In this paper, we defined a new generalized Cochrane sum with Dirichlet characters, and gave the upper bound of the generalized Cochrane sum with Dirichlet characters. Moreover, we studied the asymptotic estimation problem of the mean value of the generalized Cochrane sum with Dirichlet characters and obtained a sharp asymptotic formula for it. By using this asymptotic formula, we also gave the mean value of the generalized Dedekind sum.
Citation: Jiankang Wang, Zhefeng Xu, Minmin Jia. On the generalized Cochrane sum with Dirichlet characters[J]. AIMS Mathematics, 2023, 8(12): 30182-30193. doi: 10.3934/math.20231542
In this paper, we defined a new generalized Cochrane sum with Dirichlet characters, and gave the upper bound of the generalized Cochrane sum with Dirichlet characters. Moreover, we studied the asymptotic estimation problem of the mean value of the generalized Cochrane sum with Dirichlet characters and obtained a sharp asymptotic formula for it. By using this asymptotic formula, we also gave the mean value of the generalized Dedekind sum.
[1] | T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976. |
[2] | H. Y. Liu, W. P. Zhang, On the mean square value of a generalized Cochrane sum, Soochow J. Math., 30 (2004), 165–175. |
[3] | H. Y. Liu, W. P. Zhang, On a generalized Cochrane sum and its hybrid mean value formula, Ramanujan J., 9 (2005), 373–380. https://doi.org/10.1007/s11139-005-1874-5 doi: 10.1007/s11139-005-1874-5 |
[4] | Y. K. Ma, W. P. Zhang, T. P. Zhang, Upper bound estimate of incomplete Cochrane sum, Open Math., 15 (2017), 852–858. https://doi.org/10.1515/math-2017-0068 doi: 10.1515/math-2017-0068 |
[5] | H. Y. Liu, A note on the upper bound estimate of high-dimensional Cochrane sums, J. Number Theory, 125 (2007), 7–13. https://doi.org/10.1016/j.jnt.2006.10.008 doi: 10.1016/j.jnt.2006.10.008 |
[6] | D. M. Ren, Y. Yi, On the mean value of general Cochrane sum, Proc. Japan Acad. Ser. A Math. Sci., 86 (2010), 1–5. https://doi.org/10.3792/pjaa.86.1 doi: 10.3792/pjaa.86.1 |
[7] | H. Rademacher, E. Grosswald, Dedekind sums, Carus Math. Monographs, 1972. |
[8] | M. Xie, W. P. Zhang, On the 2kth mean value formula of general Dedekind sums, Acta Math. Sin. (Chinese Series), 44 (2001), 85–94. |
[9] | Z. F. Xu, W. P. Zhang, On the order of the high-dimensional Cochrane sum and its mean value, J. Number Theory, 117 (2006), 131–145. https://doi.org/10.1016/j.jnt.2005.05.005 doi: 10.1016/j.jnt.2005.05.005 |
[10] | H. Zhang, W. P. Zhang, Some new sums related to D. H. Lehmer problem, Czech. Math. J., 65 (2015), 915–922. https://doi.org/10.1007/s10587-015-0217-y doi: 10.1007/s10587-015-0217-y |
[11] | W. P. Zhang, On the mean values of Dedekind sums, J. Théor. Nombres Bordeaux, 8 (1996), 429–422. https://doi.org/10.5802/JTNB.179 doi: 10.5802/JTNB.179 |
[12] | W. P. Zhang, A note on the mean square value of the Dedekind sums, Acta Math. Hungar., 86 (2000), 275–289. https://doi.org/10.1023/A:1006724724840 doi: 10.1023/A:1006724724840 |
[13] | W. P. Zhang, Y. Yi, On the upper bound estimate of Cochrane sums, Soochow J. Math., 28 (2002), 297–304. |