Research article

On the generalized Cochrane sum with Dirichlet characters

  • Received: 01 September 2023 Revised: 06 October 2023 Accepted: 31 October 2023 Published: 07 November 2023
  • MSC : 11F20, 11L05

  • In this paper, we defined a new generalized Cochrane sum with Dirichlet characters, and gave the upper bound of the generalized Cochrane sum with Dirichlet characters. Moreover, we studied the asymptotic estimation problem of the mean value of the generalized Cochrane sum with Dirichlet characters and obtained a sharp asymptotic formula for it. By using this asymptotic formula, we also gave the mean value of the generalized Dedekind sum.

    Citation: Jiankang Wang, Zhefeng Xu, Minmin Jia. On the generalized Cochrane sum with Dirichlet characters[J]. AIMS Mathematics, 2023, 8(12): 30182-30193. doi: 10.3934/math.20231542

    Related Papers:

  • In this paper, we defined a new generalized Cochrane sum with Dirichlet characters, and gave the upper bound of the generalized Cochrane sum with Dirichlet characters. Moreover, we studied the asymptotic estimation problem of the mean value of the generalized Cochrane sum with Dirichlet characters and obtained a sharp asymptotic formula for it. By using this asymptotic formula, we also gave the mean value of the generalized Dedekind sum.



    加载中


    [1] T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976.
    [2] H. Y. Liu, W. P. Zhang, On the mean square value of a generalized Cochrane sum, Soochow J. Math., 30 (2004), 165–175.
    [3] H. Y. Liu, W. P. Zhang, On a generalized Cochrane sum and its hybrid mean value formula, Ramanujan J., 9 (2005), 373–380. https://doi.org/10.1007/s11139-005-1874-5 doi: 10.1007/s11139-005-1874-5
    [4] Y. K. Ma, W. P. Zhang, T. P. Zhang, Upper bound estimate of incomplete Cochrane sum, Open Math., 15 (2017), 852–858. https://doi.org/10.1515/math-2017-0068 doi: 10.1515/math-2017-0068
    [5] H. Y. Liu, A note on the upper bound estimate of high-dimensional Cochrane sums, J. Number Theory, 125 (2007), 7–13. https://doi.org/10.1016/j.jnt.2006.10.008 doi: 10.1016/j.jnt.2006.10.008
    [6] D. M. Ren, Y. Yi, On the mean value of general Cochrane sum, Proc. Japan Acad. Ser. A Math. Sci., 86 (2010), 1–5. https://doi.org/10.3792/pjaa.86.1 doi: 10.3792/pjaa.86.1
    [7] H. Rademacher, E. Grosswald, Dedekind sums, Carus Math. Monographs, 1972.
    [8] M. Xie, W. P. Zhang, On the 2kth mean value formula of general Dedekind sums, Acta Math. Sin. (Chinese Series), 44 (2001), 85–94.
    [9] Z. F. Xu, W. P. Zhang, On the order of the high-dimensional Cochrane sum and its mean value, J. Number Theory, 117 (2006), 131–145. https://doi.org/10.1016/j.jnt.2005.05.005 doi: 10.1016/j.jnt.2005.05.005
    [10] H. Zhang, W. P. Zhang, Some new sums related to D. H. Lehmer problem, Czech. Math. J., 65 (2015), 915–922. https://doi.org/10.1007/s10587-015-0217-y doi: 10.1007/s10587-015-0217-y
    [11] W. P. Zhang, On the mean values of Dedekind sums, J. Théor. Nombres Bordeaux, 8 (1996), 429–422. https://doi.org/10.5802/JTNB.179 doi: 10.5802/JTNB.179
    [12] W. P. Zhang, A note on the mean square value of the Dedekind sums, Acta Math. Hungar., 86 (2000), 275–289. https://doi.org/10.1023/A:1006724724840 doi: 10.1023/A:1006724724840
    [13] W. P. Zhang, Y. Yi, On the upper bound estimate of Cochrane sums, Soochow J. Math., 28 (2002), 297–304.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(700) PDF downloads(47) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog