Research article

A two-grid $ P_0^2 $-$ P_1 $ mixed finite element scheme for semilinear elliptic optimal control problems

  • Received: 22 August 2021 Revised: 09 December 2021 Accepted: 23 December 2021 Published: 17 January 2022
  • MSC : 49J20, 65N30

  • This paper aims to construct a two-grid mixed finite element scheme for distributed optimal control governed by semilinear elliptic equations. The state and co-state are approximated by the $ P_0^2 $-$ P_1 $ pair and the control variable is approximated by the piecewise constant functions. First, a superclose result for the control variable and a priori error estimates for all variables are obtained. Second, a two-grid $ P_0^2 $-$ P_1 $ mixed finite element algorithm is presented and the corresponding error is analyzed. In the two-grid scheme, the solution of the semilinear elliptic optimal control problem on a fine grid is reduced to the solution of the semilinear elliptic optimal control problem on a much coarser grid and the solution of a linear decoupled algebraic system on the fine grid and the resulting solution still maintains an asymptotically optimal accuracy. We find that the two-grid method achieves the same convergence property as the $ P_0^2 $-$ P_1 $ mixed finite element method if the two mesh sizes satisfy $ h = H^2 $. Finally, a numerical example demonstrating our theoretical results is presented.

    Citation: Changling Xu, Hongbo Chen. A two-grid $ P_0^2 $-$ P_1 $ mixed finite element scheme for semilinear elliptic optimal control problems[J]. AIMS Mathematics, 2022, 7(4): 6153-6172. doi: 10.3934/math.2022342

    Related Papers:

  • This paper aims to construct a two-grid mixed finite element scheme for distributed optimal control governed by semilinear elliptic equations. The state and co-state are approximated by the $ P_0^2 $-$ P_1 $ pair and the control variable is approximated by the piecewise constant functions. First, a superclose result for the control variable and a priori error estimates for all variables are obtained. Second, a two-grid $ P_0^2 $-$ P_1 $ mixed finite element algorithm is presented and the corresponding error is analyzed. In the two-grid scheme, the solution of the semilinear elliptic optimal control problem on a fine grid is reduced to the solution of the semilinear elliptic optimal control problem on a much coarser grid and the solution of a linear decoupled algebraic system on the fine grid and the resulting solution still maintains an asymptotically optimal accuracy. We find that the two-grid method achieves the same convergence property as the $ P_0^2 $-$ P_1 $ mixed finite element method if the two mesh sizes satisfy $ h = H^2 $. Finally, a numerical example demonstrating our theoretical results is presented.



    加载中


    [1] N. Arada, E. Casas, F. Tröltzsch, Error estimates for the numerical approximation of a semilinear elliptic control problem, Comput. Optim. Appl., 23 (2002), 201–229. http://doi.org/10.1023/A:1020576801966 doi: 10.1023/A:1020576801966
    [2] A. A. Ali, K. Deckelnick, M. Hinze, Global minima for semilinear optimal control problems, Comput. Optim. Appl., 65 (2016), 261–288. http://doi.org/10.1007/s10589-016-9833-1 doi: 10.1007/s10589-016-9833-1
    [3] F. Brezzi, M. Fortin, Mixed and hybrid finite element methods, New York: Springer, 1991. http://doi.org/10.1007/978-1-4612-3172-1
    [4] C. J. Bi, V. Ginting, Two-grid finite volume element method for linear and nonlinear elliptic problems, Numer. Math., 108 (2007), 177–198. http://doi.org/10.1007/s00211-007-0115-9 doi: 10.1007/s00211-007-0115-9
    [5] C. J. Bi, V. Ginting, Two-grid discontinuous Galerkin method for quasi-linear elliptic problems, J. Sci. Comput., 49 (2011), 311–331. http://doi.org/10.1007/s10915-011-9463-9 doi: 10.1007/s10915-011-9463-9
    [6] R. Becker, H. Kapp, R. Rannacher, Adaptive finite element methods for optimal control problems of partial differential equations: Basic concept, SIAM J. Control Optim., 39 (2000), 113–132. http://doi.org/10.1137/S0363012999351097 doi: 10.1137/S0363012999351097
    [7] C. J. Chen, W. Liu, A two-grid method for finite volume element approximations of second-order nonlinear hyperbolic equations, J. Comput. Appl. Math., 233 (2010), 2975–2984. http://doi.org/10.1016/j.cam.2009.11.043 doi: 10.1016/j.cam.2009.11.043
    [8] Y. P. Chen, Superconvergence of mixed finite element methods for optimal control problems, Math. Comp., 77 (2008), 1269–1291. https://doi.org/10.1090/S0025-5718-08-02104-2 doi: 10.1090/S0025-5718-08-02104-2
    [9] Y. P. Chen, Superconvergence of quadratic optimal control problems by triangular mixed finite elements, Int. J. Numer. Meth. Eng., 75 (2008), 881–898. http://doi.org/10.1002/nme.2272 doi: 10.1002/nme.2272
    [10] L. P. Chen, Y. P. Chen, Two-grid method for nonlinear reaction diffusion equations by mixed finite element methods, J. Sci. Comput., 49 (2011), 383–401. http://doi.org/10.1007/s10915-011-9469-3 doi: 10.1007/s10915-011-9469-3
    [11] S. C. Chen, H. R. Chen, New mixed element schemes for a second-order elliptic problem, Math. Numer. Sin., 32 (2010), 213–218.
    [12] Y. P. Chen, Y. Q. Dai, Superconvergence for optimal control problems governed by semi-linear elliptic equations, J. Sci. Comput., 39 (2009), 206–221. http://doi.org/10.1007/s10915-008-9258-9 doi: 10.1007/s10915-008-9258-9
    [13] Y. P. Chen, Y. Q. Huang, W. B. Liu, N. N. Yan, Error estimates and superconvergence of mixed finite element methods for convex optimal control problems, J. Sci. Comput., 42 (2010), 382–403. http://doi.org/10.1007/s10915-009-9327-8 doi: 10.1007/s10915-009-9327-8
    [14] Y. P. Chen, T. L. Hou, Superconvergence and $L^{\infty}$ error estimates of RT1 mixed methods for semilinear elliptic control problems with an integral constraint, Numer. Math. Theor. Meth. Appl, 5 (2012), 423–446.
    [15] Y. P. Chen, N. Y. Yi, W. B. Liu, A legendre galerkin spectral method for optimal control problems governed by elliptic equations, SIAM J. Numer. Anal., 46 (2008), 2254–2275. http://doi.org/10.1137/070679703 doi: 10.1137/070679703
    [16] P. G. Ciarlet, The finite element method for elliptic problems, North-Holland: Amsterdam Press, 1978. http://doi.org/10.1115/1.3424474
    [17] C. N. Dawson, M. F. Wheeler, C. S. Woodward, A two-grid finite difference scheme for non-linear parabolic equations, SIAM J. Numer. Anal., 35 (1998), 435–452. http://doi.org/10.1137/s0036142995293493 doi: 10.1137/s0036142995293493
    [18] W. Gong, N. Yan, A mixed finite element scheme for optimal control problems with pointwise state constraints, J. Sci. Comput., 46 (2011), 182–203. http://doi.org/10.1007/s10915-010-9392-z doi: 10.1007/s10915-010-9392-z
    [19] L. S. Hou, J. C. Turner, Analysis and finite element approximation of an optimal control problem in electrochemistry with current density controls, Numer. Math., 71 (1995), 289–315. http://doi.org/10.1007/s002110050146 doi: 10.1007/s002110050146
    [20] T. L. Hou, Superconvergence and $L^{\infty}$-error estimates of the lowest order mixed methods for distributed optimal control problems governed by semilinear elliptic equations, Numer. Math. Theor. Meth. Appl., 6 (2013), 479–498.
    [21] T. L. Hou, C. M. Liu, Y. Yang, Error estimates and superconvergence of a mixed finite element method for elliptic optimal control problems, Comput. Math. Appl., 74 (2017), 714–726. http://doi.org/10.1016/j.camwa.2017.05.021 doi: 10.1016/j.camwa.2017.05.021
    [22] T. L. Hou, H. L. Leng, T. Luan, Two-grid methods for $P^2_0$-$P_1$ mixed finite element approximation of general elliptic optimal control problems with low regularity, Numer. Meth. Part. Differ. Equ., 36 (2020), 1184–1202. http://doi.org/10.1002/num.22471 doi: 10.1002/num.22471
    [23] B. T. Kien, X. Qin, C. F. Wen, $L^\infty$-stability for a class of parametric optimal control problems with mixed pointwise constraints, J. Appl. Numer. Optim., 2 (2020), 297–320.
    [24] R. H. W. Hoppe, M. Kieweg, A posteriori error estimation of finite element approximations of pointwise state constrained distributed control problems, J. Numer. Math., 17 (2009), 219–244. http://doi.org/10.1515/JNUM.2009.012 doi: 10.1515/JNUM.2009.012
    [25] K. Kohls, A. Rösch, K. G. Siebert, A posteriori error analysis of optimal control problems with control constraints, SIAM J. Control Optim., 52 (2014), 1832–1861. http://doi.org/10.1137/130909251 doi: 10.1137/130909251
    [26] J. L. Lions, Optimal control of systems governed by partial differential equations, Berlin: Springer, 1971.
    [27] H. P. Liu, S. H. Wang, A two-grid discretization scheme for optimal control problems of elliptic equations, Numer. Algor., 74 (2017), 699–716. http://doi.org/10.1007/s11075-016-0168-x doi: 10.1007/s11075-016-0168-x
    [28] O. A. Ladyzhenskaya, N. Uraltseva, Linear and quasilinear elliptic equations, New York: Academic Press, 1968.
    [29] Z. L. Lu, Y. P. Chen, $L^\infty$-error estimates of triangular mixed finite element methods for optimal control problems governed by semilinear elliptic equations, Numer. Anal. Appl., 2 (2009), 74–86.
    [30] P. Merino, F. Tröltzsch, B. Vexler, Error estimates for the finite element approximation of a semilinear elliptic control problem with state constraints and finite dimensional control space, ESAIM Math. Model. Numer. Anal., 44 (2010), 167–188. http://doi.org/10.1051/m2an/2009045 doi: 10.1051/m2an/2009045
    [31] W. L. Qiu, D. Xu, J. Guo, J. Zhou, A time two-grid algorithm based on finite difference method for the two-dimensional nonlinear time-fractional mobile/immobile transport model, Numer. Algor., 85 (2020), 39–58. http://doi.org/10.1007/s11075-019-00801-y doi: 10.1007/s11075-019-00801-y
    [32] F. Shi, J. P. Yu, K. T. Li, A new stabilized mixed finite element method for Poisson equation based on two local Gauss intergrations for linear element pair, Int. J. Comput. Math., 88 (2011), 2293–2305. http://doi.org/10.1080/00207160.2010.534466 doi: 10.1080/00207160.2010.534466
    [33] J. C. Xu, A new class of iterative methods for nonselfadjoint or indefinite problems, SIAM J. Numer. Anal., 29 (1992), 303–319. http://doi.org/10.2307/2158127 doi: 10.2307/2158127
    [34] J. C. Xu, A novel two-grid method for semilinear equations, SIAM J. Sci. Comput., 15 (1994), 231–237. http://doi.org/10.1137/0915016 doi: 10.1137/0915016
    [35] J. C. Xu, Two-grid discretization techniques for linear and non-linear PDEs, SIAM J. Numer. Anal., 33 (1996), 1759–1777. http://doi.org/10.1137/S0036142992232949 doi: 10.1137/S0036142992232949
    [36] J. M. Yang, X. Q. Xing, A two-grid discontinuous Galerkin method for a kind of nonlinear parabolic problems, Appl. Math. Comput., 346 (2019), 96–108. http://doi.org/10.1016/j.amc.2018.09.067 doi: 10.1016/j.amc.2018.09.067
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1839) PDF downloads(73) Cited by(3)

Article outline

Figures and Tables

Tables(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog