holds for q = ∞.
(v) There exist k, p ∈ N0, C > 0, and functions F j, continuous on I and satisfying (3.5), such that∥∥∥M−1

p F j

∥∥∥
∞
≤ C ( j ∈ N0)

and lim j→∞ F j(x) = 0 for almost all x ∈ I.

3.4. Descriptions of Kµ and K ′µ in terms of the Bessel operator

Arteaga and Marrero [1] have shown that the topology of a Hankel-K{Mp} space can be generated
by families of norms of type Lq (1 ≤ q ≤ ∞) that involve the Bessel operator.

Definition 3.7. For 1 ≤ q < ∞, consider the following families of norms on Kµ:

|ϕ|µ,q,r =

r∑
k=0

{∫ ∞

0

∣∣∣∣Mr(x)x−µ−
1
2 S k

µϕ(x)
∣∣∣∣q dx

} 1
q

|ϕ|µ,∞,r = max
0≤k≤r

sup
x∈I
|Mr(x)x−µ−

1
2 S k

µϕ(x)|
(ϕ ∈ Kµ, r ∈ N0),

where

S µ = x−µ−
1
2 Dx2µ+1Dx−µ−

1
2 = D2 −

4µ2 − 1
4x2

is the Bessel operator.

Theorem 3.8. ([1, Proposiciones 2.5 and 2.6]) Under conditions (A), (M), and (N) on the weights
{Mp}

∞
p=0, any one of the families of norms

{
| · |µ,q,r

}∞
r=0

(1 ≤ q ≤ ∞) generates the usual topology of Kµ.
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Remark 3.9. Theorem 3.8 widens the class of spaces of type Hankel-K{Mp} and shows how some of
them, treated independently in the literature, actually coincide. In fact, for a > 0, let

Mp(x) = exp
{

M
(
a
[
1 −

1
p

]
x
)}

(x ∈ I, p ∈ N0),

where M ∈ C2[0,∞[ satisfies that M(0) = M′(0) = 0, M′(∞) = ∞, and M′′(x) > 0 (x ∈ I); also, let
Kµ be the corresponding Hankel-K{Mp} space. Then, we get that Kµ = xµ+ 1

2 WeM,a, where WeM,a is the
space introduced by van Eijndhoven and Kerkhof [9]. For the space Uq

µ,M,a (1 ≤ q ≤ ∞) developed by
Pathak and Upadhyay [27], the algebraic and topological identification

Kµ = Uq
µ,M,a = U∞µ,M,a = xµ+ 1

2 WeM,a (1 ≤ q < ∞)

follows; see [7] as well.

More recently, on the basis of Theorem 3.8, and by combining techniques from [24, 25], Arteaga
and Marrero [2] found new representations for the elements, the bounded subsets, and the convergent
sequences inK ′µ, this time with the operator S µ instead of the operator x−1D (see Sections 3.2 and 3.3).
Their results are summarized below, beginning with the structure of the distributions in K ′µ.

Theorem 3.10. ([2, Theorem 4.1]) Assume that the sequence of weights {Mp}
∞
p=0 satisfies conditions

(A), (M), and (N). The following statements are equivalent:

(i) The functional f lies in K ′µ.
(ii) For each q, 1 < q ≤ ∞, there exist r ∈ N0 and fk ∈ Lq(I) (k ∈ N0, 0 ≤ k ≤ r) such that

f =

r∑
k=0

S k
µ

[
Mr(x)x−µ−

1
2 fk(x)

]
.

(iii) There exist k, p ∈ N0 and F ∈ C(I) such that f = S k
µx−µ−

1
2 F(x), with M−1

p F ∈ Lq(I) for all q,
1 ≤ q ≤ ∞.

(iv) There exist k, p ∈ N0 and F ∈ C(I) such that f = S k
µx−µ−

1
2 F(x), with M−1

p F ∈ Lq(I) for some q,
1 ≤ q ≤ ∞.

(v) There exist k, p ∈ N0 and F ∈ C(I) such that f = S k
µx−µ−

1
2 F(x), with M−1

p F ∈ L∞(I).

Next, boundedness in K ′µ is characterized.

Theorem 3.11. ([2, Theorem 5.1]) Assume that the sequence of weights {Mp}
∞
p=0 satisfies conditions

(A), (M), and (N). The following five statements are equivalent:

(i) The set B ⊂ K ′µ is (weakly, weakly*, strongly) bounded.
(ii) Given q, 1 < q ≤ ∞, there exist r ∈ N0, C > 0, and, for each f ∈ B, functions g f ,i ∈ Lq(I)

(i ∈ N0, 0 ≤ i ≤ r) such that

f =

r∑
i=0

S i
µ

[
Mr(x)x−µ−

1
2 g f ,i(x)

]
,

with
∑r

i=0

∥∥∥g f ,i

∥∥∥
q
≤ C.
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(iii) There exist k, p ∈ N0, C > 0, and, for each f ∈ B, a function g f ∈ C(I) such that
f = S k

µx−µ−
1
2 g f (x), with

∥∥∥M−1
p g f

∥∥∥
q
≤ C for every q, 1 ≤ q ≤ ∞.

(iv) There exist k, p ∈ N0, C > 0, and, for each f ∈ B, a function g f ∈ C(I) such that
f = S k

µx−µ−
1
2 g f (x), with

∥∥∥M−1
p g f

∥∥∥
q
≤ C for some q, 1 ≤ q ≤ ∞.

(v) There exist k, p ∈ N0, C > 0, and, for each f ∈ B, a function g f ∈ C(I) such that
f = S k

µx−µ−
1
2 g f (x), with

∥∥∥M−1
p g f

∥∥∥
∞
≤ C.

We close this section with the corresponding characterization of sequential convergence in K ′µ.

Theorem 3.12. ([2, Theorem 6.1]) Under conditions (A), (M), and (N) on the sequence of weights
{Mp}

∞
p=0, the following statements are equivalent:

(i) The sequence { fn}
∞
n=0 converges (weakly, weakly*, strongly) to zero in K ′µ.

(ii) For each q, 1 < q ≤ ∞, there exist r ∈ N0 and fn,i ∈ Lq(I) (n, i ∈ N0, 0 ≤ i ≤ r) such that

fn =

r∑
i=0

S i
µ

[
Mr(x)x−µ−

1
2 fn,i(x)

]
(n ∈ N0),

with limn→∞
∑r

i=0

∥∥∥ fn,i

∥∥∥
q

= 0.
(iii) There exist k, p ∈ N0 and Fn ∈ C(I) such that

fn = S k
µx−µ−

1
2 Fn(x) (n ∈ N0),

with limn→∞

∥∥∥M−1
p Fn

∥∥∥
q

= 0 for all q, 1 ≤ q ≤ ∞.
(iv) There exist k, p ∈ N0 and Fn ∈ C(I) such that

fn = S k
µx−µ−

1
2 Fn(x) (n ∈ N0),

with limn→∞

∥∥∥M−1
p Fn

∥∥∥
q

= 0 for some q, 1 ≤ q ≤ ∞.
(v) There exist k, p ∈ N0 and Fn ∈ C(I) such that

fn = S k
µx−µ−

1
2 Fn(x) (n ∈ N0),

with limn→∞

∥∥∥M−1
p Fn

∥∥∥
∞

= 0.
(vi) There exist k, p ∈ N0, C > 0, and Fn ∈ C(I) such that

fn = S k
µx−µ−

1
2 Fn(x),

with
∥∥∥M−1

p Fn

∥∥∥
∞
≤ C (n ∈ N0) and limn→∞ Fn(x) = 0 for almost all x ∈ I.

4. A new description of the topology of Hankel-K{Mp} spaces

First, we shall show that, for µ ≥ − 1
2 and every p, 1 ≤ p ≤ ∞, the families of norms

{
ρ
µ
p,r

}∞
r=0

generate the usual topology of a space Kµ of type Hankel-K{Mp}, where, for r ∈ N0 and ϕ ∈ Kµ,

ρµ∞,r(ϕ) = max
0≤k≤r

sup
x∈I
|Mr(x)Tµ,kϕ(x)|,

ρµp,r(ϕ) = max
0≤k≤r

{∫ ∞

0

∣∣∣Mr(x)Tµ,kϕ(x)
∣∣∣p dx

} 1
p

(1 ≤ p < ∞).
(4.1)
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Here,
Tµ,k = Nµ+k−1 · · ·Nµ (k ∈ N), (4.2)

where Nµ = xµ+ 1
2 Dx−µ−

1
2 denotes the Zemanian operator [40, pp. 135ff] and Tµ,0 is the identity

operator. The differential operators in (4.2) are interesting because of their symmetric behavior in
the presence of the Hankel transformation; in fact, for an appropriate order of this transformation, it
exchanges the order of the powers of the variable and the order of the differential operator defined
in (4.2), an extremely useful operational rule that is very similar to its Fourier counterpart [40, Proof
of Theorem 5.4-1].

This new description for the topology of Kµ was motivated by [4, Theorem 3.3], where a similar
result was established for the Zemanian space Hµ (Example 2.2). The validity of this result requires
assuming conditions (O), (A), (M), and (N) apply to the sequence of weights {Mp}

∞
p=0 (Definition 2.7),

which is a hypothesis that will be maintained throughout the entire section, although, for the sake of
simplicity, it will not be made explicit on all occasions.

The proof of this first result imitates that of [4, Theorem 3.3]. Roughly speaking, it consists of
introducing a new space of test functions, which we will denote by Sµ, and whose definition is formally
analogous to that of Kµ, but with the operator Tµ,k in place of the operator (x−1D)kx−µ−

1
2 (k ∈ N0); this

is followed by proving, with the aid of the open mapping theorem [28, Corollary 2.12], that, actually,
Sµ = Kµ (Theorem 4.4). Once this is done, it is not difficult to infer that the families of norms
defined in (4.1) are equivalent over Sµ (Proposition 4.6). At this point, we will apply techniques that
are analogous to those used in the proof of the results in Section 3 in order to find representations of
the elements, the (weakly, weakly*, strongly) bounded subsets, and the (weakly, weakly*, strongly)
convergent sequences in the dual space S′µ = K ′µ, this time as distributional derivatives induced by the
adjoint of the operator Tµ,k (k ∈ N0). Thus, Theorems 5.4–5.7 below generalize and improve, in a sense
that will be specified in due course, their analogues for the spaceH ′µ in [4].

We must emphasize that, although the ideas presented in this section are not entirely new, the results
obtained in the general context of Hankel-K{Mp} spaces have not appeared previously in the literature.

4.1. The space Sµ

Given µ ∈ R, denote by Sµ the vector space of all smooth, complex-valued functions ϕ = ϕ(x)
defined on I =]0,∞[ such that ωµ

p,k(ϕ) < ∞, where

ω
µ
p,k(ϕ) = sup

x∈I
|Mp(x)Tµ,kϕ(x)| (p, k ∈ N0)

and Tµ,k (k ∈ N0) is as defined above.
A direct computation shows that, for k ∈ N0,

Tµ,k = xk+µ+ 1
2 (x−1D)kx−µ−

1
2

= bµk,0x−k + bµk,1x−k+1D + . . . + bµk,kDk,
(4.3)

where the coefficients bµk, j (0 ≤ j ≤ k) are appropriate constants, with bµk,k = 1.
The family Ω =

{
ω
µ
p,k

}∞
p,k=0 is a countable family of seminorms. This family is separating, because{

ω
µ
p,0

}∞
p=0 are norms. Consequently, Ω makes Sµ into a countably multinormed space.
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A family of norms P = {ρ
µ
∞,r}

∞
r=0 that is equivalent to Ω, with the property that ρµ∞,r ≤ ρ

µ
∞,s (r, s ∈ N0),

is obtained by setting
ρµ∞,r = max

0≤k≤r
ω
µ
r,k (r ∈ N0).

Proposition 4.1. The space Sµ (µ ∈ R) is Fréchet.

Proof. Let {ϕn}
∞
n=0 be a Cauchy sequence in Sµ; we want to prove that it converges in Sµ.

By (4.3), we have
Dk = Tµ,k − (bµk,0x−k + . . . + bµk,k−1x−1Dk−1). (4.4)

Proceeding by induction on k, we find that, for each compact K ⊂ I, there exist constants cµk, j (0 ≤ j ≤
k) such that

sup
x∈K
|Dkϕ(x)| ≤ cµk,0ω

µ
0,0(ϕ) + cµk,1ω

µ
0,1(ϕ) + . . . + cµk,kω

µ
0,k(ϕ) (ϕ ∈ Sµ).

Since ωµ
0,k(ϕn − ϕm) −−−−−→

n,m→∞
0, the sequence {Dkϕn}

∞
n=0 is uniformly Cauchy on compact subsets of I for

all k ∈ N0. Thus, there exists ϕ ∈ C∞(I) such that

Dkϕn(x) −−−→
n→∞

Dkϕ(x) (k ∈ N0)

uniformly over compact subsets of I. This ϕ is the limit of {ϕn}
∞
n=0 in Sµ. Indeed, for any p, k ∈ N0 and

every ε > 0, there exists Nµ
p,k = Nµ

p,k(ε) ∈ N0 such that

|Mp(x)Tµ,k(ϕn − ϕm)(x)| < ε (x ∈ I, n,m ≥ Nµ
p,k).

Taking the limit as n→ ∞, it follows that

ω
µ
p,k(ϕ − ϕm) ≤ ε (m ≥ Nµ

p,k).

On the other hand, there exists Bµ
p,k > 0, independent of m, such that

ω
µ
p,k(ϕm) ≤ Bµ

p,k (m, p, k ∈ N0).

Thus,
ω
µ
p,k(ϕ) ≤ Bµ

p,k + ε (p, k ∈ N0).

This shows that ϕ ∈ Sµ and {ϕn}
∞
n=0 converges to ϕ in Sµ, as asserted. �

Proposition 4.2. For µ ≥ −1
2 , the inclusion Kµ ⊂ Sµ holds. Moreover, the embedding Kµ ↪→ Sµ is

continuous.

Proof. Let p ∈ N0. Proposition 2.10(i), along with condition (A) on the weights, yields r, s ∈ N0,
s > r > p + µ + 1

2 , and C > 0 such that

|Mp(x)Tµ,kϕ(x)|

= |Mp(x)xk+µ+ 1
2 (x−1D)kx−µ−

1
2ϕ(x)|

≤ C|Mp(x)Mr(x)(x−1D)kx−µ−
1
2ϕ(x)|

≤ C|Ms(x)(x−1D)kx−µ−
1
2ϕ(x)| (x ∈ I, k ∈ N0, 0 ≤ k ≤ p)
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whenever ϕ ∈ Kµ. According to Definition 2.1, this means that

ρµ∞,p(ϕ) ≤ C‖ϕ‖µ,∞,s < ∞ (ϕ ∈ Kµ),

which completes the proof. �

Proposition 4.3. Suppose that ϕ ∈ Sµ. Then, ϕ ∈ Kµ if, and only if, the following limits exist:

lim
x→0+

(x−1D)kx−µ−
1
2ϕ(x) (k ∈ N0). (4.5)

In other words,

Kµ =

{
ϕ ∈ Sµ : there exist lim

x→0+
(x−1D)kx−µ−

1
2ϕ(x) (k ∈ N0)

}
=

{
ϕ ∈ Sµ : (x−1D)kx−µ−

1
2ϕ(x) = O(1) as x→ 0+ (k ∈ N0)

}
.

(4.6)

Proof. Note that the existence of a limit is a stronger condition than boundedness near the origin; thus,
the first set on the right-hand side of (4.6) is contained in the second set.

Under (A), (M), and (N), we have that Kµ ⊂ Hµ (Proposition 2.10(ii)). Hence, if ϕ ∈ Kµ, then
ϕ ∈ Sµ (by Proposition 4.2) and the limits given by (4.5) exist [40, Lemma 5.2-1].

Finally, suppose that ϕ ∈ Sµ and (x−1D)kx−µ−
1
2ϕ(x) is bounded near zero for all k ∈ N0. Since (O)

holds, Mp(x)(x−1D)kx−µ−
1
2ϕ(x) is also bounded near zero for any p, k ∈ N0. On the other hand,

|Mp(x)(x−1D)kx−µ−
1
2ϕ(x)| = |Mp(x)x−k−µ− 1

2 Tµ,kϕ(x)|
≤ |Mp(x)Tµ,kϕ(x)|
≤ ω

µ
p,k(ϕ) < ∞ (1 ≤ x < ∞, p, k ∈ N0).

This proves that ϕ ∈ Kµ. �

Theorem 4.4. For µ ≥ −1
2 , the inclusion Sµ ⊂ Hµ holds with a continuous embedding. Consequently,

Sµ = Kµ both algebraically and topologically.

Proof. To show that Sµ ⊂ Hµ and the inclusion map Sµ ↪→ Hµ is continuous, note that, given p ∈ N0,
Proposition 2.10(i) and condition (A) on the weights yield r ∈ N0, r > p, and C > 0, for which
xp ≤ CMr(x) (x ∈ I). Therefore,

sup
x∈I
|xpTµ,kϕ(x)| ≤ C sup

x∈I
|Mr(x)Tµ,kϕ(x)|

≤ Cρµ∞,r(ϕ) < ∞ (ϕ ∈ Sµ, k ∈ N0, 0 ≤ k ≤ p),

and it suffices to invoke [4, Theorem 3.3]. In particular, the limits given by (4.5) exist whenever
ϕ ∈ Sµ [40, Lemma 5.2-1], and, from Proposition 4.3, it follows that Sµ = Kµ.

This equality is also topological, as it can be deduced from Propositions 2.8, 4.1, and 4.2 by applying
the open mapping theorem [28, Corollary 2.12]. �

Once it is proved that Sµ ⊂ Hµ, Proposition 4.5 is an immediate consequence of [4, Theorem 3.3
and Proposition 2.3]. Just for the sake of completeness, a direct proof is included.
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Proposition 4.5. Let µ ≥ −1
2 . Every ϕ ∈ Sµ is bounded. For any k ∈ N0, Dkϕ is rapidly decreasing at

infinity; in particular, Sµ is a dense proper subspace of L1(I).

Proof. Every ϕ ∈ Sµ is bounded because ωk
0,0(ϕ) < ∞.

To prove that Dkϕ (k ∈ N0) is rapidly decreasing at infinity, we proceed by induction on k, bearing
in mind (4.4) and the fact that, given m ∈ N0, Proposition 2.10(i), along with condition (A), yields
r ∈ N0, r > m, and C > 0 such that xm ≤ CMr(x) (x ∈ I). The inductive scheme is as follows.

k = 0: xmϕ(x) (m ∈ N0) is bounded for x ∈ I because

|xmϕ(x)| ≤ C|Mr(x)ϕ(x)| = Cωµ
r,0(ϕ) < ∞.

Therefore, ϕ(x) is rapidly decreasing at infinity.
k = 1: xmDϕ(x) (m ∈ N0) is bounded for x ≥ 1 because, by (4.4), we have

xmDϕ(x) = xm Tµ,1ϕ(x)︸       ︷︷       ︸
ω
µ
r,1(ϕ)<∞

−bµ1,0 xm−1ϕ(x)︸    ︷︷    ︸
m≥1: step 0

m=0: ϕ bounded

.

Therefore, Dϕ(x) is rapidly decreasing at infinity.
k = 2: xmD2ϕ(x) (m ∈ N0) is bounded for x ≥ 1 because, by (4.4), we have

xmD2ϕ(x) = xm Tµ,2ϕ(x)︸       ︷︷       ︸
ω
µ
r,2(ϕ)<∞

−bµ2.0 xm−2ϕ(x)︸    ︷︷    ︸
m≥2: step 0

m=0,1: ϕ bounded

−b2,1 xm−1Dϕ(x)︸      ︷︷      ︸
m≥1: step 1

m=0: Dϕ bounded

.

Therefore, D2ϕ(x) is rapidly decreasing at infinity.
Assuming that the statement

xmDnϕ(x) (m ∈ N0) is bounded for x ≥ 1

holds true for all n ∈ N0 with 0 ≤ n ≤ k, we prove it for k + 1.
k + 1: xmDk+1ϕ(x) (m ∈ N0) is bounded for x ≥ 1 because, by (4.4), we have

xmDk+1ϕ(x) = xm Tµ,k+1ϕ(x)︸          ︷︷          ︸
ω
µ
r,k+1(ϕ)<∞

−bµk+1,0 xm−k−1ϕ(x)︸      ︷︷      ︸
m≥k+1: ind. hyp.

0≤m≤k: ϕ bounded

− bµk+1,1 xm−kDϕ(x)︸      ︷︷      ︸
m≥k: ind. hyp.

0≤m≤k−1: Dϕ bounded

− . . .

− bµk+1,k xm−1Dkϕ(x)︸        ︷︷        ︸
m≥1: ind. hyp.

m=0: Dkϕ bounded

.

Therefore, Dk+1ϕ(x) is rapidly decreasing at infinity and the induction is complete.

Finally, it is clear that
D(I) ⊂ Sµ ⊂ L1(I),

which implies that Sµ is dense in L1(I). �
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4.2. The topology of Sµ

Proposition 4.6. For µ ≥ − 1
2 and any p, 1 ≤ p ≤ ∞, the families of norms {ρµp,r}∞r=0 generate the

topology of Sµ, where, for r ∈ N0 and ϕ ∈ Sµ,

ρµ∞,r(ϕ) = max
0≤k≤r

sup
x∈I
|Mr(x)Tµ,kϕ(x)|,

ρµp,r(ϕ) = max
0≤k≤r

{∫ ∞

0

∣∣∣Mr(x)Tµ,kϕ(x)
∣∣∣p dx

} 1
p

(1 ≤ p < ∞).

Proof. Fix 1 < p < ∞ and ϕ ∈ Sµ. Given r ∈ N0, condition (N) yields s ∈ N0, s > r such that∫ ∞

0

Mr(x)
Ms(x)

dx < ∞. (4.7)

Since
0 ≤

Mr(x)
Ms(x)

≤ 1 (x ∈ I), (4.8)

we may write the following:

ρµp,r(ϕ) = max
0≤k≤r

{∫ ∞

0

∣∣∣Mr(x)Tµ,kϕ(x)
∣∣∣p dx

} 1
p

= max
0≤k≤r

{∫ ∞

0

∣∣∣Ms(x)Tµ,kϕ(x)
∣∣∣p (

Mr(x)
Ms(x)

)p

dx
} 1

p

≤ max
0≤k≤s

sup
x∈I
|Ms(x)Tµ,kϕ(x)|

{∫ ∞

0

Mr(x)
Ms(x)

dx
} 1

p

=

{∫ ∞

0

Mr(x)
Ms(x)

dx
} 1

p

ρµ∞,s(ϕ).

A new application of (4.7) and (4.8), in combination with Hölder’s inequality, leads to

ρ
µ
1,r(ϕ) = max

0≤k≤r

∫ ∞

0

∣∣∣Mr(x)Tµ,kϕ(x)
∣∣∣ dx

= max
0≤k≤r

∫ ∞

0

∣∣∣Ms(x)Tµ,kϕ(x)
∣∣∣ Mr(x)

Ms(x)
dx

≤ max
0≤k≤s

{∫ ∞

0

∣∣∣Ms(x)Tµ,kϕ(x)
∣∣∣p dx

} 1
p
{∫ ∞

0

(
Mr(x)
Ms(x)

)q

dx
} 1

q

=

{∫ ∞

0

Mr(x)
Ms(x)

dx
} 1

q

ρµp,s(ϕ).

Here, q = p(p − 1)−1 denotes the conjugate exponent of p.
Finally, given k0 ∈ N0 and ϕ ∈ Sµ, the function (x−1D)kx−µ−

1
2ϕ(x) is rapidly decreasing at infinity

because Sµ ⊂ Hµ (Theorem 4.4). Hence, for ϕ ∈ Sµ and r, k ∈ N0 with 0 ≤ k ≤ r, by using (M), we
find that

|Mr(x)Tµ,kϕ(x)| =
∣∣∣Mr(x) xk+µ+ 1

2 (x−1D)kx−µ−
1
2ϕ(x)

∣∣∣
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=
∣∣∣∣Mr(x) xk+µ+ 1

2

∫ ∞

x
t(t−1D)k+1t−µ−

1
2ϕ(t) dt

∣∣∣∣
≤ C

∫ ∞

x

∣∣∣Mr(t) t(k+1)+µ+ 1
2 (t−1D)k+1t−µ−

1
2ϕ(t)

∣∣∣ dt

≤ C
∫ ∞

0

∣∣∣Mr(t)Tµ,k+1ϕ(t)
∣∣∣ dt (x ∈ I).

Consequently,
ρµ∞,r(ϕ) ≤ Cρµ1,r+1(ϕ).

The proof is thus complete. �

5. Structure, boundedness, and convergence in S′µ

Now that Proposition 4.6 has been proved, we intend to apply techniques similar to those employed
in the proof of the results in Section 3 in order to characterize the elements, the (weakly, weakly*,
strongly) bounded subsets, and the (weakly, weakly*, strongly) convergent sequences in the dual space
K ′µ = S′µ (µ ≥ − 1

2 ), this time as distributional derivatives induced by the adjoint of the operator Tµ,k

(k ∈ N0). The main results correspond to Theorems 5.4–5.5, 5.6, and 5.7, respectively. Prior to deriving
these results, three auxiliary lemmas must be established.

5.1. Auxiliary results

Lemma 5.1. Let µ ≥ − 1
2 , and let F ∈ C(I) be such that there exists p ∈ N0 with M−1

p F ∈ Lq(I)
(1 ≤ q ≤ ∞). Then, for each k ∈ N0, there exist pk ∈ N0, pk ≥ p, and a function Fk ∈ C(I) satisfying

x−µ−
1
2 (Dx−1)kxk+µ+ 1

2 Fk(x) = F(x) (x ∈ I) (5.1)

and
M−1

pk
Fk ∈ Lq(I) (1 ≤ q ≤ ∞). (5.2)

Proof. We proceed by induction on k. The result is obvious if k = 0. Suppose that, given k ∈ N0,
k ≥ 1, there exist pk ∈ N0, pk ≥ p, and a function Fk ∈ C(I) satisfying (5.1) and (5.2). Use (N) to find
n, t ∈ N0, n > t > pk, such that ∫ ∞

0

Mpk(x)
Mt(x)

dx < ∞, (5.3)∫ ∞

0

Mt(x)
Mn(x)

dx < ∞. (5.4)

The inductive hypotheses, along with (M) and (5.3), allow us to write the following:

1
Mt(x)

∫ x

0
|Fk(ξ)| dξ ≤ C

∫ ∞

0

∣∣∣∣∣ Fk(ξ)
Mt(ξ)

∣∣∣∣∣ dξ
= C

∫ ∞

0

∣∣∣∣∣∣ Fk(ξ)
Mpk(ξ)

∣∣∣∣∣∣ Mpk(ξ)
Mt(ξ)

dξ
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≤ C sup
ξ∈I

∣∣∣∣∣∣ Fk(ξ)
Mpk(ξ)

∣∣∣∣∣∣
∫ ∞

0

Mpk(ξ)
Mt(ξ)

dξ

= C sup
ξ∈I

∣∣∣∣∣∣ Fk(ξ)
Mpk(ξ)

∣∣∣∣∣∣ . (5.5)

The function
F̃k(x) = x−k−µ− 1

2

∫ x

0
Fk(ξ)ξk+µ+ 1

2 dξ (x ∈ I)

is continuous, and, by (5.1), we have

x−µ−
1
2
(
Dx−1

)k+1
x(k+1)+µ+ 1

2 F̃k(x)

= x−µ−
1
2
(
Dx−1

)k
xk+µ+ 1

2 Fk(x) = F(x) (x ∈ I).

Furthermore, using (5.5), it follows that∣∣∣∣∣∣ F̃k(x)
Mt(x)

∣∣∣∣∣∣ =
1

Mt(x)

∣∣∣∣∣x−k−µ− 1
2

∫ x

0
Fk(ξ)ξk+µ+ 1

2 dξ
∣∣∣∣∣

≤
1

Mt(x)

∫ x

0
|Fk(ξ)| dξ

≤ C sup
ξ∈I

∣∣∣∣∣∣ Fk(ξ)
Mpk(ξ)

∣∣∣∣∣∣ (x ∈ I).

Because n > t, given (5.2), it clearly follows that

sup
x∈I

∣∣∣∣∣∣ F̃k(x)
Mn(x)

∣∣∣∣∣∣ ≤ sup
x∈I

∣∣∣∣∣∣ F̃k(x)
Mt(x)

∣∣∣∣∣∣
≤ C sup

ξ∈I

∣∣∣∣∣∣ Fk(ξ)
Mpk(ξ)

∣∣∣∣∣∣ < ∞.
On the other hand, if 1 ≤ q < ∞, then, given (5.2), and with the aid of (5.4), we obtain∫ ∞

0

∣∣∣∣∣∣ F̃k(x)
Mn(x)

∣∣∣∣∣∣
q

dx =

∫ ∞

0

∣∣∣∣∣∣ F̃k(x)
Mt(x)

∣∣∣∣∣∣
q (

Mt(x)
Mn(x)

)q

dx

≤ C sup
ξ∈I

∣∣∣∣∣∣ Fk(ξ)
Mpk(ξ)

∣∣∣∣∣∣q
∫ ∞

0

Mt(x)
Mn(x)

dx

= C sup
ξ∈I

∣∣∣∣∣∣ Fk(ξ)
Mpk(ξ)

∣∣∣∣∣∣q < ∞.
To complete the induction, it suffices to take pk+1 = n and Fk+1 = F̃k. �

Lemma 5.2. Let µ ≥ −1
2 , and letM be a family of functions in C(I) with the property that

sup
F∈M

∥∥∥M−1
p F

∥∥∥
q
≤ A (1 ≤ q ≤ ∞)
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for certain p ∈ N0 and A > 0. Then, given k ∈ N0, there exist pk ∈ N0, pk ≥ p, Ck > 0, and, for each
F ∈ M, a function gk,F ∈ C(I) such that

x−µ−
1
2 (Dx−1)kxk+µ+ 1

2 gk,F(x) = F(x) (x ∈ I) (5.6)

and
sup
F∈M

∥∥∥M−1
pk

gk,F

∥∥∥
q
≤ Ck (1 ≤ q ≤ ∞). (5.7)

Proof. The result holds trivially for k = 0. Proceeding by induction, fix k ∈ N0, k ≥ 1. Let pk ∈ N0,
pk ≥ p, and Ck > 0, and, for each F ∈ M, let gk,F ∈ C(I) satisfy (5.6) and (5.7). As in the proof of
Lemma 5.1, for every F ∈ M, we construct a function g̃k,F ∈ C(I) such that

x−µ−
1
2 (Dx−1)k+1x(k+1)+µ+ 1

2 g̃k,F(x) = F(x) (x ∈ I),

sup
x∈I

∣∣∣∣∣∣ g̃k,F(x)
Mn(x)

∣∣∣∣∣∣ ≤ C sup
ξ∈I

∣∣∣∣∣∣ gk,F(ξ)
Mpk(ξ)

∣∣∣∣∣∣ ,
and ∫ ∞

0

∣∣∣∣∣∣ g̃k,F(x)
Mn(x)

∣∣∣∣∣∣q dx ≤ C sup
ξ∈I

∣∣∣∣∣∣ gk,F(ξ)
Mpk(ξ)

∣∣∣∣∣∣q (1 ≤ q < ∞)

for some n ∈ N0, n > pk, where the positive constant C does not depend on F. To complete the
proof, it suffices to choose pk+1 = n and gk+1,F = g̃k,F , as well as to take into account the inductive
hypotheses. �

The next result can be analogously established.

Lemma 5.3. Let µ ≥ −1
2 , and let

{
F j

}∞
j=0

be a sequence of functions in C(I) for which there exists
p ∈ N0 with

lim
j→∞

∥∥∥M−1
p F j

∥∥∥
q

= 0 (1 ≤ q ≤ ∞).

Then, for each k ∈ N0, there exist pk ∈ N0, pk ≥ p, and Fk, j ∈ C(I) ( j ∈ N0) such that

x−µ−
1
2 (Dx−1)kxk+µ+ 1

2 Fk, j(x) = F j(x) (x ∈ I, j ∈ N0)

and
lim
j→∞

∥∥∥M−1
pk

Fk, j

∥∥∥
q

= 0 (1 ≤ q ≤ ∞).

5.2. Representation of the functionals in S′µ

At this point, we are in a position to give several representations of the elements in the dual space of
Sµ in terms of the adjoint of the operator Tµ,k (k ∈ N0). This will be done in Theorems 5.4 and 5.5. The
proof of Theorem 5.4 uses a fairly standard method, which can be traced back to [36] and was already
used in [3, 4, 24], but we include it for the sake of completeness.

Theorem 5.4. Let µ ≥ − 1
2 . A linear functional f belongs to S′µ if, and only if, for every q, 1 < q ≤ ∞,

there exist r ∈ N0 and measurable functions gk, with M−1
r gk ∈ Lq(I) (k ∈ N0, 0 ≤ k ≤ r), such that

f = x−µ−
1
2

r∑
k=0

(
Dx−1

)k
xk+µ+ 1

2 gk(x). (5.8)
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Proof. Fix q, 1 < q ≤ ∞, and let p, 1 ≤ p < ∞, be the conjugate exponent of q.
If f ∈ S′µ, then, by Proposition 4.6, there exist r ∈ N0 and C > 0 such that

|〈 f , ϕ〉| ≤ Cρµp,r(ϕ) (ϕ ∈ Sµ). (5.9)

Let us denote by Γp the direct sum of r + 1 copies of Lp(I), normed by

‖( fk)0≤k≤r‖p = max
0≤k≤r

‖ fk‖p, (5.10)

and by Ξq the direct sum of r + 1 copies of Lq(I), normed by

‖( fk)0≤k≤r‖q =

r∑
k=0

‖ fk‖q.

Consider the following injective map:

F : Sµ −→ Γp

ϕ 7−→ F(ϕ) =
(
Mr(x)Tµ,kϕ(x)

)
0≤k≤r

,

and define on F(Sµ) ⊂ Γp the linear functional L by means of the formula

〈L, F(ϕ)〉 = 〈 f , ϕ〉.

In view of (5.9) and (5.10), L is continuous, and its norm is, at most, C. We continue to denote by
L a norm-preserving Hahn-Banach extension of this functional up to Γp. The Riesz representation
( fk)0≤k≤r ∈ Ξq of L over Γp satisfies

‖L‖ =

r∑
k=0

‖ fk‖q ≤ C (5.11)

and

〈 f , ϕ〉 = 〈L, F(ϕ)〉

=

r∑
k=0

∫ ∞

0
fk(x)Mr(x)xk+µ+ 1

2
(
x−1D

)k
x−µ−

1
2ϕ(x)dx

=

r∑
k=0

〈
fk(x),Mr(x)xk+µ+ 1

2
(
x−1D

)k
x−µ−

1
2ϕ(x)

〉
=

r∑
k=0

〈
x−µ−

1
2
(
−Dx−1

)k
xk+µ+ 1

2 Mr(x) fk(x), ϕ
〉

=

〈
x−µ−

1
2

r∑
k=0

(
−Dx−1

)k
xk+µ+ 1

2 Mr(x) fk(x), ϕ
〉 (

ϕ ∈ Sµ
)
.

Setting gk = (−1)k fkMr (k ∈ N0, 0 ≤ k ≤ r), we obtain (5.8).
Conversely, if f is given by (5.8), then Hölder’s inequality implies that

|〈 f , ϕ〉| ≤
r∑

k=0

∫ ∞

0

∣∣∣M−1
r (x)gk(x)

∣∣∣ ∣∣∣Mr(x)xk+µ+ 1
2
(
x−1D

)k
x−µ−

1
2ϕ(x)

∣∣∣dx
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≤ ρµp,r(ϕ)
r∑

k=0

∥∥∥M−1
r gk

∥∥∥
q

(ϕ ∈ Sµ),

which yields that f ∈ S′µ. �

Theorem 5.5. For µ ≥ −1
2 , the following statements are equivalent:

(i) The functional f lies in S′µ.
(ii) There exist k, p ∈ N0 and a function F ∈ C(I) such that

f = x−µ−
1
2
(
Dx−1

)k
xk+µ+ 1

2 F(x), (5.12)

with
M−1

p F ∈ Lq(I) (5.13)

for all q, 1 ≤ q ≤ ∞.
(iii) There exist k, p ∈ N0 and a function F ∈ C(I) satisfying (5.12) such that (5.13) holds for some q,

1 ≤ q ≤ ∞.
(iv) There exist k, p ∈ N0 and a function F ∈ C(I) satisfying (5.12) such that (5.13) holds for q = ∞.

Proof. (i) ⇒ (ii) If f ∈ S′µ, Theorem 5.4 yields that p ∈ N0 and measurable functions Gi (i ∈ N0, 0 ≤
i ≤ p) exist such that

f = x−µ−
1
2

p∑
i=0

(
Dx−1

)i
xi+µ+ 1

2 Gi(x) (5.14)

and
M−1

p Gi ∈ L∞(I) (i ∈ N0, 0 ≤ i ≤ p). (5.15)

Apply (N) to get n, t ∈ N0, n > t > p, for which∫ ∞

0

Mp(x)
Mt(x)

dx < ∞, (5.16)∫ ∞

0

Mt(x)
Mn(x)

dx < ∞. (5.17)

Fix i ∈ N0, 0 ≤ i ≤ p. By (M) and (5.16), we obtain

1
Mt(x)

∫ x

0
|Gi(ξ)| dξ ≤ C

∫ ∞

0

∣∣∣∣∣∣ Gi(ξ)
Mp(ξ)

∣∣∣∣∣∣ Mp(ξ)
Mt(ξ)

dξ

≤ C sup
ξ∈I

∣∣∣∣∣∣ Gi(ξ)
Mp(ξ)

∣∣∣∣∣∣
∫ ∞

0

Mp(ξ)
Mt(ξ)

dξ

= C sup
ξ∈I

∣∣∣∣∣∣ Gi(ξ)
Mp(ξ)

∣∣∣∣∣∣ (x ∈ I). (5.18)

The function

G̃i(x) = x−i−µ− 1
2

∫ x

0
Gi(ξ)ξi+µ+ 1

2 dξ (x ∈ I)
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is continuous and satisfies

x−µ−
1
2
(
Dx−1

)i+1
x(i+1)+µ+ 1

2 G̃i(x)

= x−µ−
1
2
(
Dx−1

)i
xi+µ+ 1

2 Gi(x) (x ∈ I).

Using (5.18), we may write ∣∣∣G̃i(x)
∣∣∣

Mt(x)
=

1
Mt(x)

∣∣∣∣∣x−i−µ− 1
2

∫ x

0
Gi(ξ)ξi+µ+ 1

2 dξ
∣∣∣∣∣

≤
1

Mt(x)

∫ x

0
|Gi(ξ)| dξ

≤ C sup
ξ∈I

∣∣∣∣∣∣ Gi(ξ)
Mp(ξ)

∣∣∣∣∣∣ (x ∈ I). (5.19)

As n > t,

sup
x∈I

∣∣∣∣∣∣ G̃i(x)
Mn(x)

∣∣∣∣∣∣ ≤ sup
x∈I

∣∣∣∣∣∣ G̃i(x)
Mt(x)

∣∣∣∣∣∣
≤ C sup

ξ∈I

∣∣∣∣∣∣ Gi(ξ)
Mp(ξ)

∣∣∣∣∣∣ < ∞.
Furthermore, taking into account (5.19) and (5.17), we find that∫ ∞

0

∣∣∣∣∣∣ G̃i(x)
Mn(x)

∣∣∣∣∣∣
q

dx =

∫ ∞

0

∣∣∣∣∣∣ G̃i(x)
Mt(x)

∣∣∣∣∣∣
q (

Mt(x)
Mn(x)

)q

dx

≤ C sup
ξ∈I

∣∣∣∣∣∣ Gi(ξ)
Mp(ξ)

∣∣∣∣∣∣q
∫ ∞

0

(
Mt(x)
Mn(x)

)q

dx

≤ C sup
ξ∈I

∣∣∣∣∣∣ Gi(ξ)
Mp(ξ)

∣∣∣∣∣∣q
∫ ∞

0

Mt(x)
Mn(x)

dx

= C sup
ξ∈I

∣∣∣∣∣∣ Gi(ξ)
Mp(ξ)

∣∣∣∣∣∣q < ∞
whenever 1 ≤ q < ∞. Now, applying Lemma 5.1 with µ + i + 1 ≥ − 1

2 instead of µ ≥ − 1
2 , we obtain a

function Fi ∈ C(I) and a non-negative integer si ≥ n such that

x−(µ+i+1)− 1
2
(
Dx−1

)p−i
x(p−i)+(µ+i+1)+ 1

2 Fi(x) = G̃i(x) (x ∈ I),

with
M−1

si
Fi ∈ Lq(I) (1 ≤ q ≤ ∞).

It follows that

x−µ−
1
2
(
Dx−1

)i
xi+µ+ 1

2 Gi(x)

= x−µ−
1
2
(
Dx−1

)i+1
x(i+1)+µ+ 1

2 G̃i(x)
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= x−µ−
1
2
(
Dx−1

)i+1
x(µ+i+1)+ 1

2

[
x−(µ+i+1)− 1

2
(
Dx−1

)p−i
x(p−i)+(µ+i+1)+ 1

2 Fi(x)
]

= x−µ−
1
2
(
Dx−1

)i+1 (
Dx−1

)p−i
x(p+1)+µ+ 1

2 Fi(x)

= x−µ−
1
2
(
Dx−1

)p+1
x(p+1)+µ+ 1

2 Fi(x) (x ∈ I).

Set

F =

p∑
i=0

Fi, m = max
0≤i≤p

si.

Then, F ∈ C(I). Using (5.14) and (5.15), we have

f = x−µ−
1
2

p∑
i=0

(
Dx−1

)i
xi+µ+ 1

2 Gi(x)

= x−µ−
1
2
(
Dx−1

)p+1
x(p+1)+µ+ 1

2

p∑
i=0

Fi(x)

= x−µ−
1
2
(
Dx−1

)p+1
x(p+1)+µ+ 1

2 F(x)

and
M−1

m F ∈ Lq(I) (1 ≤ q ≤ ∞).

It is thus proved that (i) implies (ii).
(ii)⇒ (iii) This is obvious.
(iii)⇒ (iv) Suppose that there exist k, p ∈ N0 and a function F ∈ C(I) satisfying (5.12) and (5.13) for
some q, 1 ≤ q ≤ ∞, and apply (N) to find t ∈ N0, t > p, such that∫ ∞

0

Mp(x)
Mt(x)

dx < ∞. (5.20)

The function

F̃(x) = x−k−µ− 1
2

∫ x

0
F(ξ)ξk+µ+ 1

2 dξ (x ∈ I)

is continuous, with

x−µ−
1
2
(
Dx−1

)k+1
x(k+1)+µ+ 1

2 F̃(x)

= x−µ−
1
2
(
Dx−1

)k
xk+µ+ 1

2 F(x) = f .

By choosing n > t and using (M), we obtain

sup
x∈I

∣∣∣∣∣∣ F̃(x)
Mn(x)

∣∣∣∣∣∣ ≤ C sup
x∈I

∣∣∣∣∣∣x−k−µ− 1
2

∫ x

0

F(ξ)
Mp(ξ)

Mp(ξ)
Mt(ξ)

Mt(ξ)
Mn(ξ)

ξk+µ+ 1
2 dξ

∣∣∣∣∣∣
≤ C

∫ ∞

0

∣∣∣∣∣∣ F(ξ)
Mp(ξ)

∣∣∣∣∣∣ Mp(ξ)
Mt(ξ)

dξ.
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If q = 1, (5.13) and the fact that t > p imply that

sup
x∈I

∣∣∣∣∣∣ F̃(x)
Mn(x)

∣∣∣∣∣∣ ≤ C
∫ ∞

0

∣∣∣∣∣∣ F(ξ)
Mp(ξ)

∣∣∣∣∣∣ dξ < ∞.
If q = ∞, conditions (5.13) and (5.20) yield

sup
x∈I

∣∣∣∣∣∣ F̃(x)
Mn(x)

∣∣∣∣∣∣ ≤ C sup
ξ∈I

∣∣∣∣∣∣ F(ξ)
Mp(ξ)

∣∣∣∣∣∣
∫ ∞

0

Mp(ξ)
Mt(ξ)

dξ < ∞.

Finally, if 1 < q < ∞, then (5.13), Hölder’s inequality, and (5.20) lead to

sup
x∈I

∣∣∣∣∣∣ F̃(x)
Mn(x)

∣∣∣∣∣∣ ≤ C
{∫ ∞

0

∣∣∣∣∣∣ F(ξ)
Mp(ξ)

∣∣∣∣∣∣q dξ
} 1

q

∫ ∞

0

(
Mp(ξ)
Mt(ξ)

)q′

dξ


1
q′

≤ C
{∫ ∞

0

∣∣∣∣∣∣ F(ξ)
Mp(ξ)

∣∣∣∣∣∣q dξ
} 1

q
{∫ ∞

0

Mp(ξ)
Mt(ξ)

dξ
} 1

q′

< ∞.

Here, q′ denotes the conjugate exponent of q. Therefore, (5.12) and (5.13) hold with k + 1 instead of k,
F̃ instead of F, and n instead of p, when q = ∞. This establishes (iv).
(iv)⇒ (i) To complete the proof, assume that there exist k, p ∈ N0 and F ∈ C(I) such that

f = x−µ−
1
2
(
Dx−1

)k
xk+µ+ 1

2 F(x),

with
M−1

p F ∈ L∞(I).

This representation of f guarantees that f ∈ S′µ, as it can be deduced from the following estimate:

|〈 f , ϕ〉| =
∣∣∣∣∣(−1)k

∫ ∞

0
F(x)xk+µ+ 1

2
(
x−1D

)k
x−µ−

1
2ϕ(x)dx

∣∣∣∣∣
≤ sup

x∈I

∣∣∣∣∣∣ F(x)
Mp(x)

∣∣∣∣∣∣ sup
x∈I

∣∣∣∣Mr(x)xk+µ+ 1
2
(
x−1D

)k
x−µ−

1
2ϕ(x)

∣∣∣∣ ∫ ∞

0

Mp(x)
Mr(x)

dx

≤ Cωµ
r,k(ϕ) (ϕ ∈ Sµ), (5.21)

where r > p is chosen according to (N). Thus, (iv) implies (i), and we are done. �

5.3. Boundedness in S′µ

Next, we shall characterize boundedness in S′µ. Recall that, under (A), (M), and (N), Sµ is reflexive
(Theorem 4.4 and Proposition 2.12), which means that the weak and weak* topologies of S′µ coincide.
Furthermore, because Sµ is a Fréchet space (Proposition 4.1), it is barrelled [36, Definition II.33.1 and
Proposition II.33.2, Corollary 1], and, in this class of spaces, the weak* and strong topologies share
the same bounded sets [36, Theorem II.33.2].

Theorem 5.6. For µ ≥ −1
2 , the following five statements are equivalent:
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(i) The set B ⊂ S′µ is (weakly, weakly*, strongly) bounded.
(ii) Given q, 1 < q ≤ ∞, there exist r ∈ N0, C > 0, and, for each f ∈ B, measurable functions gk, f

(k ∈ N0, 0 ≤ k ≤ r) such that

f = x−µ−
1
2

r∑
k=0

(
Dx−1

)k
xk+µ+ 1

2 gk, f (x),

with
r∑

k=0

∥∥∥M−1
r gk, f

∥∥∥
q
≤ C.

(iii) There exist k, p ∈ N0, C > 0, and, for each f ∈ B, a function g f ∈ C(I) such that

f = x−µ−
1
2
(
Dx−1

)k
xk+µ+ 1

2 g f (x), (5.22)

with ∥∥∥M−1
p g f

∥∥∥
q
≤ C (5.23)

for any q, 1 ≤ q ≤ ∞.
(iv) There exist k, p ∈ N0, C > 0, and, for each f ∈ B, a function g f ∈ C(I) satisfying (5.22) such that

(5.23) holds for some q, 1 ≤ q ≤ ∞.
(v) There exist k, p ∈ N0, C > 0, and, for each f ∈ B, a function g f ∈ C(I) satisfying (5.22) such that

(5.23) holds for q = ∞.

Proof. Since Sµ is barrelled, a subset B of S′µ is (weakly, weakly*, strongly) bounded if, and only
if, it is equicontinuous [36, Proposition II.33.1], which means that (5.9) holds for r ∈ N0 and C > 0
independent of f ∈ B. Now, (ii) can be obtained by using the same argument as in the proof of
Theorem 5.4, taking into account condition (5.11) on the norms of the representing functions.

If (ii) holds, then, in particular, there exist p ∈ N0, A > 0, and, for each f ∈ B, measurable functions
Gi, f (i ∈ N0, 0 ≤ i ≤ p) such that

f = x−µ−
1
2

p∑
i=0

(
Dx−1

)i
xi+µ+ 1

2 Gi, f (x),

with
p∑

i=0

∥∥∥M−1
p Gi, f

∥∥∥
∞
≤ A.

Fix i ∈ N0, 0 ≤ i ≤ p. The argument in the proof that (i) implies (ii) in Theorem 5.5 yields that n ∈ N0,
n > p, Ã > 0, and G̃i, f ∈ C(I) exist such that

x−µ−
1
2
(
Dx−1

)i+1
x(i+1)+µ+ 1

2 G̃i, f (x)

= x−µ−
1
2
(
Dx−1

)i
xi+µ+ 1

2 Gi, f (x) (x ∈ I),

sup
x∈I

∣∣∣∣∣∣∣G̃i, f (x)
Mn(x)

∣∣∣∣∣∣∣ ≤ C sup
ξ∈I

∣∣∣∣∣∣Gi, f (ξ)
Mp(ξ)

∣∣∣∣∣∣ ≤ Ã,
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and ∫ ∞

0

∣∣∣∣∣∣∣G̃i, f (x)
Mn(x)

∣∣∣∣∣∣∣
q

dx ≤ C sup
ξ∈I

∣∣∣∣∣∣Gi, f (ξ)
Mp(ξ)

∣∣∣∣∣∣q ≤ Ãq (1 ≤ q < ∞),

where Ã is independent of f ∈ B. According to Lemma 5.2, applied with µ + i + 1 ≥ − 1
2 instead of

µ ≥ −1
2 , there exist si ∈ N0, si ≥ n, Ci > 0, and, for each f ∈ B, a function Fi, f ∈ C(I) such that

x−(µ+i+1)− 1
2
(
Dx−1

)p−i
x(p−i)+(µ+i+1)+ 1

2 Fi, f (x) = G̃i, f (x) (x ∈ I),

with ∥∥∥M−1
si

Fi, f

∥∥∥
q
≤ Ci (1 ≤ q ≤ ∞).

Therefore,

x−µ−
1
2
(
Dx−1

)i
xi+µ+ 1

2 Gi, f (x)

= x−µ−
1
2
(
Dx−1

)p+1
x(p+1)+µ+ 1

2 Fi, f (x) (x ∈ I).

Setting

g f =

p∑
i=0

Fi, f , m = max
0≤i≤p

si, C =

p∑
i=0

Ci,

we find that g f ∈ C(I),

f = x−µ−
1
2
(
Dx−1

)p+1
x(p+1)+µ+ 1

2 g f (x),

and ∥∥∥M−1
m g f

∥∥∥
q
≤ C (1 ≤ q ≤ ∞),

where m ∈ N0 and C > 0 do not depend on f ∈ B. Thus, (ii) implies (iii).
It is apparent that (iii) implies (iv).
To prove that (iv) implies (v), assume that there exist k, p ∈ N0, A > 0, and, for each f ∈ B, a

function g f ∈ C(I) satisfying

f = x−µ−
1
2
(
Dx−1

)k
xk+µ+ 1

2 g f (x)

with ∥∥∥M−1
p g f

∥∥∥
q
≤ A

for some q, 1 ≤ q ≤ ∞. The argument in the proof that (iii) implies (iv) in Theorem 5.5 allows us to
find n ∈ N0, n > p, Ã > 0, and, for each f ∈ B, a function g̃ f ∈ C(I) such that

f = x−µ−
1
2
(
Dx−1

)k+1
x(k+1)+µ+ 1

2 g̃ f (x),

with

sup
x∈I

∣∣∣∣∣∣ g̃ f (x)
Mn(x)

∣∣∣∣∣∣ ≤ C
{∫ ∞

0

∣∣∣∣∣∣ g f (ξ)
Mp(ξ)

∣∣∣∣∣∣q dξ
} 1

q

≤ Ã,

if 1 ≤ q < ∞, or

sup
x∈I

∣∣∣∣∣∣ g̃ f (x)
Mn(x)

∣∣∣∣∣∣ ≤ C sup
ξ∈I

∣∣∣∣∣∣ g f (ξ)
Mp(ξ)

∣∣∣∣∣∣ ≤ Ã,

if q = ∞. This establishes (v).
Finally, (v) and (5.21), with g f ( f ∈ B) instead of F, yield (i). �
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5.4. Convergence in S′µ

Next, we shall describe sequential convergence in the dual of Sµ. Under (A), (M), and (N), Sµ
is Montel and, hence, reflexive (Theorem 4.4 and Proposition 2.12). Thus, the weak and weak*
topologies of S′µ coincide, and weak* and strong sequential convergence are equivalent in this space
[36, Proposition II.34.6, Corollary 1].

Theorem 5.7. For µ ≥ −1
2 , the following statements are equivalent:

(i) The sequence
{
f j

}∞
j=0

converges (weakly, weakly*, strongly) to zero in S′µ.
(ii) For each q, 1 < q ≤ ∞, there exist p ∈ N0 and measurable functions gk, j (k ∈ N0, 0 ≤ k ≤ p) such

that

f j = x−µ−
1
2

p∑
k=0

(
Dx−1

)k
xk+µ+ 1

2 gk, j(x) ( j ∈ N0),

with lim j→∞
∑p

k=0

∥∥∥M−1
p gk, j

∥∥∥
q

= 0.
(iii) There exist k, p ∈ N0 and F j ∈ C(I) ( j ∈ N0) such that

f j = x−µ−
1
2
(
Dx−1

)k
xk+µ+ 1

2 F j(x) ( j ∈ N0) (5.24)

and
lim
j→∞

∥∥∥M−1
p F j

∥∥∥
q

= 0 (5.25)

for any q, 1 ≤ q ≤ ∞.
(iv) There exist k, p ∈ N0 and F j ∈ C(I) ( j ∈ N0) satisfying (5.24) and (5.25) for some q, 1 ≤ q ≤ ∞.
(v) There exist k, p ∈ N0 and F j ∈ C(I) ( j ∈ N0) satisfying (5.24) and (5.25) for q = ∞.

(vi) There exist k, p ∈ N0, C > 0, and F j ∈ C(I) ( j ∈ N0) satisfying (5.24), with∥∥∥M−1
p F j

∥∥∥
∞
≤ C ( j ∈ N0)

and lim j→∞ F j(x) = 0 for almost all x ∈ I.

Proof. To show that (i) implies (ii), suppose that
{
f j

}∞
j=0

converges to zero in S′µ. Then [24,

Equation (5.7)], there exist p ∈ N0 and positive constants
{
C j

}∞
j=0

such that∣∣∣〈 f j, ϕ〉
∣∣∣ ≤ C j‖ϕ‖µ,∞,p

(
ϕ ∈ Sµ, j ∈ N0

)
and lim j→∞C j = 0. On the other hand (Proposition 4.6), given q, 1 < q ≤ ∞, there exist C > 0 and
r ∈ N0 such that

‖ϕ‖µ,∞,p ≤ C ρµq,r(ϕ) (ϕ ∈ Sµ).

It follows that ∣∣∣〈 f j, ϕ〉
∣∣∣ ≤ C j ρ

µ
q,r(ϕ)

(
ϕ ∈ Sµ, j ∈ N0

)
, (5.26)

where the redefined sequence
{
C j

}∞
j=0

still satisfies

lim
j→∞

C j = 0. (5.27)

AIMS Mathematics Volume 9, Issue 7, 18247–18277.



18273

Now, it suffices to provide the same argument as in the proof of Theorem 5.4, using (5.26) instead
of (5.9) and keeping in mind (5.27) in relation to (5.11).

Parts (iv) and (vi) follow trivially from (iii) and (v), respectively.
The arguments in the proof of the corresponding results for Theorems 5.5 and 5.6, in combination

with Lemma 5.3 instead of Lemmas 5.1 and 5.2, allow us to establish that (ii) implies (iii) and (iv)
implies (v); we omit the details.

Finally, assuming that (vi) holds, to obtain (i), it suffices to choose n ∈ N0, n > p, according to (N)
and apply Lebesgue’s dominated convergence theorem to the following integrals:〈

f j, ϕ
〉

= (−1)k
∫ ∞

0

F j(x)
Mp(x)

Mp(x)
Mn(x)

Mn(x)Tµ,kϕ(x)dx
(
ϕ ∈ Sµ, j ∈ N0

)
.

This completes the proof. �

5.5. An example: Hµ

Theorems 5.4–5.7 characterize the structure, boundedness, and convergence in the dual of a wide
range of spaces that arise in the context of the Hankel transformation (see Sections 2 and 3.4). For
illustrative purposes, in Corollary 5.8, some of those results have been specialized for the Zemanian
space Hµ, which, as already mentioned (Example 2.2), is none other than the Hankel-K{Mp} space
defined by the sequence of weights

{(
1 + x2

)p}∞
p=0

.
The application of Theorem 5.4 toHµ is as stated in [4, Theorem 5.5]. However, the representation

of the elements in H ′µ obtained as a consequence of Theorem 5.5 is an improvement upon the result
of [4] in three ways. First, it involves the Tµ,k-distributional derivative (k ∈ N0) of a single continuous
function F. Second, the representing function F is not dependent on the exponent q; in fact, the
products of F and the inverses of the weights belong to all classes Lq(I), 1 ≤ q ≤ ∞. Finally, as
we have just highlighted, and unlike what occurs in Theorem 5.4, q = 1 is included in the range of
exponents for which the representation is valid.

Remarks analogous to the preceding ones can be made regarding Theorem 5.7; particularly, the
application of part (ii) to the spaceHµ is as stated in [4, Theorem 5.4], while parts (iii) to (v) improve
upon this result along the lines described above.

Reference [4] contains no analogue of Theorem 5.6.

Corollary 5.8. LetH ′µ be the dual space ofHµ. Then, the following holds:

(i) A functional f belongs to H ′µ if, and only if, there exist k, p ∈ N0 and a function F ∈ C(I) such
that

f = x−µ−
1
2
(
Dx−1

)k
xk+µ+ 1

2 F(x),

with (
1 + x2

)−p
F(x) ∈ Lq(I) (1 ≤ q ≤ ∞).

(ii) A set B ⊂ H ′µ is (weakly, weakly*, strongly) bounded if, and only if, there exist k, p ∈ N0, C > 0,
and, for every f ∈ B, a function g f ∈ C(I) such that

f = x−µ−
1
2
(
Dx−1

)k
xk+µ+ 1

2 g f (x),
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with ∥∥∥ (
1 + x2

)−p
g f (x)

∥∥∥
q
≤ C (1 ≤ q ≤ ∞).

(iii) A sequence
{
f j

}∞
j=0

converges (weakly, weakly*, strongly) to zero in H ′µ if, and only if, there exist
k, p ∈ N0 and g j ∈ C(I) such that

f j = x−µ−
1
2
(
Dx−1

)k
xk+µ+ 1

2 g j(x) ( j ∈ N0),

with
lim
j→∞

∥∥∥ (
1 + x2

)−p
g j(x)

∥∥∥
q

= 0 (1 ≤ q ≤ ∞).

6. Conclusions

In Friedman’s opinion [10, p. 37], one of the most interesting and important problems in the theory
of generalized functions or distributions is to find their structure, that is, to express them in terms of
differential operators acting on functions or on measures. This paper provides novel results in this
direction for the spaces of type Hankel-K{Mp}. Namely, here it was shown that, for µ ≥ −1

2 , and under
certain conditions on the weights {Mp}

∞
p=0, the elements, the (weakly, weakly*, strongly) bounded

subsets, and the (weakly, weakly*, strongly) convergent sequences in the dual of a space Kµ of type
Hankel-K{Mp} can be represented as distributional derivatives of functions and of measures that satisfy
good properties, not only in terms of the differential operator x−1D and of the Bessel operator S µ =

x−µ−
1
2 Dx2µ+1Dx−µ−

1
2 , but also in terms of suitable iterations Tµ,k (k ∈ N0) of the Zemanian differential

operator Nµ = xµ+ 1
2 Dx−µ−

1
2 . To this end, new descriptions for the usual topology of Kµ in terms of the

latter iterations were given.
The operators Tµ,k are defined by Tµ,k = Nµ+k−1 · · ·Nµ for k ∈ N, while Tµ,0 is the identity

operator. The interest of such operators lies in their symmetric behavior with respect to hµ, the Hankel
transformation of order µ. Indeed, given ϕ ∈ L1(I), we define(

hµϕ
)

(y) =

∫ ∞

0
ϕ(x)(xy)

1
2 Jµ(xy)dx (y ∈ I),

where I =]0,∞[ and Jµ is the Bessel function of the first kind and order µ. For a sufficiently smooth ϕ
with a good boundary behavior, the identity

(−y)mTµ,k(hµϕ)(y) =

∫ ∞

0
(−x)kTµ,mϕ(x)(xy)

1
2 Jµ+k+m(xy)dx

= hµ+k+m[(−x)kTµ,mϕ(x)](y) (y ∈ I, m, k ∈ N0)

holds [40, Proof of Theorem 5.4-1]. This rule closely resembles its Fourier counterpart and facilitates
the operational calculus of the Hankel transformation, particularly when dealing with the Zemanian
spaceHµ [38, 39], which can be regarded as a paradigm for the spaces of type Hankel-K{Mp}. In fact,
the specialization to Hµ of the results obtained in our work improves upon previous results from [4].
The findings of the present paper are thus expected to pave the way for a time-frequency analysis of
the spaces Kµ.
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