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Abstract: This paper aims to construct a two-grid mixed finite element scheme for distributed optimal
control governed by semilinear elliptic equations. The state and co-state are approximated by the P(z)—Pl
pair and the control variable is approximated by the piecewise constant functions. First, a superclose
result for the control variable and a priori error estimates for all variables are obtained. Second, a
two-grid Pj-P; mixed finite element algorithm is presented and the corresponding error is analyzed.
In the two-grid scheme, the solution of the semilinear elliptic optimal control problem on a fine grid
is reduced to the solution of the semilinear elliptic optimal control problem on a much coarser grid
and the solution of a linear decoupled algebraic system on the fine grid and the resulting solution still
maintains an asymptotically optimal accuracy. We find that the two-grid method achieves the same
convergence property as the P3-P; mixed finite element method if the two mesh sizes satisfy h = H*.
Finally, a numerical example demonstrating our theoretical results is presented.
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1. Introduction

In this paper, we consider the following semilinear optimal control problems for the state variables
P, v, and the control u:

.1 1 v
min {EHP —pJl + 5”)’ —yall* + §||M||2} (1.1)

ucUgq

subject to the state equation

—divA(X)Vy) + ¢() = f +u, x€Q, (1.2)


http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2022342

6154

which can be written in the form of the first order system
divp+¢(y) = f+u, p=-Ax)Vy, xeQ, (1.3)
and the boundary condition
y=0, xe€0Q, (1.4)

where Q is a bounded domain in R2. U, is the admissible set, defined by

Ut = {u e L¥(Q): fudx > o}. (1.5)
Q

We assume that the function ¢(-) € W>*(=R,R) N H*(—R, R) for any R > 0, ¢'(y) € L*(Q) for any
y € H(Q), and ¢’ > 0. Moreover, we assume that y; € W*(Q) and p, € (H*(Q))>. v is a fixed
positive number. The coefficient A(x) = (a;;(x)) is a symmetric matrix function with a;;(x) € Whe(Q),
which satisfies the ellipticity condition

2
CleP < ) ay(nEE < R Y (EX) ERP XA, ¢ > e >0,

ij=1

It is well known that finite element approximation plays an important role in the numerical
treatment of optimal control problems ( [6, 8,9, 13, 16, 18, 19, 23-25]). In particular, finite element
approximation of semilinear elliptic optimal control problems has been widely studied in the
literature, see, for example, finite element method [1, 12,30], mixed finite element method [14,20, 29].
Arada et al. [1] studied the numerical approximation of distributed nonlinear optimal control
problems governed by semilinear elliptic partial differential equations, they derived the
maximum-norm error estimates of finite element approximation for optimal controls. Chen et al.
investigated the superconvergence of the finite element approximation for quadratic optimal control
problem governed by semilinear elliptic equations in [12]. Chen et al. [14] and Hou [20] obtained the
superconvergence and the L*-error estimates of semilinear elliptic optimal control problems with two
different admissible sets by using the Raviart-Thomas mixed finite element method, respectively.
Recently, Hou et al. [21] applied Pj-P; mixed finite element to solve the elliptic optimal control
problems and derived a priori error estimates for all variables. Compared with the standard mixed
finite element method, the velocity of P3-P; mixed finite element method not only belongs to the
square integrable space instead of the classical H(div;€2) space but also needs the less regularity and
less degrees of freedom. Moreover, the central processing unit (CPU) time of Pj-P; mixed finite
element method is less than that of the lowest order Raviart-Thomas mixed finite element method
because of less degrees of freedom.

The two-grid method was first introduced by Xu [33-35] as a discretization method for
nonsymmetric, indefinite and nonlinear partial differential equations. For nonlinear equations, the
main idea of two-grid method is to use a coarse-grid space to produce a rough approximation of the
solution of nonlinear problems, and then use it as the initial guess for one Newton-like iteration on the
fine grid. In recent years, the two-grid method combined with various numerical methods was further
investigated by many authors, such as finite difference method [17, 31], mixed finite element
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method [10], finite volume element method [4, 7], discontinuous Galerkin method [5, 36]. In order to
solve the nonlinear fully discrete system more efficiently, Qiu et al. [31] proposed a time two-grid
algorithm based on finite difference scheme and obtained the stability and L?-norm error estimate.
Yang et al. [36] proposed a two-grid algorithm of discontinuous Galerkin approximation for a kind of
nonlinear parabolic problems and discussed the convergence in H'-norm. At present, some scholars
have applied the two-grid method to compute optimal control problems. Liu et al. [27] firstly
attempted to apply and analyze the two-grid finite element method for the elliptic optimal control
problems. Hou et al. [22] discussed the two-grid method of PZ-P; mixed finite element approximation
for general elliptic optimal control problems with low regularity. As far as we know, there is no
convergence result on P3-P mixed finite element approximation combined with two-grid method for
semilinear elliptic optimal control problems.

This paper is motivated by the ideas of the works [20,21]. We design a two-grid scheme for
semilinear elliptic optimal control problems discretized by Pé—Pl mixed finite element [11]. In the
proposed two-grid scheme, we first solve a nonlinear system on the coarse-grid space, then we use the
coarse grid solution to extrapolate the solution on the fine grid. On the fine grid we need to solve a
decoupled system of linear equations.

The paper is organized as follows. We construct P3-P; mixed finite element approximation scheme
for optimal control problem (1.1)—(1.4) in Section 2. The superclose and error analysis is carried out
in Section 3. We propose a two-grid algorithm and discuss its convergence in Section 4. We presented
a numerical example to demonstrate our theoretical results in Section 5. In the last section, we briefly
summarize the results obtained and some possible future extensions.

In this paper, we adopt the standard notation W™?(£2) for Sobolev spaces on Q with a norm || - ||,
givenby [vll,., = X ||D“v||€p(Q), a semi-norm |+|,, , given by |vl, , = | > ||D“v||€p(g). We set W, (Q) =

lol<m al=m
{v.e W"(Q) : vjgo = 0}. For p = 2, we denote H"(Q) = W™*(Q), Hp(Q) = W(’)"’z(Q), and
Il = I - llm2s -1l = - llo2- In addition C denotes a general positive constant independent of /2, where

h is the spatial mesh-size for the control and state discretization.
2. P}-P; mixed finite element approximation
In this section, we shall construct mixed finite element approximation scheme of the control problem

(1.1)—(1.4). For sake of simplicity, we assume that the domain Q is a convex polygon. Now, we
introduce the co-state elliptic equation

—divAM(Vz+p-p) + ¢ Mz=y—ys, x€Q, 2.1)
which can be written in the form of the first order system
divg + ¢’z =y =ys, 4=-ANVz+p=p,), xeQ, (22)

and the boundary condition
=0, xe€dQ. (2.3)
Let
V=(LAQ)*, W=H\Q). (2.4)

AIMS Mathematics Volume 7, Issue 4, 6153-6172.



6156

So the weak formulation of the optimal control problem (1.1)—(1.4) can be restated as the following
(OCP):

. (1 1
min {lp = pIP + 31y = valP + 2 25)
A 'p,v)+(Vy,») =0, VrveV, (2.6)
- (P, VW) + (¢, w) = (f +u,w), YweW, 2.7)

where (-, -) is the inner product of L*(Q2) or (L*(Q))>.

Since the objective functional is convex, it follows from [26] that the optimal control problem (OCP)
has a locally unique solution (p, y, u), and that a triplet (p, y, u) is the solution of (OCP) if there is a
co-state (q,z) € VX W such that (p, y, q, z, u) satisfies the following optimality conditions (OCP-OPT):

A'p,v)+(Vy,») =0, VveV, (2.8)
=(p,Vw) + (¢(y),w) = (f +u,w), YweW, (2.9)
(A7'q,v)+ (Vz,v) = =(p— ps,v), Vv €V, (2.10)
(g, VW) + (' Mz, w) = —ya,w), YweW, (2.11)
u+z,i—u)>0, Vi€ Uy. (2.12)

As in [15], the inequality (2.12) can be expressed as
u = {max{0,z} — z} /v, (2.13)

d i '
f“Zd; denotes the integral average on € of the function z.

where 7 =

Let 7}, dgnotes a shape-regular triangulation of the polygonal domain €, 47 denotes the diameter of
the element 7" and /& = max{hr}. Let V;, x W;, € V X W be defined by the following finite element pair

TeT
P2-p; [11,32]:
Vi ={vi=Owva) € VIvip,van € Po(T), YT € T4}, (2.14)
W, = {w, € CO(Q) N Wlwy, € Pi(T), YT € Tl (2.15)
Let
Vi = {v, € LX(Q) : ¥ T € T, vilr = constant}, (2.16)

and Uh = Vh N Uad-
Next, we introduce three projection operators. Firstly, we define the standard elliptic projection [16]
R, : W — W,, which satisfies: for any ¢ € W

(V($ = Ry$), Vwy) = 0, ¥ w, € Wy, (2.17)
16 = Riglly < CR*~liglla, s = 0,1, ¥ ¢ € HX(Q). (2.18)

Secondly, we define the standard L? projection [3] II, : V — V,, which satisfies: for any g € V

(q - tha Vh) = 07 v Vi € Vha (219)
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1L g1l < Cliqll, (2.20)
llg — Tugll < Chliglh, ¥ g € (H'(Q)). (2.21)

At last, we define the standard L*-orthogonal projection P, : L*>(Q) — V,, which satisfies: for any
¢ € L(Q)

(o = Pup,vi) =0, Y v, €V (2.22)
We have the approximation property:
e — Prioll—sr < CR'lgl1, s = 0,1, ¥ 0 € W(Q). (2.23)

Then the mixed finite element discretization of (OCP) is the control problem (OCP),: find
(Dys i, un) € Vi X Wy, X Uy, such that

. (1 1 v
min {519, = plF + 5l = valP + 21w} (2.24)
(A7 pvi) + (Vyvi) =0, Vv, € V), (2.25)
= (P Vi) + (@), wi) = (f + up, wi), Y wy € W, (2.26)

The above problem has a locally unique solution (p,,, y, u;), and that a triplet (p,,, ys, u;) is the solution
of (OCP), if there is a co-state (q,,z,) € V, X W), such that (p,,ys, q,,, 21, u;) satisfies the following
optimality conditions (OCP-OPT),:

(A7 pp.vi) + (Vypvp) =0, Vv, €V, (2.27)
=Py Vi) + @) wi) = (f + un, wi), ¥ wy, € Wy, (2.28)
(A7 gy vi) + (VZi 1) = =Py, = P vi)s ¥ Vi € Vi, (2.29)
—(qp,, Vwi) + (&' On)zn, Wi) = n = Ya, wi), ¥ wy € Wy, (2.30)
(vuy, + zp, iy, —uy) = 0, VY i1, € Uy, (2.31)

Similar to (2.13), the control inequality (2.31) can be expressed as
up, = {max{0,z,} — Ppza} /v, (2.32)

fQZhdx
fQ dx

In the rest of the paper, we shall use some intermediate variables. For any control function &t € U,
we first define the state solution (p(it), y(it), (i), z(ii))€ (V x W)? associated with i that satisfies

where 75, = denotes the integral average on Q of the function z,.

(A7'p(@),v) + (Vy(@),») =0, Yv eV, (2.33)
—(p(@), Vw) + (p(y(@), w) = (f + it,w), YweW, (2.34)

(A~ q(@),v) + (Vz(@D),v) = =(p(i)) — pg.v), Vv eV, (2.35)
—(q(@), Vw) + (&' (y(@)z(i), w) = (y(@t) = ya, w), ¥ weW. (2.36)

Then, we define the discrete state solution (p,(it), y,(it), g, (i), zx(&1))€ (V}, X W,)? associated with i
that satisfies

(A7 py(@),vi) + (Vyu(@),v4) = 0, Vv, €V, (2.37)
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—(p (@), Vwy) + (@(@)), wp) = (f + it,wn), ¥ wy € Wy, (2.38)
(A7 g, (@), vi) + (Vzu(@), vi)) = =(py(E) = pgsvi)s ¥ vy € Vi, (2.39)
—(q, (@), Ywp) + (@' (i (@)zn(it), wi) = (u(it) = yas wa), ¥ wy, € Wy (2.40)

Thus, as we defined, the exact solution and its approximation can be written in the following way:

(P.y.q.2) = (p(w), y(u), q(u), z(u)),
(P> Yo @ 2n) = (P (un), yi(un), q,(un), 2n(up)).

3. Superconvergence analysis

In this section, we will give a detailed superclose analysis. In order to derive the main results, we
need the following lemmas.

Lemma 3.1. Let (p(uy), y(up), q(uy), 2(up)) € (V x W)? and (P> Yns qp> 2n) € (Vi X W,,)? be the solutions
of (2.33)—(2.36) and (2.37)—(2.40) with it = uy, respectively. Assume that

), q(up) € (H'(Q))* and y(uy), z(up) € WH(Q),
then we have

V(@) = ywll + llp(up) = pyll < Ch, (3.1
IV(z@un) = z)ll + llq(un) — g,ll < Ch. (3.2)

Proof. From Eqs (2.33)—(2.36) and (2.37)—(2.40), we can easily obtain the following error equations

(A~ (pGu) = pp).vi) + (VO (i) = yi),vi) = 0, (3.3)

—(p(un) = Py, Vwn) + (9(y(un)) = ¢(yn), wi) = 0, (3.4)

(A~ (qun) — qp), vi) + (V@) = 20), Vi) = =(P(u) = Pjo Vi), (3.5)

—(q(u) = q;, Vi) + (&' un))z(n) — ¢ On)zn wi) = () = Y, i), (3.6)

for any v, € V, and w;, € W,,.
Since VW,, ¢ V,, with the aid of (2.19), we rewrite (3.3)—(3.6) as

(AN (@Lp(un) = py),vi) + (VR @n) — yi), vi) = —(V((u) — Riy(un)), vi)

— (A (p(up) = TLp(up)), vi), (3.7)

— (ITwp(un) = py, V) + (@y(un)) — ¢n), wi) = 0, (3.8)
(A g () — q3),vi) + (V(Ruz(un) = 21),vi) = —(A~" (qup) — Taq(up)), vy)

= (Lp(un) = py>vi) — (V(z(up) — Rpz(up)), vi), (3.9)

— (IThq(un) — qy, V) + (" (V(wn))z(un) = &' On)zn wi) = (un) = Yi, i), (3.10)

for any v, € V, and w;, € W,,.
Choosing v, = I, p(u;) — p, in (3.7) and w, = Ryy(up) — y, in (3.8), respectively. Then adding the
two equations to get

(A" @Lup(up) — py). Tp(uy) — py) + @Ry () — ), RiyQur) — yi)
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= — (VO(up) — Ryyun)), TL,p(uy) — pp) — (A~ (pQuy) — T p(un)), TLup(us) — py)
= (d(y(un) — ¢(Rry(un)), Rpy(up) — yn). (3.11)

Using Cauchy inequality, (3.11), (2.18), (2.21), the assumption on A and ¢" > 0, we find that

L1 pCun) = pull < Ch(lly(un)llz + [Pl + liRpy(un) = yall; (3.12)

where ¢ is an arbitrary small positive constant.
Letting v, = V(R,y(u,) — y») in (3.7), using Cauchy inequality, (2.18) and (2.21), we find that

IV(Riy(un) = ywll < Ch(lly(unllz + lpCun)ll) + ClIT,p(un) — pyll. (3.13)

For sufficiently small &, combining (3.12), (3.13), (2.18), (2.21), triangle inequality and Poincare’s
inequality, we have

V(@) = ywll + lp(un) = pyll < Ch. (3.14)

Similarly, choosing v, = I1,q(u,) — q,, in (3.9) and w;, = R,z(u,) — z, in (3.10), respectively, it is
easy to see that

(A~ (g (up) — ), TIaq(un) — q,) + (¢ (W) Ruz(ua) — 1), Ruz(u) — 21)
= — (¢'O(un)(z(up) = Ryz(up)), Rypz(up) — zn) — (@' (Y1) — ¢ n))zns Rnz(un) — z1)
— (Lp(un) = Py Tag(uy) — q;) — (A7 (g () — g (), Tgq(uy) — q;)
— (V(z(un) — Ruz(un)), ng(un) — q;) + (un) — yin, Ruz(up) = z3). (3.15)

Using Cauchy inequality, (3.15), (2.18), (2.21), the assumption on A and ¢’ > 0, we find that

111, un) — qpll <Ch(llz(up)ll> + [lgu)lln) + ClILLp(un) — pyll
+ Clly(up) = yull + &llRpz(up) — zall- (3.16)

Letting v, = V(R,z(u;) — z,) in (3.9), using Cauchy inequality, (2.18) and (2.21), we find that

IV(Rpz(un) = zn)ll <ClILLp(up) = pyll + ClITTg(un) — g,
+ Ch(|lz@un)ll2 + llgCun)lly). (3.17)

Combining (2.18), (2.21), (3.14), (3.16), (3.17) and triangle inequality, it is easy to get the following
result

IV (@) = zn)ll + llq(un) = q,]l < Ch. (3.18)
This completes the proof of the theorem. O

Now, we are in the position of deriving the estimate for |[y(u;) — y4|| and ||z(«,) — z4||, we need a priori
regularity estimate for the following auxiliary problems:

—div(AVE) + DE=F1, x€Q, élsn =0, (3.19)
= div(AVY) + ¢'(Yun))l = Fa, x €Q, Llasa =0, (3.20)
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where
d(y(un)) — d(yn)
O = y(up) = yu
&' (n)s  Y(up) =y

» Y(up) # yn,

The next lemma gives the desired a priori estimate. (see [28])

Lemma 3.2. [28] Let & and { be the solutions for (3.19) and (3.20), respectively. Assume that Q is
convex. Then we have

I€llm2@) < CllF 220, (3.21)
IXllr20) < CllFll2@)- (3.22)

Lemma 3.3. Let (p(uy), y(up), q(up), 2(uy)) € (VX W)? and (p,,, Yu. @5 2) € (Vi X W),)? be the solutions
of (2.33)—(2.36) and (2.37)—(2.40) with &t = uy, respectively. Assume that

p(uy), q(uy) € (H'(Q))* and y(uy), z(u) € W' (Q),
then we have

lly(un) — yull < CH?, (3.23)
llz(up) — zill < CHP. (3.24)

Proof. Let £ € H*(Q) N Hy(Q) be the solution of (3.19) with F = y(u,) — y,. We can see from (3.3)
and (3.4)

lly(an) = yull* = () = y, =div(AVE)) + (y(up) = yn, DE)
= (AVE, V(y(up) = yn)) + () = ya, &)
= (AVE — IL(AVE), V(y(up) = yn)) = (A~ (p(up) = p;), TL(AVE))
+ (Q((un) = yn), §)
= (AVE = T(AVE), V(y(up) = yn)) + (A~ (p(uy) = p;), AVE = T1,(AVE))
— (P(un) = Py, V(& = Rid)) + (9O(up)) — ¢(vn), & — Rié)
< ChlIAN LIV () = yll + CAIA™ o wllAll €l lp(n) = pyl
+ Chllélllp@) = pyll + CH Il coll€llally () =yl
< Chllgl(IVOun) = yll + 11pQun) = pill + AllyGuen) = yalD), (3.25)

where we used the estimates (2.18) and (2.21).
Substituting (3.1) into (3.25) , using (3.21), for sufficiently small /4, we obtain

lly(un) = yull < CH. (3.26)

Atlast, let £ € H*(€) N H)(Q) be the solution of (3.20) with F, = z(u;) — z,. We can see from (3.5)
and (3.6).

llz(utn) = 2l = (2(utn) = 21, —diV(AV)) + (2(uth) = 2, ¢’ (V(u))Q)
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= (AVZ, V(z(un) = zn)) + (2(up) = 2, ¢’ Y(u))E)
= (V(z(un) = 7). AVZ = TL,(AVY)) — (A~ (q(up) — ;). TIi(AVY))
— (p(up) = pp TIW(AV D)) + (2(un) = 7> &' (Y(un)))
= (V(z(up) — 2), AVE = T, (AVD) — (A~ (q(up) — q,), TIN(AVY) — AVY)
— (q(un) — g4, V(& = Rud)) = (' v(un))z(un) — &' )z, Rud = &)
+ () = Yns Rud) + (zn(¢' i) = ¢' (), O) — (p(up) = py, TI(AVY))
7
2

1

I. (3.27)

Now, we will estimate /;-1; one by one. For the first term /; and the second term I, by (2.21), we
get

Iy < Chl|All1eolIZ1121[V (z(un) = za)l (3.28)
and
L < CHIA™ o oIl olI€ N2 llg(utn) — @) (3.29)
For the third term I3, by (2.18), we have
I3 < Chlid|l2llg(un) — gl (3.30)
Note that
&' (un)z(un) — ¢ nzn = 2(un)(@' Vun)) = ¢"(va)) + ¢ (i) (@) — 2)- (3.31)

Then, by (2.18), (3.26) and the assumption on ¢, we find that

Iy <Cllz(up)llo.coll@ll2.col () = yall - 1€ = Ra{l
+ Cllo | collz(utn) = zall - 1€ = Rl
<CH|z(un)llo ool Bl 12112
+ CH|Ipll ol lallz(utn) = zal- (3.32)

For the fifth term /s, by (3.26), we find that
Is < CH*|i . (3.33)
For the sixth term /4, by (3.26), we obtain

Is < CR||gllo. I 112112l (3.34)

where

llzall < llz(uen) = zall + llz(up)ll- (3.35)
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For the last term 17, by (2.21), (3.1), (3.3), (3.26), we have

I =(p(uy) = py, AVE = TIAVD) = (A7 (p(us) — py), A*V)
=(p(up) — py, AVE = TL(AV) = (A (p(uy) — ), A*VE — TTH(APVQ))
+ (VO () = ya), TTH(APVE) = APVE) = (v(uy) — yn, div(A®VY)
<CH|IC]l>. (3.36)

Substituting the estimates /,-17 into (3.27), using (3.2) and (3.22), for sufficiently small &, we easily
get

llz(un) — z4ll < CH2. (3.37)

The proof is ended. O

Lemma 3.4. Let (p(Ppu), y(Pyu), q(Pyu), z(Pyu)) and (p(u), y(u), q(u), z(u)) be the solutions of (2.33)—
(2.36) with it = Pyu and ii = u, respectively. Assume that u € H'(Q). Then we have

lly(u) = y(Puao)l| + [|p(u) = p(Puo)l| + IV ((w) = y(Pr)l| < CH, (3.38)
ll2(e) = 2(Prao)ll + llg(u) — q(Puo)l| + IV (z(u) = 2(Pru))l| < Ch*. (3.39)

Proof. First,we choose it = P,u and &t = u in (2.33)—(2.36) respectively, then we can easily obtain the
following error equations

(A7 (p(w) = p(Py)), v) + (V(y(u) = y(Pyu)), ) = 0, (3.40)
— (p(u) = p(Ppu), Vw) + (p(y(w)) — ¢(y(Ppu)), w) = (u — Pypu, w), (3.41)
(A7 (q(w) = g(Pyu)), v) + (V(z(u) = 2(Pyu)), ) = —(p() = p(Pyut), v), (3.42)
— (q(u) — q(Pyu), Yw) + (&' (y(w)z(w) — ¢’ (/(Ppu))z(Ppu), w) = (y(u) — y(Pyun), w), (3.43)

foranyve Vandwe W.
Choosing v = p(u) — p(P,u) in (3.40) and w = y(u) — y(Pu) in (3.41), respectively, then adding the
two equations to get

(A7 (p(u) = p(Py)), p(u) = p(P)) + ($(y(w)) = S/(Pun)), y(u) = y(Pyua))
=(u = Pypu, y(u) — y(Pyu)), (3.44)

where

(@) = O (Ppu)), y(u) = y(Ppu)) = (¢' () (v(w) — y(Pypu), y(u) = y(Ppu)) = 0.

From (3.40), we can see that

p(u) = p(Pyu) = =AV(y(u) — y(Pyu)). (3.45)

It follows from (2.23), (3.45) and the assumption on u that
(u — Pru, y(u) — y(Ppu)) <Clu — Prul_1ly — y(Pru)l;
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<CR|lulli||p(u) - p(Proll (3.46)

Thus, using (3.44)—(3.46), the assumption on A, Cauchy inequality and Poincare’s inequality, we derive
(3.398).
Similar to (3.44), we have

(A7 (q(u) — q(Pyu)), q(u) — q(P)) + (¢ () (2(1e) — 2(Pyu)), 2(tt) — 2(Pyu))
=) = y(Ppu), 2(u) = 2(Pypu)) — (p(u) — p(Pyu), q(u) — q(Pyu))
— (@(Ppu)(¢ (y(w)) — ¢ (Y(Pyu))), 2(u) — z(Pput)), (3.47)

where

lz(Phu)(¢’ (y(w)) = ¢' (Pr))Il < Cligll,colly(w) = y(Pruo)ll. (3.48)

Using Cauchy inequality, the assumption on A and ¢’ > 0, we conclude that

llg(w) — q(Pru)ll < Clly(u) = y(Pp)ll + Cllp(u) — p(Ppu)l| + &llz(u) — 2(Ppu)l, (3.49)

where ¢ is an arbitrary small positive constant.
Letting v = V(z(u) — z(P,u)) in (3.42) and using Cauchy inequality, we have

IV(z(u) = 2(Pr)ll < Cllg(u) — (Pl + Cllp(u) — p(Pru)ll. (3.50)
Combining (3.38), (3.49), (3.50) and Poincare’s inequality, we derive (3.39). ]

Lemma 3.5. Let (p(Pyu), y(Ppu), q(Pyu), z(Pru)) and (p(uy), y(uy), q(uy), z2(uy)) be the solutions of
(2.33)—(2.36) with it = P,u and it = uy, respectively. Assume that u € H'(Q). Then we have

ly(un) = y(Prioll + [|pQup) = p(Pru)ll + IV (up) = y(Pru))l| < CllPhu — ull, (3.51)
llz(un) = 2(Ppoll + llg(un) — g(Pru)ll + IV (2(up) — 2(Pr)|l < CllPhu — uyl|. (3.52)

Proof. We choose it = Pju and it = uy, in (2.33)—(2.36) respectively, then we can easily obtain the
following error equations

(A~ (p(Pyu) = p(uy)), v) + (V(Ppu) — y(up)), v) = 0, (3.53)
— (p(Pyu) — p(uy), Vw) + (9G(Ppu)) — (), w) = (Pt — uy, w), (3.54)
(AN (q(Pyu) — q(up)), v) + (V(z(Phu) — z(up)), v) = —(p(Pyu) — p(uy), v), (3.55)

— (q(Ppu) = q(up), Vw) + (&' /(Pru)z(Ppu) — ¢ (y(up)z(up), w) = (v(Ppue) — y(up), w), (3.56)

foranyve Vandwe W.
The proof can be completed by using the stability analysis as in Lemma 3.4. m|

Let (p(u), y(u)) be the solutions of (2.5)—(2.7) and J(-) : L*(Q) — R be a G-differential convex
functional near the solution u which satisfies the following form:

1 1 %
J(u) = EIIP —plF + Elly —yall* + Ellullz- (3.57)
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It can be shown that

(J'(u),v) = (vu + z,v), (3.58)
(J'(up), v) = (vuy, + z(up), v), (3.59)
(J'(Ppu),v) = (WPuu + z(Ppu), v). (3.60)

In many applications, J(-) is uniform convex near the solution u. The convexity of J(-) is closely
related to the second order sufficient conditions of the control problem, which are assumed in many
studies on numerical methods of the problem (see [1,2]). Then, there exists a constant ¢ > 0,
independent of 4, such that

(J (Pyu) — J' (), Pyu — ug) > c||Puu — w|?, (3.61)

where u and u;, are solutions of (2.8)—(2.12) and (2.27)—(2.31) respectively, P,u is the orthogonal
projection of u which is defined in (2.22). We shall assume that the above inequality throughout this

paper.
Now, we will discuss the superclose for the control variable.

Lemma 3.6. Let u be the solution of (2.8)—(2.12) and uy, be the solution of (2.27)—(2.31), respectively.
Assume that p(uy), q(uy) € (H'(Q))? and u,z € WH>(Q). Then, we have

1Py — uyl| < CH*. (3.62)
Proof. We choose it = u;, in (2.12) and i1, = Pju in (2.31) to get the following two inequalities:
(vu+z,up, —u) >0 (3.63)
and
(vuy, + zp,, Prou — uy) > 0. (3.64)
Note that u;, — u = u, — Pyu + Pyu — u. Adding the two inequalities (3.63) and (3.64), we have
vup, +z;, —vu—2z, Pou—up) + Vu + z, Pou — u) > 0. (3.65)
Thus, by (3.61), (3.65) and (2.22), we find that

cllPpu — upll> <(J'(Pyu) = J' (up), Pyt — uy,)
=V(Ppu — up, Ppu — up) + (2(Ppt) — z2(up), Ppu — up,)
=v(Pyu — u, Ppu — up) + v(u — uy, Pru — uy)
+ (2(Ppu) — z(up), Ppu — up)
<(zp — z, Ppu — up) + (vu + z, Pyu — u)
+ (z(Ppu) — z(up), Pput — up)
=(zn — Z(up), Ppu — up) + (vu + z, Ppu — u)
+ (z(Ppu) — z(u), Pyu — uy,). (3.66)
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By Lemmas 3.3 and 3.4, we find that
(2n — 2(u), Pott — uy) < Ch* + §||Phu — P (3.67)
and
(Pt — 2u), Pyt — up) < Ch* + gllPhu — . (3.68)

For the second term at the right side of (3.66), from (2.13), obviously, we obtain

vu + z = max{0, 7} = constant. (3.69)

Hence,
vu+z, Pou—u)=(vu+z) L(Phu —u)dx = 0. (3.70)
Combining (3.67)—(3.70), we complete the proof of (3.62). O

Now, we can obtain the optimal a priori error estimates by use of Lemma 3.1, Lemmas 3.3-3.6 and
triangle inequality.

Theorem 3.1. Let u and u;, be the solutions of (2.8)—(2.12) and (2.27)—(2.31), respectively. Assume
that all the conditions in Lemma 3.6 are valid and u € W"*(Q). Then we have

IV =yl + IV = z)ll + [Ip = pull + llg — g,ll < Ch, (3.71)
Iy = yall + llz = zall < Ch. (3.72)

4. Two-grid discretization for optimal control problems

In this section, we shall present a two-grid algorithm for optimal control problems. The basic
mechanisms in our approach are two triangulations of Q, 74, and 7, with two different mesh sizes H
and h(H > h), and the corresponding finite element spaces Vy X Wy and Uy, V;, X W), and U, which
will be called coarse and fine spaces, respectively. Suppose the coarse mesh 77 is given and let 7, be
obtained from 7 via regular refinement. Based on 7 and 77, we have Vy X Wy C V, xW,,, Uy C Uy,
Two-grid algorithm :

1) On a coarse mesh, find (py, i, ¢4, 21, ) € (Vi X Wg)? X Uy such that

(A7 Py vi) + (Vym,vy) =0, Y vy € Vi, 4.1)
—(py, Vwr) + (@(yu), wu) = (f + ug,wy), Y wy € Wy, 4.2)
(A7 g vi) + (Vzu,ve) = =Py — PV ¥ v € Vi, (4.3)
—(qy, VWi) + (&' Oz, i) = Ou = Ya, W), ¥ wy € Wy, 4.4)
(Vi + zg, ity — ug) > 0, Y ity € Uy, (4.5)

2) On a fine mesh, find (p;,y;.q;,2,,u;) € (V) X W,,)? x U, such that

Vi + zg, iy, — u) > 0, YV i, € Uy, (4.6)
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A7'prvw) + (Vy,v) =0, Vv, €V,
(), Vi) + (@) + &' )Yy, — yu), wi) = (f + up, wy), Y wy € Wy,
(A7 gpvi) + (V25 vi) = =D}, = Par Vi), ¥ Vi € Vi,
—(q,, Vwi) + (@' )2 wi) = O, = Yas W), Y wy € W,

4.7)
(4.8)
(4.9)

(4.10)

Theorem 4.1. Let (p,y, q,z,u) be the solution of (2.8)(2.12) and (p;, V), 4}, 2, u;) be the solution of

(4.1)—(4.10) respectively. Then we have
llu = wll + IV =yl + 11p = Pyl + IV = 2l + 1lg = g;ll < C(h + H?).
Proof. Since Pju € Uy, choosing it = u; in (2.12) and i, = Pju in (4.6), we have
vu+z,u,—u)>0
and
(vuy, + zpg, Ppu — uy) > 0.
Note that P,u — u; = Pyu — u + u — u;, adding two inequalities (4.12) and (4.13), we have
(vuy +zg —vu —z,u —u,) + (vuy, + zg, Pyu — u) > 0.
It follows from (3.70), (4.14) and Young’s inequality that

Vl|lu — MZ”Z =v(u — u,, u — u,)
<(zw —z,u —u;) + (vu; + zg, Ppu — u)
—(zn — 21— 1)) + (vt} = vit, Pyt — 1)

+(zg — 2, Pou—u)+ (vu + z, Py — u)

v
<Clizyr — 2lP* + EIIM — uj|* + Cllu — Pyull*.
Thus, it can be derived from (4.15), (3.72) and (2.23) that

lu — ujll < C(h + H?).

4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

Subtracting (4.7)—(4.10) from (2.8)—(2.11), using VW,, C V}, and (2.19), we have the following error

equations

(AN @p - pp).vi) + (VR = yi).vi) = =(V(y = Riy), vi)
— (A" (p~ TLp), v),
= (ILup = pj,, V) + (6(0) = ¢Ou) — &' V) y, — yu), wa) = (U — u,, wh),
A~ (g — g3),vi) + (V(Ryz — 2;),vi) = —(A™'(q — T1,q), ) — (P — P} Vi)
= (V(z = Ru2), Vi),
— (I1hq = q;,, Vwi) + (¢’ Mz = ¢' )z wi) = (v = Yj W),

(4.17)
(4.18)

(4.19)
(4.20)
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for any v, € V, and w;, € W,,.
Using the Taylor expansion for function ¢(y) as follows

50) = )+ $ O i) + 38" BN =
for some function y. Then we have
¢() — ¢Ou) — ¢ )V}, — Yu)
=5/~ ) + 50" GN ~ )
=¢'(yu)(y — Ry + Rpy — y;,) + %QV'@)(y - yu)’. (4.21)
Choosing v, = II,p — p; in (4.17) and w;, = R,y — y; in (4.18), respectively. Then adding the two
equations to get
(A~ Ip - pp). Tp — py) + (' )Ry = ¥, Riy = vp)
=~ (VO = Rwy), 1Lip = p}) = (A™'(p ~ TLp), TLup — pj,) + (u — uj, Riy = ¥;)

’ * 1 UFEA k
~ (@O0~ Ry). Ry = y)) = (56" — yi)’s Ruy = ¥3). (4.22)
Using Cauchy inequality, (3.72), (2.18), (2.21), the assumption on A and ¢’ > 0, we find that
ITp — pill < Ch(lyll + 11plh) + Cllu — wyll + CH* + £[Ryy = 3, (4.23)

where € is an arbitrary small positive constant.
Letting v, = V(R,y — y;) in (4.17), using Cauchy inequality, (2.18) and (2.21), we find that

IV(Rry — yIl < Chdliyll2 + llpllD) + ClilLp — pyll. (4.24)

For sufficiently small &, combining (4.23), (4.24), (4.16), (2.18), (2.21), triangle inequality and
Poincare’s inequality, we have

IV =yl + llp = pill < C(h + H?). (4.25)
Similarly, choosing v, = II,q — ¢q; in (4.19) and w;, = R,z — z}, in (4.20), it is easy to see that
(A7 (Tuq - ¢;). TIhg — q;) + (¢’ )(Riz — 25). Rz — 2;)
== (¢’ )z = Ru2), Ruz = 73) = (¢'(¥) = ¢' i) ) Riz = 23,)
—(p—p,Thq — q;) — (A7 (g — T1hg), T — g;,)
= (V(z = Ry2), 11hq — q;) + (v — ), Rz — 23). (4.26)
Using Cauchy inequality, (4.26), (2.18), (2.21), the assumption on A and ¢’ > 0, we find that

I11,q — g3ll <Chllzll> + ligll) + Clip = pyll + Clly = yll + llRuz = ZI. (4.27)
Letting v, = V(R,z — z;) in (4.19), using Cauchy inequality, (2.18) and (2.21), we find that
IV(Riz — )l <Ch(llzll2 + llgll) + ClilT.g — gl + Clip — pyll. (4.28)
Combining (2.18), (2.21), (4.25), (4.27), (4.28) and triangle inequality, we obtain
IV(z = z)ll + llg = g;ll < C(h + H?). (4.29)
This completes the proof of the theorem. O
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5. Numerical experiments

In this section, we present below an example to illustrate the theoretical results. The discretization
was already described in previous sections: the control function u was discretized by piecewise
constant functions, whereas the state (y,p) and the co-state (z,q) were approximated by Pg—Pl
element. All the numerical results are computed by Matlab software.

Example. We consider the optimal control problems on the domain (0, 1)> with A(x) = I, v = 1 and
#(y) = y*, where I is the identity matrix. The exact solutions are as follows:

y = sin(mrx;) sin(mx,),
z = sin(27rx;) sin(27xy),
u = max{0,z} — z,
f=divp+y® —u,
ya = —divg = 3y*z+y,
21 cos(2mxy) sin(2mx;)
== (2n sin(27x) cos(27rx2)) ’

[71 cos(mx;) sin(ﬂxz))
P=Ps=~— . .
7 sin(x;) cos(mx,)

In Tables 1-2, the errors and the convergence orders of ||Pnu — uyll, |y — yull, llz = zill, IV = yu)l,
IV(z=znll, llp — p,ll and ||q — q,,|| are provided by mixed finite element method (MFEM) with different
h. It is obvious that the convergence results coincide with our theoretical analysis in Lemma 3.6 and
Theorem 3.1.

Tables 3—4 show the errors and the convergence rates of |lu—u; ||, [[V(y—y))ll, llp— p;ll, [IV(z—z;|| and
llg — q; |l by two-grid method (TGM) with the choice h = H 2. We can see that the two-grid solution can
achieve the same accuracy as the mixed finite element solution. This is consistent with the theoretical
analysis in Theorem 4.1.

Finally, we compare the CPU time of the mixed finite element method and the two-grid method in
Table 5. It is shown that the computing cost for two-grid method is significantly less than that for mixed
finite element method. Therefore, the two-grid algorithm proposed in this paper has great advantages
in large-scale numerical calculations.

Table 1. The errors and the convergence orders of ||P,u — u,l, |[y — yull and ||z — zx|l.

|Ppu—up|l  order  |ly — yll order ||z — zll order
9.4375¢-2 - 2.0728e-2 - 8.1275¢-2 -
2.5247e-2 1.90 5.2937¢-3  1.96 2.1677e-2  1.90
6.4216e-3 1.97 1.3308¢-3  1.99 5.5100e-3  1.97
1.6124e-3 1.99 3.3316e-4  1.99 1.3833e-3  1.99
4.0354¢-4 1.99 8.3323e-5  1.99 3.4618¢e-4  1.99
1.0091e-4 2.00 2.0836e-5  1.99 8.6572¢-5  2.00

2=z - =

25|
[ =1 [—
N o0
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Table 2. The errors and the convergence orders of |[V(y — yp)ll, IV(z — z)Il, [lp — p,ll and

llg — gl
R ING—ywll order [IVz-z)ll order |lp—p,ll  order lig—g,l order
% 4.3193e-1 - 1.6719e-0 - 4.3193e-1 - 1.7848e-0 -
11—6 2.1756e-1 098 8.6296e-1 0.95 2.1756e-1 098 9.1976e-1 0.95
3l2 1.0898e-1 0.99 4.3499e-1 098 1.0898e-1 0.99 4.6345¢-1 0.98
6%1 5.4514e-2 099 2.1794e-1 0.99 5.4514e-2 0.99 2.3217e-1 0.99
1

2.7260e-2  1.00 1.0903e-1 0.99 2.7260e-2 1.00 1.1614e-1 0.99
1.3630e-2  1.00 5.4520e-2 1.00 1.3630e-2 1.00 5.8079-2 1.00

M| —
LA|>~I\)
N oo

Table 3. The errors and the convergence orders of two-grid method with A = H>.

(H, h) lluw — u} ] order IV =yl order llp — P}l order

(- 1¢) 8.6276e-2 - 1.0930e-1 - 1.0930e-1 -
%o 8.2092¢-2  0.03  55154e2 049  55154e2 049

(fe.3%)  2.1919e2 095  1.3814e-2 099  1.3814e-2 0.9
1 1

5.5725e-3 0.98 3.4550e-3 1.00 3.4550e-3 0.99

32° 1024

Table 4. The errors and the convergence orders of two-grid method with h = H?.

(H, h) IV(z = zp)ll order llg — q;ll order
e 4.3509e-1 - 4.6345¢-1 -

(é, é) 2.1811e-1 0.49 2.3217e-1 0.50
%, ﬁ) 5.4568e-2 0.99 5.8079e-2 1.99

(31—2, 10&) 1.3643e-2 1.00 1.4520e-2 1.00

Table 5. The CPU time of mixed finite element method and two-grid method.

(H, h) MFEM time (s) TGM time (s)
(3 1¢) 1.1782 0.2117
) 18.4429 3.4445

(1=, 5) 314.4770 26.8162

6. Conclusions

In this paper, we constructed a two-grid Pg-P; mixed finite element scheme for semilinear elliptic
optimal control problem (1.1)—(1.4). Our theoretical analysis for this class of optimal control problems
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discretized by P%—Pl mixed finite element seems to be new. In the proposed two-grid algorithm, we first
solve a nonlinear system on the coarse-grid space, then we use the coarse grid solution to extrapolate
the solution on the fine grid. On the fine grid we need to solve a decoupled system of linear equations,
this is the main finding of our article. If the coarse and fine mesh sizes satisfy 7 = H*, the two-grid
solution can achieve the same accuracy as P%—Pl mixed finite element solution. In our future work,
we shall design a two-grid algorithm of mixed finite element method for optimal control problems
governed by nonlinear elliptic equations.
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