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Abstract: Codebooks with small inner-product correlations are desirable in many fields, including
compressed sensing, direct spread code division multiple access (CDMA) systems, and space-time
codes. The objective of this paper is to present a class of codebooks and explore their applications
in strongly regular Cayley graphs. The obtained codebooks are nearly optimal in the sense that
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1. Introduction

To distinguish the signals between different users in CDMA communication systems, codebooks are
required to have small inner-product correlation. An (N,K) codebook C is a vector set {ci}

N−1
i=0 , where

ci is a unit norm 1 × K complex vector over an alphabet A. As an important performance measure of a
codebook, the maximum cross-correlation amplitude of C is defined by

Imax(C) = max
0≤i, j≤N−1

|cicH
j |,

where cH
j denotes the conjugate transpose of c j. For a given K, it is preferable to construct codebooks

with N being as large as possible and Imax(C) being minimal simultaneously. However, the Welch
bound demonstrates that there is a tradeoff between N, K and Imax(C) of a codebook.
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Lemma 1. (Welch bound, [1]) For any (N,K) codebook C with N ≥ K, then

Imax(C) ≥
√

N − K
(N − 1)K

. (1.1)

The equality in (1.1) achieves if and only if

|cicH
j | =

√
N − K

(N − 1)K
,

for all pairs of (i, j) with i , j.

If the equality in (1.1) holds, then C is called a maximum-Welch-bound-equality (MWBE)
codebook. MWBE codebooks are applied in many practical fields, such as CDMA communications
systems, compressed sensing and space-time codes. Unfortunately, it is very difficult to construct
MWBE codebooks, and only a few MWBE codebooks are known in the literature [2–9]. Hence,
a lot of attempts are made to construct codebooks which nearly meet the Welch bound, i.e.,
limN→+∞ Imax(C)/Iw(C) = 1 for an (N,K) codebook C with N ≥ K. Many classes of known nearly
optimal codebooks have been produced for the past few years [10–18].

In this paper, we are concerned with two purposes. The first objective is to give a new construction
of codebooks which are nearly optimal with respect to the Welch bound. The other objective is to
provide a new construction of strongly regular Cayley graphs using the set D in (3.1). It should be
pointed out that these presented codebooks have new parameters.

This paper is arranged as follows. Some basic definitions and results on exponential sums are given
in Sect. II. The constructions of nearly optimal codebooks and strongly regular Cayley graphs are
ordered in Sect. III. We make a conclusion in Sect. IV.

2. Preliminaries

In this section, we present some basic concepts and a number of lemmas on exponential sums. Some
symbols and notations are given as follows.

− m1 and m2 are two integers.

− n1 = pm1 + 1 and n2 = pm2 + 1.

− q1 = p2m1 , q2 = p2m2 and p is an odd prime.

− ζp = e
2π
√
−1

p is a primitive p-th root of unity.

− Tr1 denotes the trace function from Fq1 to Fp.

− Tr2 denotes the trace function from Fq2 to Fp.

− χ1 denotes the canonicial additive character of Fp.

− η1 denotes the quadratic character of Fp.
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Let G be a finite Abelian group with order n, and U be the multiplicative group of complex numbers
of absolute value 1. A character χ of G is a homomorphism from G to U with χ(ab) = χ(a)χ(b)
for all a, b ∈ G. Given two characters χ, χ

′

of G, we can get a product character χχ
′

by letting
χχ

′

(a) = χ(a)χ
′

(a) for all a ∈ G. It can be easily seen that the set G∧ consisting of all characters of G
forms an Abelian group under the multiplication of characters.

Let p be an odd prime and q = pn with n ∈ N. Let Fq be the finite field with q elements and Tr the
trace function from Fq to Fp. For a finite field Fq, there are two finite abelian groups, i.e., the additive
group F+

q and the multiplicative group F∗q of Fq. In both cases, explicit formulas for the characters are
given as follows.

Definition 1. The canonical additive character of F+
q is defined by χ(x) = ζTr(x)

p for all x ∈ Fq. For
b ∈ Fq, the function µb with µb(x) = χ(bx) is an additive character of Fq and every additive character
of Fq can be obtained in this way.

Definition 2. Let α be a fixed primitive element of F∗q. For each 0 ≤ j ≤ q − 2, the function ϕ j with

ϕ j(αi) = ζ
i j
q−1 for i = 0, 1, . . . , q − 2,

defines a multiplicative character of F∗q. For j = (q−1)/2, the character ϕ(q−1)/2, denoted by η, is called
the quadratic character of Fq and is extended by setting η(0) = 0.

The Gauss sum G(η, χ) over Fq is defined by

G(η, χ) =
∑
x∈F∗q

η(x)χ(x).

The explicit values of G(η, χ) are determined in [19].

Lemma 2. ( [19], Theorem 5.15) With the symbols and notations above, we have

G(η, χ) = (−1)n−1(−1)
(p−1)n

4
√

q.

Briefly, we use G(η) to denote G(η, χ). The following identities on Gauss sums will be employed in
the sequel.

Lemma 3. (Theorem 5.12, [19]) For y ∈ Fq, we obtain∑
z∈F∗q

η(z)ζTr(zy)
p =

{
0, if y = 0,
G(η)η(y), if y ∈ F∗q.

Gauss sums are the most significant types of exponential sums, since they govern the transition from
the multiplicative to the additive structure.

Lemma 4. ( [19], p.195) With the symbols and notations above, we have

η(x) =
1
q

∑
z∈Fq

G(η)η(−z)χ(zx) for all x ∈ Fq.

The following several lemmas are useful in the next section.
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Lemma 5. ( [20]) Let n = 2m for a positive integer m and N = pm + 1 for an odd prime p. Assume
z ∈ F∗p and a ∈ Fq. Then ∑

x∈Fq

ζ
Tr(zxN)+Tr(ax)
p = −pmζ

−Tr
(

aN
4z

)
p .

Lemma 6. ( [21], Theorem 2) Assume that n = 2m for a positive integer m and N = pm + 1 for an odd
prime p. For z ∈ F∗p, we have ∑

x∈Fq

ζ
z Tr(xN)
p = −pm.

Lemma 7. ( [22], Lemma 3.12) Let Fq1 and Fq2 denote the finite fields with q1 and q2 elements,
respectively. Then there is an isomorphism(

F+
q1
× F+

q2

)∧
� (F+

q1
)∧ × (F+

q2
)∧.

From this lemma, we know (
F+

q1
× F+

q2

)∧
=

{
µa,b : a ∈ Fq1 , b ∈ Fq1

}
,

where µa,b(x, y) = ζ
Tr1(ax)+Tr2(by)
p for (x, y) ∈ Fq1 × Fq2 .

3. Proofs and main results

In this section, we give a construction of nearly optimal codebooks, introduce their parameters
and give the proofs. Then we analyse the strongly regular Cayley graphs derived from the presented
codebooks.

Define

D =
{
(x, y) ∈ Fq1 × Fq2 : Tr1(xn1) + Tr2(yn2) ∈ F∗2p

}
, (3.1)

where F∗2p = 〈β2〉 and β is a primitive element of F∗p.
The codebook CD is given by

CD =
{
ca,b : a ∈ Fq1 , b ∈ Fq2

}
, (3.2)

where

ca,b(x, y) =
1
√
|D|

(
µa,b(x, y)

)
(x,y)∈D ,

µa,b(x, y) = ζTr1(ax)+Tr2(by)
p ,

and |D| denotes the cardinality of the set D.
To prove the main results of this paper, we introduce the sets E and F, which are defined by (3.3)

and (3.4), respectively. Let

E =
{
(x, y) ∈ Fq1 × Fq2 : Tr1(xn1) + Tr2(yn2) , 0

}
, (3.3)

F =
{
(x, y) ∈ Fq1 × Fq2 : Tr1(xn1) + Tr2(yn2) = 0

}
. (3.4)

Regarding the set D, we have the following two lemmas.
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Lemma 8. With the symbols and notations above, we have

|D| =
1
2

(p − 1)
(
p2m1+2m2−1 − pm1+m2−1

)
.

Proof. From Lemma 6, we obtain

|F| =
1
p

∑
z∈Fp

∑
x∈Fq1

ζTr1(zxn1 )
p

∑
y∈Fq2

ζTr2(zyn2 )
p

= p2m1+2m2−1 +
1
p

∑
z∈F∗p

(−pm1)(−pm2)

= p2m1+2m2−1 + (p − 1)pm1+m2−1.

Hence, we have

|E| =
∑

x∈Fq1 ,y∈Fq2

1 − |F| = (p − 1)
(
p2m1+2m2−1 − pm1+m2−1

)
. (3.5)

It can be easily checked that

|D| =
∑

(x,y)∈E

η1 (Tr1 (xn1) + Tr2 (yn2)) + 1
2

=
1
2

∑
(x,y)∈E

1 +
1
2

∑
x∈Fq1 ,y∈Fq2

η1 (Tr1 (xn1) + Tr2 (yn2)) . (3.6)

By Lemma 4, we obtain∑
x∈Fq1 ,y∈Fq2

η1 (Tr1 (xn1) + Tr2 (yn2)) =
1
p

∑
x∈Fq1 ,y∈Fq2

∑
z∈Fp

G(η1)η1(−z)χ1 (z Tr1(xn1) + z Tr2(xn2))

=
G(η1)

p

∑
z∈F∗p

η1(−z)(−pm1)(−pm2),

where the last equality follows from Lemma 6. From the fact that
∑

z∈F∗p η1(z) = 0, we have∑
x∈Fq1 ,y∈Fq2

η1 (Tr1 (xn1) + Tr2 (yn2)) = 0. (3.7)

Then the desired conclusion follows from (3.5)–(3.7). �

Example 1. Let p = 5 and (m1,m2) = (2, 1). By the Magma program, we get that the cardinality |D| of
the set D is 6200, which accords with Lemma 8.

Example 2. Let p = 7 and (m1,m2) = (2, 2). By Lemma 8, we get |D| = 2469600, which is consistent
with the numerical computation by Magma.

AIMS Mathematics Volume 9, Issue 7, 18236–18246.
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Lemma 9. For (a, b) ∈ Fq1 × Fq2 and (a, b) , (0, 0), we have

∑
(x,y)∈D

µa,b(x, y) =


−1

2 pm1+m2−1(p − 1), if Tr1 (an1) + Tr2 (bn2) = 0,
1
2 pm1+m2−1 + 1

2 (−1)
p−1

2 pm1+m2 , if Tr1 (an1) + Tr2 (bn2) ∈ F∗2p ,
1
2 pm1+m2−1 − 1

2 (−1)
p−1

2 pm1+m2 , if Tr1 (an1) + Tr2 (bn2) ∈ F∗p \ F
∗2
p .

Proof. By definition, we have∑
(x,y)∈D

µa,b(x, y) =
∑

(x,y)∈E

η1 (Tr1(xn1) + Tr2(yn2)) + 1
2

ζTr1(ax)+Tr2(by)
p ,

where the set E is given in (3.3). Note that∑
x∈Fq1 ,y∈Fq2

ζTr1(ax)+Tr2(by)
p = 0,

if (a, b) ∈ Fq1 × Fq2 \ {(0, 0)}. Hence, we get∑
(x,y)∈D

µa,b(x, y) = −
1
2

∑
(x,y)∈F

ζTr1(ax)+Tr2(by)
p +

1
2

∑
x∈Fq1 ,y∈Fq2

η1(Tr1(xn1) + Tr2(yn2))ζTr1(ax)+Tr2(by)
p , (3.8)

where the set F is given in (3.4). Together with Lemma 5, we derive∑
(x,y)∈F

ζTr1(ax)+Tr2(by)
p =

1
p

∑
x∈Fq1 ,y∈Fq2

ζTr1(ax)+Tr2(by)
p

∑
z∈Fp

ζz Tr1(xn1 )+z Tr2(yn2 )
p

=
1
p

∑
z∈F∗p

∑
x∈Fq1

ζTr1(zxn1 +ax)
p

∑
y∈Fq2

ζTr2(zyn2 +by)
p

= pm1+m2−1
∑
z∈F∗p

ζ
−Tr1

(
an1
4z

)
−Tr2

(
bn2
4z

)
p .

For z ∈ F∗p, from the map − 1
4z → z, we get∑

(x,y)∈F

ζTr1(ax)+Tr2(by)
p = pm1+m2−1

∑
z∈F∗p

ζz(Tr1(an1 )+Tr2(bn2 ))
p

=

{
pm1+m2−1(p − 1), if Tr1 (an1) + Tr2 (bn2) = 0,
−pm1+m2−1, if Tr1 (an1) + Tr2 (bn2) , 0.

(3.9)

From Lemma 4, we obtain∑
x∈Fq1 ,y∈Fq2

η1 (Tr1 (xn1) + Tr2 (yn2)) ζTr1(ax)+Tr2(by)
p

=
1
p

∑
x∈Fq1 ,y∈Fq2

ζTr1(ax)+Tr2(by)
p

∑
z∈Fp

G(η1)η1(−z)χ1 (Tr1 (zxn1) + Tr2 (zyn2))

=
G(η1)

p

∑
z∈F∗p

η1(−z)
∑
x∈Fq1

ζTr1(zxn1 +ax)
p

∑
y∈Fq2

ζTr2(zyn2 +by)
p
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=
G(η1)

p

∑
z∈F∗p

η1(−z)
(
−pm1ζ

−Tr1
(

an1
4z

)
p

) (
−pm2ζ

−Tr2
(

bn2
4z

)
p

)
,

where the last equality follows from Lemma 5. For z ∈ F∗p, from the map − 1
4z → z, we get∑

x∈Fq1 ,y∈Fq2

η1 (Tr1 (xn1) + Tr2 (yn2)) ζTr1(ax)+Tr2(by)
p

= pm1+m1−1G(η1)
∑
z∈F∗p

η1(z)ζz(Tr1(an1 )+Tr2(bn2 ))
p

=

{
0, if Tr1 (an1) + Tr2 (bn2) = 0,
(−1)

p−1
2 pm1+m2η1 (Tr1 (an1) + Tr2 (bn2)) , if Tr1 (an1) + Tr2 (bn2) , 0,

(3.10)

where the last equality follows from Lemmas 2 and 3. The desired conclusion follows from (3.8)–
(3.10). �

Theorem 10. Let

K =
1
2

(p − 1)
(
p2m1+2m2−1 − pm1+m2−1

)
. (3.11)

Then the set CD defined in (3.2) is a [p2m1+2m2 ,K] codebook with Imax(CD) = pm1+m2−1(p + 1)/(2K).

Proof. From the definition of the codebook CD and Lemma 8, we deduce that CD is a [p2m1+2m2 ,K]
codebook. Given two codewords ca,b and cc,d with (a − c, b − d) , (0, 0), we have

∣∣∣ca,bcH
c,d

∣∣∣ =
1
K

∣∣∣∣∣∣∣ ∑
(x,y)∈D

µa−c,b−d(x, y)

∣∣∣∣∣∣∣ .
By Lemma 9, we obtain that

∣∣∣ca,bcH
c,d

∣∣∣ ∈ {
1

2K
pm1+m2−1(p + 1),

1
2K

pm1+m2−1(p − 1)
}
.

Hence, we have

Imax(CD) =
pm1+m2−1(p + 1)

2K
.

�

Theorem 11. The codebook CD constructed in Theorem 10 is nearly optimal with respect to the
Welch bound.

Proof. By Theorem 10, we derive that

Iw(CD) =

√
pm1+m2+1 + pm1+m2 + p − 1

(p − 1) (pm1+m2 − 1)
(
p2m1+2m2 − 1

) .
AIMS Mathematics Volume 9, Issue 7, 18236–18246.
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Therefore, we deduce that

Imax(CD)
Iw(CD)

=

√
(p + 1)2(pm1+m2 + 1)

(p − 1)(pm1+m2+1 + pm1+m2 + p − 1)
.

Obviously,

lim
p→+∞

Imax(CD)
Iw(CD)

= 1,

which implies that CD is nearly optimal with respect to the Welch bound. �

Table 1 lists some parameters of the codebooks defined in (3.2). From this table, we can derive that
Imax(CD) is very close to Iw(CD), as the odd prime p increases. This accords with Theorems 10 and 11
and also guarantees the correctness of our main results.

Table 1. The parameters of the codebook CD in (3.2).

p (m1,m2) N K Imax(C) Iw(C) Imax/Iw

3 (1,1) 34 24 1/4 1.7230 × 10−1 1.4600
5 (2,1) 56 6200 3/248 9.8639 × 10−3 1.2264
5 (2,2) 58 156000 1/416 1.9622 × 10−3 1.2251
7 (3,2) 710 121053618 2/25209 6.8707 × 10−5 1.1547
11 (3,3) 1112 1426557547800 1/1476300 6.1835 × 10−7 1.0954
13 (5,5) 1320 6(1319 − 139) 1/118164421584 7.8350× 10−12 1.0801
17 (6,6) 1724 8(1723 − 1711) 1/517886433093120 1.8205× 10−15 1.0607

For (p,m1,m2) = (199, 6, 6), it can be easily checked that Imax/Iw = 1.0050. This implies that the
ratio Imax/Iw is much closer to 1, if p is a larger prime.

Motivated by the work in [23], we use the set D defined in (3.1) to give a construction of strongly
regular Cayley graphs. The definition of strongly regular graphs is given below.

Definition 3. ( [4]) A strongly regular graph (v, k, λ, µ) is a graph with v vertices which is not complete
or edgeless and which has the following properties:

(1) The graph is regular of valency k, i.e., each vertex is adjacent to k vertices.

(2) There are exactly λ vertices adjacent to both x and y, if x and y are two adjacent vertices.

(3) There are exactly µ vertices adjacent to both x and y, if x and y are two nonadjacent vertices.

One of the most efficient approaches to construct strongly regular graphs is the Cayley graph
construction. Let G be a finite Abelian group and D be a subset of G satisfying that 0 < D and
−D = {−d : d ∈ D} = D. The Cayley graph on G with connection set D, written as Cay(G,D), is the
graph with the elements of G as vertices; two vertices x and y are adjacent if and only if x − y ∈ D.

For the set D given in (3.1), it is clear that 0 < D and −D = D. Here and hereafter, we use
Cay(Fq1×Fq2 ,D) to denote the Cayley graph on Fq1×Fq2 with connection set D. For (a, b) ∈ Fq1×Fq2 , let

µa,b(D) =
∑

(x,y)∈D

µa,b(x, y),

AIMS Mathematics Volume 9, Issue 7, 18236–18246.
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where µa,b ∈
(
Fq1 × Fq2

)∧
. The eigenvalues of Cay(Fq1 × Fq2 ,D) are defined by µa,b(D). When (a, b) =

(0, 0), we have µ0,0(D) = |D| = K, which is called the trivial eigenvalue of Cay(Fq1 × Fq2 ,D). It is
known that Cay(Fq1 × Fq2 ,D) is strongly regular if and only if µa,b(D) with (a, b) , (0, 0) has exactly
two distinct values.

Theorem 12. Let D be the set given in (3.1), and K is the integer given in (3.11). Then we have

(1) Cay(Fq1 × Fq2 ,D) has two distinct nontrivial eigenvalues, pm1+m2−1(1 + p)/2 and pm1+m2−1(1− p)/2.

(2) Cay(Fq1 × Fq2 ,D) is strongly regular with parameters(
p2m1+2m2 ,K,

1
4

pm1+m2−1
(
pm1+m2−1(1 − p)2 − 2p + 6

)
,

1
4

pm1+m2−1
(
pm1+m2−1(1 − p)2 − 2p + 2

))
.

Proof. (1) By Lemma 9, we know

µa,b(D) =
1
2

pm1+m2−1(1 + p) or µa,b(D) =
1
2

pm1+m2−1(1 − p),

for (a, b) ∈ Fq1 × Fq2 \ {(0, 0)}. This implies that Cay(Fq1 × Fq2 ,D) has precisely two distinct nontrivial
eigenvalues pm1+m2−1(1 + p)/2 and pm1+m2−1(1 − p)/2.

(2) From the definition of Cay(Fq1 × Fq2 ,D) and the first part of this theorem, we get that Cay(Fq1 ×

Fq2 ,D) has p2m1+2m2 vertices and Cay(Fq1 × Fq2 ,D) is regular of valency |D|. Let k denote the valency
of Cay(Fq1 × Fq2 ,D). Then

k = |D| =
1
2

(p − 1)
(
p2m1+2m2−1 − pm1+m2−1

)
.

Let r and s denote the two nontrivial eigenvalues of Cay(Fq1 × Fq2 ,D). By Theorem 9.1.2 in [24], the
parameters λ and µ of the strongly regular graph can be computed by λ = s + r + k + sr and µ = k + sr.
Then the second part of this theorem follows. �

As a comparison, the parameters of some known strongly regular graphs and the newly presented
ones are listed in Table 2.

Table 2. The parameters of some strongly regular graphs.

(p,m1,m2) v k λ µ r s References
81 16 7 2 7 -2 [25]

(3,1,1) 81 24 9 6 6 -3 Theorem 12
14080 3159 918 648 279 -9 [25]

(5,2,1) 15625 6200 2475 2450 75 -50 Theorem 12

4. Conclusions

In this paper, a class of codebooks is constructed using the combination of the quadratic character
over Fp and the trace functions over finite fields. Main results show that they are nearly optimal with
respect to the Welch bound. Their applications in Cayley graphs are investigated and a kind of strongly
regular Cayley graphs is obtained by the use of set D. Some interesting nearly optimal codebooks were
presented in [10,12–18]. The parameters of the codebooks obtained in this paper were not found in the
literature. This means that CD has new parameters.
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