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Abstract: For pu > —%, and under appropriate conditions on the sequence {M)}, of weights, the
elements, the (weakly, weakly*, strongly) bounded subsets, and the (weakly, weakly*, strongly)
convergent sequences in the dual of a space K, of type Hankel-K{M,} can be represented by
distributional derivatives of functions and measures in terms of iterated adjoints of the differential
operator x™' D, and the Bessel operator S, = x# 1D ¥ D x#2 In this paper, such representations
are compiled, and new ones involving adjoints of suitable iterations of the Zemanian differential
operator N, = XD are proved. Prior to this, new descriptions of the topology of the space
K, are given in terms of the latter iterations.
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1. Introduction

As it is well known, Schwartz developed the theory of distributions in the late 1940’s; a detailed
exposition appears in his monograph [29]. Generalized functions of any kind, as well as their use
to solve the Cauchy problem, were introduced by Gelfand and Shilov around 1953. In the period of
1956-58, these two authors published three volumes (in Russian) on the subject, which were translated
into English during the 1960’s [11-13]. Meanwhile, Friedman disseminated the ideas of Gelfand and
Shilov in his book [10], enhancing them with more recent applications to differential equations, as well
as a more complete treatment of the Cauchy problem.

Several test function spaces that were derived in the framework of the generalized Fourier
transformation belong to the family of Gelfand-Shilov K{M,} spaces, whose theory was developed
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in [10, 12, 13] in connection with the Cauchy problem for various partial differential equations,
boundary value problems for elliptic equations, and the problem of eigenfunction expansions for
several differential operators. Among them are the spaces Dx and S, introduced by Schwartz [29]; the
space H (also denoted by %K), as developed by Sebastido e Silva [30] and later studied by Hasumi [16],
Zielezny [41], Sznajder and Zielezny [34], and, somewhat more recently, by de Sousa Pinto [31]; the
spaces denoted by K, (p > 1), as developed by Sznajder and Zielezny [35]; and the spaces S, 4 and
Wirq, developed by Gelfand and Shilov themselves [12, 13].

Most of the examples listed above have analogues in the Hankel transformation setting, such as
those considered by Zemanian [38, 39], Betancor and Marrero [5], Betancor and Rodriguez-Mesa [6,
7], Durén [8], van Eijndhoven and Kerkhof [9], Lee [21], Pathak and Sahoo [26], and Pathak and
Upadhyay [27]. In order to unify the underlying theory, Marrero introduced [24] and studied [22,
23,25] the so-called Hankel-K{M} spaces, which were intended to play the same role in the Hankel
transformation setting as do the Gelfand-Shilov K{M,} spaces in the Fourier transformation setting.
The study of Hankel-K{M,} spaces was continued by Arteaga and Marrero [1,2].

In [10, p. 37], Friedman asserts the following:

One of the most interesting and important problems in the theory of generalized functions
is the problem of finding the structure of generalized functions by expressing them in terms
of differential operators acting on functions or on measures.

Our aim in this paper is threefold: first, we want to briefly review the existing literature on the structure
of distributions in spaces of type Hankel-K{M,}; second, we want to obtain new structural results for
these distributions in terms of the Zemanian differential operator N, [40, Section 5.3, Equation (3)];
and, third, we want to apply them in the characterization of the bounded subsets and the convergent
sequences in the duals of spaces of type Hankel-K{M,}.

The paper 1s organized as follows. In Section 2, the definition and topological properties, along
with some examples of Hankel-K{M,} spaces, are recalled. Section 3 is devoted to reviewing the
literature on the structural properties of the dual of a space of type Hankel-K{M,}. The main results
are established in Section 4, where a new description of the topology of a Hankel-K{M,} space is
obtained; then, in Section 5, where such a description is applied to provide new results on the structure,
boundedness, and convergence of distributions of type Hankel-K{M,}.

Throughout the paper, the standard notation in distribution theory will be used. The letter I will
stand for the interval ]0, oo[ and, unless otherwise stated, u will be a fixed real parameter not less than
—%, while C will represent a suitable positive constant which may vary from line to line.

2. The topology of Hankel-K{M,} spaces

Definition 2.1. ([24, Definition 2.1]) Let {M pl o be a sequence of continuous functions defined on
I =]0, oo[ such that
1 =Myx) < Mi(x) < Mr(x)<... (xel).

We say that K, is a space of type Hankel-K{M,}, or just a Hankel-K{M,} space, provided that K,
consists of all of the complex-valued functions ¢ € C*(I) such that

_ =1
lllyc0p = max sup [M,(x)(x™' D)x* 2p(x)| < 00 (p € Ny).
0<k<p xer
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K, is endowed with the locally convex topology generated by the sequence of norms {II “Nlyyo0, P}::o' The
dual space of K, will be denoted by K.

What follows are examples of test function spaces of type Hankel-K{M,} arising in connection with
the generalized Hankel transformation.

Example 2.2. Let
M,(x) = (1 + xz)p (xel, peNy).

The corresponding Hankel-K{M,} space is the Zemanian space H,, [38], [40, Chapter 5].

Example 2.3. Fix a > 0. If the functions {M)}]_, are allowed to take on the value oo, then, with the
convention that 0 - co = 0, the Zemanian space B,,, [39] can be regarded as a Hankel-K{M,} space
upon setting
1, O<x<a
Mp(x) = { (p € No).

co, x=>a

2

Example 2.4. Given a,A > 0, define

Mp(x):(1+x2)pexp{ ad (1—%))&} (xel, peNy).

eAr
The resulting Hankel-K{M,} space is the space H, q 4, as introduced by Betancor and Marrero [5].

Example 2.5. The space x,, as defined by Betancor and Rodriguez-Mesa [6], is the Hankel-K{M,}
space corresponding to the choice

M,(x) = exp(px) (x€l, p € Ny).

Example 2.6. The space Uima developed by Pathak and Upadhyay [27] is also of type Hankel-K{M,},
as can be seen upon setting

M,(x) = exp {M [a(l - %)x]} (xel, peNy),

where a > 0, :
M= [ wee e,
0
and the function v = v(€) is continuous and increasing on [0, oo[, with v(0) = 0 and v(co) = co.

In the previous examples, the sequence of weights {M,}; satisfies at least one of the conditions in
the following definition.

Definition 2.7. The sequence {M ploeo 1S said to satisfy condition (-) for - = O, A, M, N, P, provided
that the following hold:

(O) The limit lim,_,o+ M,(x) (p € Ny) exists.
(A) Givenr, p € Ny, there exist s € Ny and b,, > 0 such that

M,()M,(x) < b, My(x) (x€ D).
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(M) Each M, (p € Ny) is quasi-monotonic, that is, there exists C, > 0 such that
M,(x) <C,M,(y) (x,yel, x<y).

(N) For every p € Ny, there exists r € Ny, r > p such that the function

M, (x)
M,(x)

(xel

mpr(x) =

lies in L'(I) and satisfies
lim m,,(x) = 0.

(P) Given p € N, there exists r € Ny, r > p for which

M
lim M, =0
x—eo M,(X)

By imposing appropriate combinations of the above conditions on the weights {M,}> ,, Hankel-
K{M,} spaces can be endowed with interesting properties as topological vector spaces. It should be
remarked that conditions similar to those in Definition 2.7 have been considered by several authors [12,
14,15, 19, 20, 32, 33,37] in order to develop a suitable theory of the Gelfand-Shilov spaces of type
K{M,}.

In fact, under adequate assumptions on the weights {M,} >, a space K, of type Hankel-K{M,} can
be nuclear [36, Definition II1.50.1], Schwartz [17, Definition 3.15.1], Montel [17, Definition 3.9.1], and
reflexive. We excerpt from [24] some of the results available along these lines, as well as those that
reveal the relationship between K, and the Zemanian spaces H,, and B, (see Examples 2.2 and 2.3).

Proposition 2.8. ([24, Proposition 4.1]) The space K, is Fréchet. If the sequence {M pl o satisfies (O)
and (P), then K, is Schwartz, Montel, and reflexive.

Proposition 2.9. ([24, Proposition 4.3]) Assume that {M p};"zo satisfies conditions (O) or (M). Then,
the injection B, — K, is continuous. If, additionally, {M,}> , satisfies (P), then B, is dense in K.

Proposition 2.10. ([24, Proposition 4.4]) Assume that {M P};OZO satisfies (M) and (N).

(i) For every p € Ny, there exist r € Ny, r > p, and C,,, > 0 such that x < C,,M,(x) (x € I).
(i) If {M,}_ satisfies (A) as well, then K, C ‘H,, with a continuous embedding.

Corollary 2.11. (24, Corollary 4.5]) If {M p};ozo satisfies conditions (A), (M), and (N), then B, C K, C
H,, with a continuous embedding. Moreover, B,, is dense in K, and K, is dense in H,.

Proposition 2.12. ([24, Proposition 4.6]) Under (A), (M), and (N), the topology of K, is compatible
with any one of the families of norms {|| . II”,,“,};o 0 (g €R, 1 < g < o0), where

1
14 00 q
_ ko1 q
l@llugp = {Zf ‘M,,(x) (x'D) x* zgo(x)| a’x} (p € K.
k=0 Y0
In this case, K, is nuclear, Schwartz, Montel, and reflexive.
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3. The dual space and its topology

Again, by imposing appropiate conditions on the weights {M,} >, the strong dual K b of a Hankel-
K{M,} space K, can be made nuclear, Schwartz, bornological [17, Definition 3.7.1], complete, Montel,
and reflexive. Additionally, a wide range of structural results and characterizations of the bounded
subsets and convergent sequences in K, are made available.

3.1. The topology of K,
Proposition 3.1. ([24, Proposition 5.1]) Let K, be a Hankel-K{M,} space with a strong dual ‘7(}:’17.

(i) If the sequence {M p};":O satisfies (O) and (P), then 7(/;17 is complete, bornological, Schwartz,
Montel, and reflexive.

(i) If (M p};ozo satisfies (A),(M), and (N), then 7(}:’[7 is complete, bornological, Schwartz, Montel,
reflexive, and nuclear.

3.2. Structure, boundedness, and convergence in 7(,:

Next, we show that the functionals in the dual K, of a space K, of type Hankel-K{M,} can be
expressed as distributional derivatives of integrable functions and measures. The highest order of
the differential operators that provide such representations is uniform over bounded subsets of 7(}1’,].
Furthermore, the convergence to zero of a sequence in this space is determined by the convergence to
zero, in their respective spaces, of the functions or measures representing the terms of the sequence.

In Propositions 3.2 and 3.3 below, the results on boundedness and convergence will be stated for
the strong topology of K, but, it must be kept in mind that, under the same conditions, they are
equally valid if the weak or weak* topologies are instead considered on that space. Indeed, by making
appropriate assumptions on the weights, K, becomes Montel, and, hence, reflexive (Propositions 2.8
and 2.12). Thus, the weak and weak™* topologies of K, coincide, whereas the weak* and strong
sequential convergence are equivalent on this space [36, Proposition 11.34.6, Corollary 1]. Furthermore,
given that K, is Fréchet (Proposition 2.8), it is also barrelled [36, Definition 11.33.1 and Proposition
I1.33.2, Corollary 1], and, in this class of spaces, the weak™® and strong topologies share the same
bounded sets [36, Theorem 11.33.2].

At this point, we are in a position to state the first result on representation, boundedness, and
convergence in the dual of K. To this end, let C(/) denote the space of all of the functions f € C[0, oo[
such that

lim £(x) = 0,

normed with

11l = sup|f(x)l.

xel

Its dual C’(1) consists of all of the regular, complex Borel measures o on [0, co[, with the total variation
norm |o|.

Proposition 3.2. Assume that {M p};"zo satisfies (O) and (P).
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(i) [24, Proposition 5.2] A linear functional f belongs to K, if, and only if, there exist p € Ny and
o, € C'(I) (k e Ny, 0 <k < p) satisfying

f= Zx" % - k[Mp(x)Uk].

P
k=0
(i) [24, Proposition 5.4] A set B C 7(}:7}) is bounded if, and only if, each f € B admits the
representation

:Zx" 2 (=Dx~ 1) [M (X)O'kf]

with oy € C'(I) (k € Ny, 0 < k < p) such that

P o0
Z f d |O'k,f| <C,
k=0 Y0

where p € Ny and C > 0 do not depend on f € B.
(iii) [24, Proposition 5.4] A sequence { fj}j:O converges to zero in ‘K/Lb if, and only if, each f; admits

the representation

p

k
fi= D a7 (-Dx7Y) [ My)o,] (e No),

k=0

with oy j € C'(I) (k € Ny, 0 < k < p) such that p € Ny does not depend on j and

p )
fim ) | dlow =0

Proposition 3.3. Assume that {M p};"zo satisfies (A), (M), and (N).

(i) [24, Proposition 5.3] A linear functional f belongs to K, if, and only if, for every q, 1 < g < oo,
there exists p € Ng such that f can be written as

P

f= Y x#t (-nx") [My(0g)].

k=0

with g € LY(I) (k e Ny, 0 < k < p).
(i) [24, Proposition 5.5] A set B C ‘K}:’b is bounded if, and only if, given q, 1 < q < oo, there exist
p € Ny, C >0, and, for each f € B, functions g s € L(I) (k € Ny, 0 < k < p) such that

P
f= Z x—ﬂ—% (—Dx_l)k [Mp(x)gk,f(x)] R

k=0

with

P
2 llsesll, < c.
k=0
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(iii) [24, Proposition 5.5] A sequence { fj}:io converges to zero in 7(};’17 if, and only if, for every q,
1 < g < oo, there exist p € Ny and gy j € LI(I) (k € Ny, 0 < k < p) such that

)
fi= Y (=) Mgy (e No),

k=0

with

)4
im 3" e, = 0
j—o00

k=0

3.3. Representation through a single distributional derivative

Starting from Proposition 3.3, and adapting a technique of Kaminski [18], Marrero [25] obtained the
results on structure, boundedness, and convergence in K, labeled below as Theorems 3.4, 3.5, and 3.6,
respectively. Unlike Proposition 3.3, the aforementioned theorems have the advantage of allowing the
elements of the dual to be expressed as the distributional derivative of a single continuous function
under the same differential operator.

Theorem 3.4. ([25, Theorem 2.4]) Assume that {M p};o:o satisfies conditions (A), (M), and (N). Then,
the following statements are equivalent:

(i) The functional f lies in K.
(i) There exist k, p € Ny and a function F, continuous on I, such that

f= x4 (Dx") Fo) 3.1)
and
M,'F e LU(I) (3.2)

forany g, 1 < g < co.

(iii) There exist k, p € Ny and a function F, continuous on I and satisfying (3.1), such that (3.2) holds
for some g, 1 < g < oo.

(iv) There exist k, p € Ny and a function F, continuous on I and satisfying (3.1), such that (3.2) holds
for g = oo.

Now, we shall state a characterization of boundedness in 7(;

Theorem 3.5. ([25, Theorem 2.5]) Assume that {M p};O:O satisfies conditions (A), (M), and (N). Then,
the following four statements are equivalent:

(i) The set B C K, is (weakly, weakly*, strongly) bounded.
(it) There exist k, p € Ny, C > 0, and, for each f € B, a function gy, continuous on I, such that

f=x (Dx") g, (3.3)

and

1,'s4]|, < € (3.4)

forany g, 1 < g < co.
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(iii) There exist k,p € Ny, C > 0, and, for each f € B, a function gy, continuous on I and
satisfying (3.3), such that (3.4) holds for some g, 1 < g < co.

(iv) There exist k,p € Ny, C > 0, and, for each f € B, a function gy, continuous on I and
satisfying (3.3), such that (3.4) holds for g = co.

Finally, convergence in K, is described.

Theorem 3.6. ([25, Theorem 2.6]) Assume that {M ,,};OZO satisfies conditions (A), (M), and (N). Then,
the following statements are equivalent:

(i) The sequence { f,-}::o converges (weakly, weakly*, strongly) to zero in K.

(ii) There exist k, p € Ng and Fj, continuous on I, such that

fi=xF (D) Fio) (e Ny (3.5)
and
lim [|M,,'Ff| =0 (3.6)
]—)(X)

forany q, 1 < g < co.
(iii) There exist k, p € Ny and Fj, continuous on I and satisfying (3.5), such that (3.6) holds for some
q 1 <qg<co.
(iv) There exist k, p € No and Fj, continuous on I and satisfying (3.5), such that (3.6) holds for g = .
(v) There exist k, p € Ny, C > 0, and functions F;, continuous on I and satisfying (3.5), such that

I, Fifl < ¢ (G eNo
and lim;_,., F j(x) = 0 for almost all x € I.

3.4. Descriptions of K, and K, in terms of the Bessel operator

Arteaga and Marrero [1] have shown that the topology of a Hankel-K{M} space can be generated
by families of norms of type L? (1 < g < oo) that involve the Bessel operator.

Definition 3.7. For 1 < g < oo, consider the following families of norms on K,,:

LEDY { f |M,(x)x-ﬂ-%sz<p(x)|qu}
k=0 ‘WO (¢ € K, r € Np),

-1
|0 = Max sup |M,(x)x28 (%))
0<k<r xel

where
4u? -1

-t =1
Su=x12DX DX = D - ——
4x

is the Bessel operator.

Theorem 3.8. ([1, Proposiciones 2.5 and 2.6]) Under conditions (A), (M), and (N) on the weights

{M,})_ any one of the families of norms {l . |""”}Zo (I £ g < o0) generates the usual topology of K,,.
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Remark 3.9. Theorem 3.8 widens the class of spaces of type Hankel-K{M,} and shows how some of
them, treated independently in the literature, actually coincide. In fact, for a > 0, let

M, (x) = exp {M(a[l - Il)]x)} (x €1, p € No),

where M € C?[0, oo[ satisfies that M(0) = M’(0) = 0, M’(c0) = oo, and M"(x) > 0 (x € I); also, let
K, be the corresponding Hankel-K{M,} space. Then, we get that K, = x’“’%WeM,a, where Wey,, is the
space introduced by van Eijndhoven and Kerkhof [9]. For the space UZ, ma (1 £ q < ) developed by
Pathak and Upadhyay [27], the algebraic and topological identification

K, =U!

ura = Upha = xy+%WeM,a (1<g<o)

follows; see [7] as well.

More recently, on the basis of Theorem 3.8, and by combining techniques from [24,25], Arteaga
and Marrero [2] found new representations for the elements, the bounded subsets, and the convergent
sequences in K, this time with the operator S, instead of the operator x~' D (see Sections 3.2 and 3.3).
Their results are summarized below, beginning with the structure of the distributions in K.

Theorem 3.10. ([2, Theorem 4.1]) Assume that the sequence of weights {M,}>_, satisfies conditions
(A), (M), and (N). The following statements are equivalent:

(i) The functional f lies in K.
(ii) Foreach q, 1 < g < oo, there exist r € Ny and f;, € L1(I) (k € Ny, 0 < k < r) such that

£= SEMx# 2 fi(0)].
k=0

(iii) There exist k,p € Ny and F € C(I) such that f = Sﬁx‘”‘%F(x), with M;IF e Li(I) for all g,
1 <g<oo.

(iv) There exist k,p € Ny and F € C(I) such that f = S/’jx"““%F(x), with M;'F € Li(I) for some g,
1 <g<oo.

(v) There exist k,p € Ny and F € C(I) such that f = Sﬁx‘”‘%F(x), with M;lF e L=().

Next, boundedness in 7(; is characterized.

Theorem 3.11. ([2, Theorem 5.1]) Assume that the sequence of weights {M P};OZO satisfies conditions
(A), (M), and (N). The following five statements are equivalent:

(i) The set B C K, is (weakly, weakly*, strongly) bounded.
(it) Given g, 1 < q < oo, there exist r € Ny, C > 0, and, for each f € B, functions g;; € L(I)
(i € Ny, 0 <i<r)such that

F= 8L Mox g0,
i=0
with Y, ”gf,in <C.
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(iii) There exist k,p € Ny, C > 0, and, for each f € B, a function gy € C(I) such that
f= Sl’jx‘“‘%gf(x), with ||M;1gf||q < Cforeveryq, 1 < q < co.

(iv) There exist k,p € Ny, C > 0, and, for each f € B, a function gy € C(I) such that
f= Sﬁx‘”‘%gf(x), with ||M;1gf||q < C for some g, 1 < g < oo.

(v) There exist k,p € Ny, C > 0, and, for each f € B, a function gy € C(I) such that

f= Sl’jx‘“‘%gf(x), with ||M1;1gf||c><> <C.
We close this section with the corresponding characterization of sequential convergence in K.
Theorem 3.12. ([2, Theorem 6.1]) Under conditions (A), (M), and (N) on the sequence of weights
{M p};"zo, the following statements are equivalent:

(i) The sequence {f,},_, converges (weakly, weakly*, strongly) to zero in K.
(ii) For each g, 1 < g < oo, there exist r € Ny and f,; € LY(I) (n,i € Ny, 0 <i < r) such that

fo= D SLMx 2 )] (neNy),

i=0

with im, e Y7o || fui - 0.
(iii) There exist k, p € Ny and F,, € C(I) such that

fu=SEPIF, () (n e N,

with 1im, e | M5 F,||, = 0 forall g, 1 < q < co.
(iv) There exist k, p € Ny and F, € C(I) such that

fu=SEX IR, (n€ Ny,

with 1im,_,e ||M;‘Fn , = 0forsome g, 1 <q<co.
(v) There exist k, p € Ny and F, € C(I) such that

fu = SEXP R (0) (n € Ny),

with lim, e, |M;'F,|| = 0.

(vi) There exist k,p € Ny, C >0, and F, € C(I) such that
fu=SExHIF,(),

with ||M;1F,l . < C(neNy)and lim, o Fy(x) = 0 for almost all x € 1.

4. A new description of the topology of Hankel-K{),} spaces

[oe)

First, we shall show that, for u > —% and every p, 1 < p < oo, the families of norms {p;’,}

p r=0
generate the usual topology of a space K, of type Hankel-K{M,}, where, for r € Ny and ¢ € K,

P’éo,r(‘ﬁ) = max sup |Mr(x)Tu,k90(x)|,
0<k<r yey

. ! (4.1)
mmwzgg{ﬁwmmnw@WM} (1<p<oo).
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Here,
T,x=Nyk-1---N, (keN), 4.2)

where N, = X+ Dx#1 denotes the Zemanian operator [40, pp. 135ff] and 7, is the identity
operator. The differential operators in (4.2) are interesting because of their symmetric behavior in
the presence of the Hankel transformation; in fact, for an appropriate order of this transformation, it
exchanges the order of the powers of the variable and the order of the differential operator defined
in (4.2), an extremely useful operational rule that is very similar to its Fourier counterpart [40, Proof
of Theorem 5.4-1].

This new description for the topology of K, was motivated by [4, Theorem 3.3], where a similar
result was established for the Zemanian space H,, (Example 2.2). The validity of this result requires
assuming conditions (0), (A), (M), and (N) apply to the sequence of weights {M,,}7", (Definition 2.7),
which is a hypothesis that will be maintained throughout the entire section, although, for the sake of
simplicity, it will not be made explicit on all occasions.

The proof of this first result imitates that of [4, Theorem 3.3]. Roughly speaking, it consists of
introducing a new space of test functions, which we will denote by S,,, and whose definition is formally
analogous to that of %, but with the operator 7, in place of the operator (x‘lD)kx‘“‘% (k € Ny); this
is followed by proving, with the aid of the open mapping theorem [28, Corollary 2.12], that, actually,
S, = K, (Theorem 4.4). Once this is done, it is not difficult to infer that the families of norms
defined in (4.1) are equivalent over S, (Proposition 4.6). At this point, we will apply techniques that
are analogous to those used in the proof of the results in Section 3 in order to find representations of
the elements, the (weakly, weakly*, strongly) bounded subsets, and the (weakly, weakly*, strongly)
convergent sequences in the dual space S;, = K, this time as distributional derivatives induced by the
adjoint of the operator T, (k € Ny). Thus, Theorems 5.4-5.7 below generalize and improve, in a sense
that will be specified in due course, their analogues for the space H, in [4].

We must emphasize that, although the ideas presented in this section are not entirely new, the results
obtained in the general context of Hankel-K{M,} spaces have not appeared previously in the literature.

4.1. The space S,

Given ¢ € R, denote by S, the vector space of all smooth, complex-valued functions ¢ = ¢(x)
defined on I =]0, oo[ such that a)é‘7 () < oo, where

W) (@) = sup IM, ()T k()| (p, k € No)

xel

and T, (k € Np) is as defined above.
A direct computation shows that, for k € Ny,

L _ -1
Ty,k — xk+ﬂ+2(x ID)kX H—7

— —k —k+1 k
—bﬁox +b§{"1x D+...+b’k"kD,

4.3)

where the coefficients b‘,ij (0 < j < k) are appropriate constants, with b’;,k =1.
The family Q = {w‘l‘) ,k}:k=0 is a countable family of seminorms. This family is separating, because
u

{cup’o}:’:o are norms. Consequently, Q makes S, into a countably multinormed space.
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A family of norms P = {pﬁ‘o,r}jio that is equivalent to Q, with the property that of, , < o, s (r, s € Ny),
is obtained by setting
ph,, = max w’ik (r € Ny).

0<k<r

Proposition 4.1. The space S, (u € R) is Fréchet.

Proof. Let {¢,} , be a Cauchy sequence in S,;; we want to prove that it converges in S,,.
By (4.3), we have

Df =Ty = Wpox ™+ ...+ B, x D). (4.4)

Proceeding by induction on k, we find that, for each compact K C I, there exist constants c’Z’j 0<j<
k) such that
sup [D" ()] < ¢ (wh o (@) + &0 (@) + .+ ¢, (@) (@ €S

xeK

[0e]

Since (U/(ik(gan - ‘10m) m 07 the sequence {Dkgoﬂ}n:O

all k € Ny. Thus, there exists ¢ € C* (/) such that

is uniformly Cauchy on compact subsets of [ for

Dgu(x) — Dhop(x) (k€ No)

uniformly over compact subsets of 1. This ¢ is the limit of {¢,}*’ ; in S,. Indeed, for any p, k € Nj and
every € > 0, there exists NZ = NZ (&) € Ny such that

IMy()Tui(pn — )0 <& (x€L n,m= N, ).
Taking the limit as n — oo, it follows that
wﬁ,k(¢ - (pm) ) (m 2 Nz,k)'
On the other hand, there exists B’; > 0, independent of m, such that
w/;,’k(‘pm) < Bl;’k (m’ D, k € NO)

Thus,
wﬁ’k(go) < B’;,k +e (p,keNy).
This shows that ¢ € S, and {g,}", converges to ¢ in S, as asserted. |

Proposition 4.2. For u > —%, the inclusion K, C S, holds. Moreover, the embedding K, — S, is
CONtinuous.

Proof. Let p € Ny. Proposition 2.10(i), along with condition (A) on the weights, yields r, s € N,
s>r>p+p+ 1, and C > 0 such that

|M ()T, k()]

= M, ()43 (! DY x 2 ()

< CIM, ()M, (x)(x™ DY x =2 ()|

< CIM,(x)(x"' DY x " 2p(x)| (x€l, keNy, 0<k < p)
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whenever ¢ € K,,. According to Definition 2.1, this means that

P p(@) < Cllgllpos <00 (9 € K,
which completes the proof. O

Proposition 4.3. Suppose that ¢ € S,,. Then, ¢ € K, if, and only if, the following limits exist:
lim (xX'DYx " 1p(x) (k€ Ny). (4.5)
In other words,

K, = {90 €S, : there exist lim (x_lD)kx_“_%‘p(x) (k e NO)}
=0 (4.6)
={p eS8, : (' DYx*7p(x) = O(1) as x — 07 (k € Ny)}.

Proof. Note that the existence of a limit is a stronger condition than boundedness near the origin; thus,
the first set on the right-hand side of (4.6) is contained in the second set.

Under (A), (M), and (N), we have that K, c H, (Proposition 2.10(ii)). Hence, if ¢ € K, then
¢ € S, (by Proposition 4.2) and the limits given by (4.5) exist [40, Lemma 5.2-1].

Finally, suppose that ¢ € S, and (x‘lD)"x‘“‘%go(x) is bounded near zero for all k € N;. Since (O)
holds, M p(x)(x‘lD)kx‘”‘%go(x) is also bounded near zero for any p, k € N. On the other hand,

IM,(x)(x~' D) x 2 p(x)] = |M,(x)x 3T, ()]
< |Mp(x)T,u,k‘10(x)|
< w;k(go) <o (1<x<oo, pkeNy).

This proves that ¢ € K,,. O

Theorem 4.4. For u > —%, the inclusion S, C ‘H,, holds with a continuous embedding. Consequently,
S, = K, both algebraically and topologically.

Proof. To show that S, C H, and the inclusion map S, — ‘H,, is continuous, note that, given p € Ny,
Proposition 2.10(i) and condition (A) on the weights yield r € Ny, r > p, and C > 0, for which
xP < CM,(x) (x € I). Therefore,

sup |xpT/1,k()0(x)| < C sup |Mr(x)Ty,k90(-x)|

xel xel

<Cph @) <= (98, keN, 0<k<p),

and it suffices to invoke [4, Theorem 3.3]. In particular, the limits given by (4.5) exist whenever
¢ €S, [40, Lemma 5.2-1], and, from Proposition 4.3, it follows that S, = K.

This equality is also topological, as it can be deduced from Propositions 2.8, 4.1, and 4.2 by applying
the open mapping theorem [28, Corollary 2.12]. m|

Once it is proved that S, ¢ H,,, Proposition 4.5 is an immediate consequence of [4, Theorem 3.3
and Proposition 2.3]. Just for the sake of completeness, a direct proof is included.
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Proposition 4.5. Let u > —%. Every ¢ € S, is bounded. For any k € Ny, D*g is rapidly decreasing at
infinity; in particular; S, is a dense proper subspace of L'(I).

Proof. Every ¢ € S, is bounded because w’(‘)’o(go) < 00,

To prove that D*¢ (k € Ny) is rapidly decreasing at infinity, we proceed by induction on k, bearing
in mind (4.4) and the fact that, given m € N, Proposition 2.10(i), along with condition (A), yields
r € Ng, r > m, and C > 0 such that x” < CM,(x) (x € I). The inductive scheme is as follows.

k=0: x"p(x)(m e Ny) is bounded for x € I because
X" ()| < CIM(x)p(x)| = Cwl () < .

Therefore, ¢(x) is rapidly decreasing at infinity.
k=1: Xx"Dg(x)(m € Ny) is bounded for x > 1 because, by (4.4), we have
X"Dp(x) = X" T 10(x) =t , X" p(x) .
N————— ’ N——

(o)< m>1: step O
i (#)<e0 m=0: ¢ bounded

Therefore, Dy(x) is rapidly decreasing at infinity.
k=2: x"D?¢(x) (m € Ny) is bounded for x > 1 because, by (4.4), we have

X"D*p(x) = X" Tyop(x)=b,, X" p(x) —by; X" 'De(x) .
~——— N—— N————

W (p)<oo m>2: step 0 m>1: step 1
2 m=0,1: ¢ bounded m=0: Dy bounded

Therefore, D?o(x) is rapidly decreasing at infinity.
Assuming that the statement

xX"D"p(x) (m € Ny) is bounded for x > 1
holds true for all n € Ny with 0 < n < k, we prove it for k + 1.
k+1: x"D’'o(x) (m € Ny) is bounded for x > 1 because, by (4.4), we have
XD (x) = X" g o(X) =L, o X" p(x)
N e’ —

o <oo m>k+1: ind. hyp.
r,k+1(‘p) 0<m<k: ¢ bounded

—k
- b’Z+1,1 X" Dy(x)
m>k: ind. hyp.
0<m<k—-1: D¢ bounded
-1k
_bll;l,k X" Dig(x)

m>1: ind. hyp.
m=0: D¥o bounded

Therefore, D**'¢(x) is rapidly decreasing at infinity and the induction is complete.

Finally, it is clear that
D) c S, c LD,

which implies that S,, is dense in L'(1). O
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4.2. The topology of S,

Proposition 4.6. For u > —% and any p, 1 < p < oo, the families of norms {p),,}%,, generate the
topology of S,, where, for r € Ngand ¢ € S,,,

pgo,r(‘p) = max Sup |Mr(x)T,u,kQ0(x)|»
0<k<r xel

p“ ) = max {f(; |M,(x)Tﬂ,k¢(x)|l’ a’x}p (1 < p <o)

Proof. Fix 1 < p < ocoand ¢ € S,,. Given r € Ny, condition (N) yields s € Ny, s > r such that

* M,(x)
i Ms(x)dx < 00. 4.7)
Since M
0< Mg; <1 (xel, (4.8)

we may write the following:

P () = max { fo M, (0T, a0 dx} "

00 Mr P %
= max { j; |M ()T x0(0)|” ( Mﬁg) dx}

= M,(x) dx}i

< max sup |M(x)T, kgo(x)l{

0<k<s yer 0 Ms(-x)
3 M (x)
—{ . M) } Poo.s(@)

A new application of (4.7) and (4.8), in combination with Holder’s inequality, leads to

P, (¢) = max f | M, ()T, 00(x)| dx

M
M(x )

SO M\ )
S(I)Q%{f |M.Y('x)Tllak90('x)|pdx} {j(; (Msg;) dx}

[ 90 0

= max f |M ()T, 10(x)|

0<k<r

M;(x)

Here, g = p(p — 1)~! denotes the conjugate exponent of p.

Finally, given ky, € Ny and ¢ € §,, the function (x_lD)kx_"_%cp(x) is rapidly decreasing at infinity
because S, € ‘H, (Theorem 4.4). Hence, for ¢ € S, and r, k € Ny with 0 < k < r, by using (M), we
find that

M, ()T, 0 (0] = | M (x) X442 (27 DY x 2 ()|
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- 'M,(x) P f 1t~ DY o(r) dt'
<C f | M () (503 (DY S ()| e
<C f |M()T 1| dt - (x € D).

0

Consequently,
Pl () < Cpl,, 1 ().

The proof is thus complete. O
5. Structure, boundedness, and convergence in S;

Now that Proposition 4.6 has been proved, we intend to apply techniques similar to those employed
in the proof of the results in Section 3 in order to characterize the elements, the (weakly, weakly*,
strongly) bounded subsets, and the (weakly, weakly*, strongly) convergent sequences in the dual space
K, =S, (= —%), this time as distributional derivatives induced by the adjoint of the operator T, x
(k € Ny). The main results correspond to Theorems 5.4-5.5, 5.6, and 5.7, respectively. Prior to deriving
these results, three auxiliary lemmas must be established.

5.1. Auxiliary results

Lemma 5.1. Let u > ——, and let F € C(I) be such that there exists p € Ny with M, 'F e Li(I)
(1 < g < ). Then, for each k € Ny, there exist p;y € Ny, pr > p, and a function F; € C(I) sansfymg

XHH DX A (x) = F(x) (xe D) G.D

and
M,'Fi e L(I) (1<gq< o). (5.2)

Proof. We proceed by induction on k. The result is obvious if k = 0. Suppose that, given k € Ny,
k > 1, there exist p; € Ny, px > p, and a function F;, € C(]) satisfying (5.1) and (5.2). Use (N) to find
n,t € Nog, n >t > py, such that

Mpk(x)
. M0 dx < oo, (5.3)
M , (5.4)

X <o
0 Mn(x)

The inductive hypotheses, along with (M) and (5.3), allow us to write the following:

Lo = F()
F dé < C d.
Mt<x>fo Fi@)ldg < fo Mt@)‘ &

Fk(f) ‘ Mpk(f)
M, (&) Mt(f)

O
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Fi(é) °°Mm(§)d§
My &) Jo  Mi(&)

Fu®
) 5.5
M, (& )

< Csup
el

= Csup
&el

The function

Fo() = 2t} f FU©E™ g (xe )
0
is continuous, and, by (5.1), we have

k+1 ~
X (Dx_l) PO Fi(x)

= xH (Dx‘l)k PHIF(x) = F(x) (x€ D).

Furthermore, using (5.5), it follows that

ﬁk(x) _ 1 —k—p—1 fx ket s ‘
Mmoo~ M [ ), PO
1 X
< fo IFu)ldé
Fi(&)
<C D).
=G5 M,,k@)' (e D
Because n > t, given (5.2), it clearly follows that
N LZCI PN C)
xel Mn(x) a xel Mt(x)
Fi(6)
C 00
=S M|

On the other hand, if 1 < g < oo, then, given (5.2), and with the aid of (5.4), we obtain

0 q o q q
f dx = f (M,(x)) dx
0 0

M, (x)
q 00 M
< Csup ()
gel o M,(x)

Fi(x)
M,(x)
Fi(&)
M, (&)
Fi(&)
M, (€)

Fi(x)
M, (x)

q

= Csup
&el

To complete the induction, it suffices to take p;,; = n and Fyyy = F, k-

Lemma 5.2. Let u > —%, and let M be a family of functions in C(I) with the property that

sup ||MI;]F|| <A (1<g<L™)
FeM 4
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for certain p € Ny and A > 0. Then, given k € N, there exist p;y € Ny, pr > p, C, > 0, and, for each
F € M, a function g,y € C(I) such that

x—#_%(Dx—l)kxk+/l+%gk’F(_x) = F(x) (xel (56)
and
sup [[M,, girl|, < Ci (1< g <o), (5.7)
FeM

Proof. The result holds trivially for k = 0. Proceeding by induction, fix k € Ny, k > 1. Let py € Ny,
pr = p, and C; > 0, and, for each F € M, let g, r € C(I) satisfy (5.6) and (5.7). As in the proof of
Lemma 5.1, for every F € M, we construct a function g; r € C(I) such that

x_#_%(Dx—l)k+1x(k+1)+y+%‘§k’F(x) =F(x) (xel),

gk F(X) 8k.r(&)
: c ré)
xel Mn(x) = Sfli? Mpk(g)
and © (Gur(@)[" @
8k, F(X 8k, F
fo M| T | (S

for some n € Ny, n > p;, where the positive constant C does not depend on F. To complete the
proof, it suffices to choose py+1 = n and gi1.r = grr, as well as to take into account the inductive
hypotheses. m|

The next result can be analogously established.

Lemma 5.3. Let u >
J2AS Noy with

_%, and let {F f}j‘:o be a sequence of functions in C(I) for which there exists

lim [|p2,'Fif| =0 (1<g <)

j—oo

Then, for each k € Ny, there exist p; € No, pr > p, and Fy; € C(I) (j € Ny) such that
XD YR, (x) = Fi(x)  (x €1, j e Np)

and
lim [|M,, Fijf|, =0 (1< g <oo).

j—oo

. . o
5.2. Representation of the functionals in S,

At this point, we are in a position to give several representations of the elements in the dual space of
S, in terms of the adjoint of the operator T}, (k € Ny). This will be done in Theorems 5.4 and 5.5. The
proof of Theorem 5.4 uses a fairly standard method, which can be traced back to [36] and was already
used in [3,4,24], but we include it for the sake of completeness.

Theorem 5.4. Let u > —%. A linear functional f belongs to S, if, and only if, for every g, 1 < g < o,
there exist r € Ny and measurable functions g;, with M;l gr € L1(I) (k € Ny, 0 < k <r), such that

r

£t 3 (o A o (5.8)

k=0
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Proof. Fix g, 1 < g < o0, and let p, 1 < p < oo, be the conjugate exponent of g.
If fe S;lu then, by Proposition 4.6, there exist r € Ny and C > 0 such that

Kf. o) < Cply (@) (@ € Sp). (5.9)
Let us denote by I',, the direct sum of r + 1 copies of L”(I), normed by
I fosterlly = max £l (5.10)

and by Z, the direct sum of r + 1 copies of L/(/), normed by

1Foskerlly = D el
k=0

Consider the following injective map:
F:8,—T,
¢ — F(g) = (MA0)T,u0(x))

and define on F(S,) C I', the linear functional L by means of the formula

(L,F(p)) = {f, ).

In view of (5.9) and (5.10), L is continuous, and its norm is, at most, C. We continue to denote by
L a norm-preserving Hahn-Banach extension of this functional up to I',. The Riesz representation
(fo<k<r € E4 of L over I', satisfies

O<ks<r’

LI = Zr: felly < € (5.11)
and -
(f,@) = (L, F(¢))
- kzol fo " AOM 0 (31 D) i p(d

O (A0 My (D) 3t (o)

<x"‘_é (—Dx_l)k At M, (x) fr(x), 90>

:<x-ﬂ-é , (-Dx—l)"xk+ﬂ+%M,<x>fk(x),¢> (veS,).

k=0

Setting g, = (=1)*fiM, (k € Ny, 0 < k < r), we obtain (5.8).
Conversely, if f is given by (5.8), then Holder’s inequality implies that

A ESY fo M, (02| [ M, (0% (7' D) 3 p(o)|dx
k=0
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<oh @ ) IM e, @eS,
k=0

which yields that f € S, O
Theorem 5.5. For u > —%, the following statements are equivalent:

(i) The functional f lies in S,,.
(ii) There exist k, p € Ny and a function F € C(I) such that

f=x (Dx!) HHE R, (5.12)

with
M,'F € L(I) (5.13)
forallg, 1 < g < co.
(iit) There exist k, p € Ny and a function F € C(I) satisfying (5.12) such that (5.13) holds for some g,
1 <g< oo
(iv) There exist k, p € Ny and a function F € C(I) satisfying (5.12) such that (5.13) holds for g = co.

Proof. (i) = (i) If f € S/’l, Theorem 5.4 yields that p € Ny and measurable functions G; (i € Ny, 0 <
i < p) exist such that

P .
F=xt72 3 (Dx7) K Gi(x) (5.14)
i=0
and
M,'G; e L(I) (i€Ny, 0<i<p). (5.15)

Apply (N) to get n,t € Ny, n > t > p, for which

* M,(x)

. M0 dx < oo, (5.16)
< M,(x)

) Mn(x)dx < 00, (5.17)

Fix i € Ny, 0 <i < p. By (M) and (5.16), we obtain

Lo | Gi(&) | My(®
i dé¢ < d.
M@lﬂmﬂf<cﬁ M| me“
G(© | [~ M,©)
<C d
scswly @), meo®
Gi®)
=C D). 5.18
W e € (>.18)

The function

Gi(x) = 27+ f x GA(&E™ 2 dE (xel)
0
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is continuous and satisfies
x M2 (Dx_l)i+1x(i+1)+”+%5i(x)
= X2 (Dx_l)i x”’”%Gi(x) (xel.
Using (5.18), we may write
G| 1
M)~ M@
< 1 fo Gi(©)l d&

M;(x)
Gi(§)
M, (&)

vt G

< Csup (xe€l). (5.19)

&el

Asn >t,
up Ei(x)
M, (x)

xel
Gi(é)
M,(£)

Furthermore, taking into account (5.19) and (5.17), we find that

oo 4q oo | A~ q q
f dx = f Gi(x) (Mz(x)) dx
0 0

Mi(x)| \M,(x)
< Csup |29 q f w(M‘(x))qu
gel Mp(f) o \M,(x)
G| [ M)

Gi(x)
M, (x)

sup
xel

< Csup < o0

el

Gi(x)
M,(x)

<C d
e @ Jy o™
i@ |
=C 0%
e

whenever 1 < g < co. Now, applying Lemma 5.1 with g +i + 1 > —% instead of y > —%, we obtain a
function F; € C(I) and a non-negative integer s; > n such that

x D () e i D B ) = G (ve D),

with
M'F;e LY(I) (1<q< o).

It follows that
X2 (Dx_l)l xi+“+%Gi(x)

1 i+l . 1~
=xHz (Dx_l) KD GL(x)
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g (Dx )z+1 x(’l+l+1)+ [ —(u+i+1)-1 (Dx_l)p_i x(p—i)+(/~t+i+1)+%Fl.(x)
=t (D) (D) e

= xH2 (Dx_l)lﬁ1 PO () (x e D).

Set
p
F = E F;, m = maxs;
—r 0<i<p
1=

Then, F € C(I). Using (5.14) and (5.15), we have

f

X+ \ (Dx )x”’”%G,-(x)
=0

Il
><I
=
N
—_—~
>
=
S~

P
1
AR GO E Fi(x)
i=0
1
=x"2 (Dx_l)er KPS (x)

and
M,'F e L'(I) (1 <q< o).

It is thus proved that (i) implies (if).

(if) = (iii) This is obvious.

(iii) = (iv) Suppose that there exist k, p € Ny and a function F € C(]) satisfying (5.12) and (5.13) for
some ¢, | < g < oo, and apply (N) to find ¢ € Ny, > p, such that

dx < . (5.20)

The function

Flx) = x - f‘ﬂﬂﬁw“@f(xED

is continuous, with

2 (Dx—l) (k+1)+y+2F(x)
k
= xH2 (Dx_]) FHHIF(x) = £

By choosing n > t and using (M), we obtain

et [ FO MO M) e
<C k—p—5 k+y+2d
W= ) Moo me® “
F@) | My©)
dé.
=€, Mm%
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If ¢ = 1, (5.13) and the fact that # > p imply that

F | 46)
A IR e A e
If g = oo, conditions (5.13) and (5.20) yield
sup | D FO | (™M),
xel | Mu(x)| gel Mi(&)

Finally, if 1 < g < oo, then (5.13), Holder’s inequality, and (5.20) lead to
N 7
<c{ cg} Jﬂ( Aa)cg
o \Mi(&)

~ M,(©)
SC{ d‘f} { o M@ f}

Here, ¢’ denotes the conjugate exponent of g. Therefore, (5.12) and (5.13) hold with k + I instead of ,
F instead of F, and n instead of p, when g = co. This establishes (iv).
(iv) = (i) To complete the proof, assume that there exist k, p € Ny and F € C(I) such that

F(x) ;
M, (x)

F(£)

sup
xel

0

F(£)

0

k
f= xHI (Dx_l) xk+"+%F(x),

with
M,'F € L (I).

This representation of f guarantees that f € S/, as it can be deduced from the following estimate:

Kfr ol = ‘(—1)" f Feow st (' D) 7~ p(oydx
0

F(x) ks (1) f (X)
<su sup |M,(x)x "2 (x'D x"2 X
o g, 3 [0 ol |,
<Cui(p) (€8S, (5.21)
where r > p is chosen according to (N). Thus, (iv) implies (i), and we are done. O

5.3. Boundedness in SL

Next, we shall characterize boundedness in SL- Recall that, under (A), (M), and (N), S,, is reflexive
(Theorem 4.4 and Proposition 2.12), which means that the weak and weak* topologies of S}, coincide.
Furthermore, because S,, is a Fréchet space (Proposition 4.1), it is barrelled [36, Definition I1.33.1 and
Proposition 11.33.2, Corollary 1], and, in this class of spaces, the weak™® and strong topologies share
the same bounded sets [36, Theorem I1.33.2].

Theorem 5.6. For u > —%, the following five statements are equivalent:
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(i) The set B C S, is (weakly, weakly*, strongly) bounded.
(i1) Given g, 1 < g < oo, there exist r € Ny, C > 0, and, for each f € B, measurable functions g s
(k € Ny, 0 <k <r) such that

f=xt Zr: (Dx_])k g (),
k=0

with .
Z ||Mr_1gk’f||q < C
k=0

(iii) There exist k,p € Ny, C > 0, and, for each f € B, a function g; € C(I) such that

f=xtd (Dx) g (), (5.22)

with
1,'s4]|, < € (5.23)

forany q, 1 < g < co.

(iv) There exist k, p € Ny, C > 0, and, for each f € B, a function g; € C(I) satisfying (5.22) such that
(5.23) holds for some g, 1 < g < co.

(v) There exist k, p € Ny, C > 0, and, for each f € B, a function g; € C(I) satisfying (5.22) such that
(5.23) holds for g = oo.

Proof. Since S, is barrelled, a subset B of S, is (weakly, weakly*, strongly) bounded if, and only
if, it is equicontinuous [36, Proposition I1.33.1], which means that (5.9) holds for r € Ny and C > 0
independent of f € B. Now, (ii) can be obtained by using the same argument as in the proof of
Theorem 5.4, taking into account condition (5.11) on the norms of the representing functions.

If (ii) holds, then, in particular, there exist p € Ny, A > 0, and, for each f € B, measurable functions
Gi (i € Ny, 0 <i < p) such that

P .
f= X (Dx_l)l x”“%G,"f(x),
i=0
with
p
2G|, <A
i=0

Fixie flﬁo, 0<i< - The argument in the proof that (i) implies (if) in Theorem 5.5 yields that n € N,
n>p,A>0,and G, € C(I) exist such that

1 i+l . 1~
xH2 (Dx_l) x(l+1)+’“‘+7G,-,f(x)

= x 1 (Dx‘l)i XHIG(x) (xe D),

<A,

G.s(x)
Pl | =

xel

b G (&)
M,(&)

el
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and
q

dx <

G.s(x) a

M,(x)

G ()

Csu
wet | M, (&)

<A? (1<g< ),

[ <

where A is independent of f € B. According to Lemma 5.2, applied with g + i+ 1 > —% instead of
u = —%, there exist s; € Ny, s; > n, C; > 0, and, for each f € B, a function F; ; € C(I) such that

x—(y+i+l)—% (Dx—])p_i x(p—i)+(/x+i+])+%Fif(x) — élf(x) (x € I),

with
M5 Figl, < € (1< g <00,
Therefore,
M3 ( D! )ixi+ﬂ+%Gi,f (x)
— yHh ( Dx‘l)”“ Pk Fis(®) (rel).
Setting

p p
gf:ZFi’f’ m = max s;, C:ZC,',
i=0

0<i<p —o
we find that g, € C(1),
Fe e (Dx_l)p+1 x(p+1)+p+%gf(x),
and
||M;11gf||q <C (1<q<w),
where m € Ny and C > 0 do not depend on f € B. Thus, (i) implies (iii).
It is apparent that (ii7) implies (iv).
To prove that (iv) implies (v), assume that there exist k,p € Ny, A > 0, and, for each f € B, a
function g, € C(I) satisfying
k
f= X2 (Dx_l) xkrHt gr(x)
with
I, s, < A
for some ¢, 1 < g < oo. The argument in the proof that (ii7) implies (iv) in Theorem 5.5 allows us to
find n € Ny, n > p, A > 0, and, for each f € B, a function g, € C(I) such that

1 k+1 1
f=x*t1 (Dx—l) x(k+l)+}1+§gf(x),

sc{fom

g5(x)
M,,(x)

with

q i
dg} <A,

gr(&) ~
_ A
Pl =%

&el

gr(&)
M,(&)

g5(x)
M, (x)

sup

xel

if 1 <g<oo,or

< Csu

sup

xel
if g = oco. This establishes (v).
Finally, (v) and (5.21), with g, (f € B) instead of F, yield (7). |
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5.4. Convergence in S|,

Next, we shall describe sequential convergence in the dual of S,. Under (A), (M), and (N), S,
is Montel and, hence, reflexive (Theorem 4.4 and Proposition 2.12). Thus, the weak and weak*
topologies of S, coincide, and weak* and strong sequential convergence are equivalent in this space
[36, Proposition 11.34.6, Corollary 1].

Theorem 5.7. For u > —%, the following statements are equivalent:

(i) The sequence { ff};io converges (weakly, weakly*, strongly) to zero in S,,.

(it) Foreach q, 1 < g < oo, there exist p € Ny and measurable functions g j (k € Ny, 0 < k < p) such
that

DI—=

fi=x

i (Dx!) i () (e Ny,

k=0

with limo, 37 [M, ' 1], = 0.
(iii) There existk,p € Ng and F; € C(I) (j € Ny) such that

fi =273 (DY) HHEE () (e Ny) (5.24)
and
lim a2, F )|, =0 (5.25)

foranyq, 1 < g < oo.
(iv) There existk,p € Ny and F; € C(I) (j € Ny) satisfying (5.24) and (5.25) for some g, 1 < g < o0.
(v) There existk,p € Ny and F; € C(I) (j € Ny) satisfying (5.24) and (5.25) for g = oo.
(vi) There existk,p € Ny, C > 0, and F; € C(I) (j € Ny) satisfying (5.24), with

I il <€ (e o)
and lim;_,, F'j(x) = 0 for almost all x € I.

Proof. To show that (i) implies (ii), suppose that { fj} converges to zero in SI’J. Then [24,

j=0
Equation (5.7)], there exist p € N, and positive constants {C f}j—o such that

[fi- @) < Cillgllucey (¢ € Sy j € N)

and lim;_,, C; = 0. On the other hand (Proposition 4.6), given g, 1 < g < oo, there exist C > 0 and
r € Ny such that

lellycop < CPy (@) (@ €S
It follows that
(f ) < Cipli (@) (0 €S jEN), (5.26)

where the redefined sequence {C j}m

0 still satisfies

lim C; = 0. (5.27)

j—oo
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Now, it suffices to provide the same argument as in the proof of Theorem 5.4, using (5.26) instead
of (5.9) and keeping in mind (5.27) in relation to (5.11).

Parts (iv) and (vi) follow trivially from (iii) and (v), respectively.

The arguments in the proof of the corresponding results for Theorems 5.5 and 5.6, in combination
with Lemma 5.3 instead of Lemmas 5.1 and 5.2, allow us to establish that (ii) implies (iii) and (iv)
implies (v); we omit the details.

Finally, assuming that (vi) holds, to obtain (i), it suffices to choose n € Ny, n > p, according to (N)
and apply Lebesgue’s dominated convergence theorem to the following integrals:

F; (X) M ( ) :
f,, = (-1 f M, ()T xp(x)dx (90 €S, J€ No).
This completes the proof. O

5.5. An example: ‘H,

Theorems 5.4-5.7 characterize the structure, boundedness, and convergence in the dual of a wide
range of spaces that arise in the context of the Hankel transformation (see Sections 2 and 3.4). For
illustrative purposes, in Corollary 5.8, some of those results have been specialized for the Zemanian
space H,, which, as already mentioned (Example 2.2), is none other than the Hankel-K{M,} space

defined by the sequence of weights {(1 + xz)p}:_o.

The application of Theorem 5.4 to H,, is as stated in [4, Theorem 5.5]. However, the representation
of the elements in 7, obtained as a consequence of Theorem 5.5 is an improvement upon the result
of [4] in three ways. First, it involves the T}, ;-distributional derivative (k € Ny) of a single continuous
function F. Second, the representing function F is not dependent on the exponent ¢; in fact, the
products of F and the inverses of the weights belong to all classes L/(I), 1 < g < oco. Finally, as
we have just highlighted, and unlike what occurs in Theorem 5.4, ¢ = 1 is included in the range of
exponents for which the representation is valid.

Remarks analogous to the preceding ones can be made regarding Theorem 5.7; particularly, the
application of part (ii) to the space H,, is as stated in [4, Theorem 5.4], while parts (iii) to (v) improve
upon this result along the lines described above.

Reference [4] contains no analogue of Theorem 5.6.

Corollary 5.8. Let H;, be the dual space of H,,. Then, the following holds:

(i) A functional f belongs to H;, if, and only if, there exist k, p € No and a function F € C(I) such
that .
f= X (Dx_l) xk”‘*%F(x),

with
(1+2)"Fye L) (1<q<w)

(if) A set B C H), is (weakly, weakly*, strongly) bounded if, and only if, there exist k, p € Ny, C > 0,
and, for every f € B, a function gy € C(I) such that

f= xH2 (Dx_l)k xk+”+%gf(x),

AIMS Mathematics Volume 9, Issue 7, 18247-18277.
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with )
[ (1 + xz) pgf(X)”q <C (1<g< ).

(iii) A sequence { ff}jio converges (weakly, weakly*, strongly) to zero in ‘H;, if, and only if, there exist
k,p € Ny and g; € C(I) such that

fi= x_”_% (Dx_l)k x"ﬂ‘%gj(x) (J € Ny),

with )
tim | (1 + %) ", =0 (1=<g=w).

6. Conclusions

In Friedman’s opinion [10, p. 37], one of the most interesting and important problems in the theory
of generalized functions or distributions is to find their structure, that is, to express them in terms of
differential operators acting on functions or on measures. This paper provides novel results in this
direction for the spaces of type Hankel-K{M,}. Namely, here it was shown that, for y > —%, and under
certain conditions on the weights {M,} . the elements, the (weakly, weakly*, strongly) bounded
subsets, and the (weakly, weakly*, strongly) convergent sequences in the dual of a space K, of type
Hankel-K{M,} can be represented as distributional derivatives of functions and of measures that satisfy
good properties, not only in terms of the differential operator x™'D and of the Bessel operator S, =
x#"2 D1 Dx =2 but also in terms of suitable iterations T, (k € Np) of the Zemanian differential
operator N, = x**2Dx#"2. To this end, new descriptions for the usual topology of K, in terms of the
latter iterations were given.

The operators T, are defined by T,x = Nyy-1---N, for k € N, while T, is the identity
operator. The interest of such operators lies in their symmetric behavior with respect to £, the Hankel
transformation of order u. Indeed, given ¢ € L'(I), we define

(hu) ) = fo P()(y)2 J,(xy)dx (v € D),

where I =]0, oo[ and J,, is the Bessel function of the first kind and order u. For a sufficiently smooth ¢
with a good boundary behavior, the identity

(=)"T,i(hup)(y) = fo (=) T () (9)7 T () d X
= Rykaml (=) T (1) (v € 1, m,k € Ny)

holds [40, Proof of Theorem 5.4-1]. This rule closely resembles its Fourier counterpart and facilitates
the operational calculus of the Hankel transformation, particularly when dealing with the Zemanian
space H,, [38,39], which can be regarded as a paradigm for the spaces of type Hankel-K{M,}. In fact,
the specialization to H,, of the results obtained in our work improves upon previous results from [4].
The findings of the present paper are thus expected to pave the way for a time-frequency analysis of
the spaces K,,.
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