AIMS Mathematics, 9(4): 9608-9630.
DOI: 10.3934/math.2024470
AIMS Mathematics Received: 10 December 2023
Revised: 08 February 2024

Accepted: 29 February 2024
https://www.aimspress.com/journal/Math Published: 08 March 2024

Research article

The existence of uniform attractors for the 3D micropolar equations with
nonlinear damping term

Xue-li Song*, Yuan-yuan Liu and Xiao-tian Xie
College of Science, Xi’an University of Science and Technology, Xi’an, Shaanxi, 710054, China
* Correspondence: Email: songxlmath@163.com; Tel: +862983856250.

Abstract: This paper studies the existence of uniform attractors for 3D micropolar equation with
damping term. When 8 > 3, with initial data (u., w.) € V| X V, and external forces (f;, f>) € H( flo) X
H( fzo), some uniform estimates of the solution in different function spaces are given. Based on these
uniform estimates, the (V; X V2) X (H(f)) X H(f;))), Vi x V»)-continuity of the family of processes
{Us,)(t, T)}isr 1s demonstrated. Meanwhile, the (V) X V5, H?(Q) x H?(Q))-uniform compactness of
{Us.p)(t, T)}=r 18 proved. Finally, the existence of a (V| X V,, Vi X V,)-uniform attractor and a (V; X
V,, H2(Q)xH?(Q))-uniform attractor are obtained. Furthermore, the (V,x V5, V; X V,)-uniform attractor
and the (V; x V,, H3(Q) x H?(Q))-uniform attractor are verified to be the same.
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1. Introduction
In this paper, we consider the 3D nonlinear damped micropolar equation

ut+(u-V)u—(v+K)Au+0'|u|B_1u+Vp:2KV><a)+f1(x,t),
W+ (- Vo +4kw — yAw — uVV - w = 2kV X u + fr(x, 1),
V-u=0,

u(x, Dli=r = u(x), w(x,l=r = w(x),

(1.1)

where (x,1) € Q X [1,400), T € R, Q C R? is a bounded domain, u = u(x, t) is the fluid velocity, w =
w(x, 1) is the angular velocity, o is the damping coefficient, which is a positive constant, f; = fi(x, 1)
and f, = f>(x,t) represent external forces, v, k, y, u are all positive constants, v and u represent the
angular viscosities.
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Micropolar flow can describe a fluid with microstructure, that is, a fluid composed of randomly
oriented particles suspended in a viscous medium without considering the deformation of fluid
particles. Since Eringen first published his paper on the model equation of micropolar fluids
in 1966 [5], the formation of modern theory of micropolar fluid dynamics has experienced more
than 40 years of development. For the 2D case, many researchers have discussed the long time
behavior of micropolar equations (such as [2,4,10,24]). It should be mentioned that some conclusions
in the 2D case no longer hold for the 3D case due to different structures of the system. In the 3D
case, the work of micropolar equations (1.1) with o = 0, fi = 0, and f, = O has attracted a
lot of attention (see [6, 14, 19]). Galdi and Rionero [6] proved the existence and uniqueness of
solutions of 3D incompressible micropolar equations. In a 3D bounded domain, for small initial
data Yamaguchi [19] investigated the existence of a global solution to the initial boundary problem
for the micropolar system. In [14], Silva and Cruz et al. studied the L>-decay of weak solutions
for 3D micropolar equations in the whole space R®. When f; = f, = 0, for the Cauchy problem of
the 3D incompressible nonlinear damped micropolar equations, Ye [22] discussed the existence and
uniqueness of global strong solutions when 8 = 3 and 40(v + k) > 1 or 8 > 3. In [18], Wang and
Long showed that strong solutions exist globally for any 1 < # < 3 when initial data satisfies some
certain conditions. Based on [22], Yang and Liu [20] obtained uniform estimates of the solutions
for 3D incompressible micropolar equations with damping, and then they proved the existence of
global attractors for 3 < 8 < 5. In [7], Li and Xiao investigated the large time decay of the L>-norm of
weak solutions when S8 > 15—4, and considered the upper bounds of the derivatives of the strong solution
when 8 > 3. In [21], for 1 < 8 < I, Yang, Liu, and Sun proved the existence of trajectory attractors
for 3D nonlinear damped micropolar fluids.

To the best of our knowledge, there are few results on uniform attractors for the three-dimensional
micropolar equation with nonlinear damping term. The purpose of this paper is to consider the
existence of uniform attractors of system (1.1). When w = 0,k = 0, system (1.1) is reduced to
the Navier-Stokes equations with damping. In recent years, some scholars have studied the three-
dimensional nonlinear damped Navier-Stokes equations (see [1, 13,15, 16,23,25]). In order to obtain
the desired conclusion, we will use some proof techniques which have been used in the 3D nonlinear
damped Navier Stokes equations. Note that, in [20], for the convenience of discussion the authors
choose k, u = %, y=1,andv = % In this work, we do not specify these parameters, but only require
them to be positive real numbers. More importantly, we obtain the existence of uniform attractors in
the case of § > 3, which undoubtedly expands the range of 8 when the global attractor exists in [20],
i.e., 3 < B < 5. For the convenience of discussion, similar to [3,8,9,11,16], we make some translational

compactness assumption on the external forces term in this paper.

The organizational structure of this article is as follows: In Section 2, we give some basic definitions
and properties of function spaces and process theory which will be used in this paper. In Section 3,
using various Sobolev inequalities and Gronwall inequalities, we make some uniform estimates from
the space with low regularity to high regularity on the solution of the equation. Based on these uniform
estimates, in Section 4 we prove that the family of processes {U 4, #)(t, T)}», corresponding to (1.1)
has uniform attractors A; in V; X V, and A, in H*(Q) x H*(Q), respectively. Furthermore, we prove
ﬂl = ﬂz.
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2. Preliminaries
We define the usual functional spaces as follows:

V) = {u e (CP(Q)* : divu =0, f udx = 0},

Q

V, ={w e (CY(Q)) : f wdx = 0},

Q
H, = the closure of V, in (L*(Q))*,

H, = the closure of V, in (L*(Q))°,
Vi = the closure of V; in (H'(Q)),
V, = the closure of V, in (H'(Q))>.

For H, and H, we have the inner product
(u,v) = fu -vdx, Yu,ve H;,oru,veH,,
Q

and norm || |> = || |3 = (-, -). In this paper, L”(Q) = (LP(Q))*, and || - ||, represents the norm in L7 (Q).
We define operators
Au=—-PAu=-Au, Aw=-Aw, Yu,w) € H? x H?,
B(u) = B(u,u) = P((u-Viu), Bu,w)= u-Viw, Yu,w)e V, X V,,

3
b(u,v,w) = (B(u, v), w) = Z f u(Divjwidx, Yu € Vi,v,w € V,,
Q

i,j=1

where P is the orthogonal projection from L?(Q) onto H,. H*(Q) = (H*(Q))? is the usual Sobolev
space, and its norm is defined by || - |lgs=|| A3- |l;as s = 2, || - [le=Il A- |I.
Let us rewrite system (1.1) as

u; + Bu) + (v + ©)Au + G(u) = 2kV X w + fi(x,1),
w; + B(u, w) + 4kw + yAw — uVV - w = 2kV X u + fr(x, 1),

2.1
V-u=0, @1
u(x, Oli=r = U (x), w(x,t)=r = w(x),
where we let G(u) = P(o|ulf~'u).
The Poincaré inequality [17] gives
Vaullull < IVull, Vasllwll < [IVoll, Y(u, w) € Vi X Vs, (2.2)
VA | Va1l Aull, VAo || Vo <] Aw |, Y (u, w) € BX(Q) x HX(Q), (2.3)

where A, is the first eigenvalue of Au, and A, is the first eigenvalue of Aw. Let A = min{4;, A,}. Then,
we have

Al + lwl?) < 1IVullP + IVoIP, Y, w) € Vi X V,,
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A(IVulP + IVoIP) < lAull® + [|Aw]?, ¥ (1, w) € HA(Q) x HX(Q).
Agmon’s inequality [17] gives
1 lloo< dy || Vue 1711 A |17, Yu € HA(Q).

The trilinear inequalities [12] give

b, v, W) <|l u looll VV Il W I, Vi € L¥(Q),v € Vy or Vo, w € Hy or H, (2.4)
Ib(u, v, W) < k || u ||7]| Vau II%II Vo il wllF]| Vw II%,Vu, v,we ViorV,, (2.5)
Ib(u, v, w)| < k|| Vu |lIl Vv |I2]l Av |2l w ||, Yu € V; or Va,v € H2, w € H, or Hs. (2.6)

Recall that a function f(¢) is translation bounded (tr.b.) in L? (R;L?*(Q)) if

loc

t+1
2 2 2
1 1521 Wmga = SUP f Il £(2) P dt < oo,

where L7(R; L*(Q)) represents the collection of functions that are t.b. in L (R;L*(Q)). We say that

loc
H(fo) = {fo(- + 1) : 1 € R} is the shell of f; in L7 (R;L*(Q)). If H(fo) is compact in L? (R;L*(Q)),

loc

then we say that fy(x,7) € L2 (R; L?(Q)) is translation compact (tr.c.). We use L2(R; L*(Q)) to express

loc

the collection of all translation compact functions in leoc(R§ L2 (Q)).

Next, we will provide the existence and uniqueness theorems of the solution of Eq (2.1).

Definition 2.1. A function pair (u, w) is said to be a global strong solution to system (2.1) if it satisfies
(u,w) € L*(1,T; V; X Vo) N L*(7, T; H(Q) x H*(Q)),

™ Vu € L2(r, T; LA(Q)), Viu|* € L(r, T; LX(Q)),
for any given T > .

Theorem 2.1. Suppose (u.,w;) € Vi X Vo with V -u, = 0, fi, o € L{R;L*(Q)). If B = 3 and
40 (v + k) > 1 or B > 3, then there exists a unique global strong solution of (2.1).

Proof. Since the proof method is similar to that of Theorem 1.2 in [22], we omit it here. O

Let X be a metric space. X, Y are two Banach spaces, and Y C X is continuous. {U,(t, T)};>r, 0 €
is a family of processes in Banach space X, i.e., u(t) = U, (¢, T)u,, Us(t, $)Uy(s,7) = Uy (t,7),Vt > 5 >
7,7 € R, U,(7,7) = I, where o € Z is a time symbol space. B(X) is the set of all bounded subsets of X.
R™ = [1, +00).

For the basic concepts of bi-space uniform absorbing set, uniform attracting set, uniform attractor,
uniform compact, and uniform asymptotically compact of the family of processed {U, (¢, 7)};>:, 0 € X,
one can refer to [9, 16].

Let T'(h) be a family of operators acting on Z, satisfying: T'(h)o(s) = o(s+h), Vs € R. In this paper,
we assume that ¥ satisfies
(CH T =X, VheR";

(C2) translation identity:

Us(t+h,t+h)=Urgpy(t,1), YoeX,t>1,TeR,h>0.

AIMS Mathematics Volume 9, Issue 4, 9608-9630.
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Theorem 2.2. [3] If the family of processes {U,(t,7T)};>:,0 € X is (X, Y)-uniformly (w.rt. o € X)
asymptotically compact, then it has a (X, Y)-uniform (w.r.t. o € X) attractor As, As is compact in Y,
and it attracts all bounded subsets of X in the topology of Y.

In this paper, the letter C represents a positive constant. It may represent different values in different
lines, or even in the same line.

3. Uniform estimations of solutions

In this paper, we chose H(f?) x H(f}) as the symbol space. Obviously, T()(H((f7) X H(f))) =
7-((f10) X 7-{(f20), for all t > 0. {T'(#)};»0 1s defined by

T(W)(fi(), () = (i +h), G+ h), Yh=0,(fi, fr) € H() x H(D),

which is a translation semigroup and is continuous on HH( flo) X H( f20).
Thanks to Theorem 2.1, when (ur, w;) € Vi X Vo, fi, > € L} (R;L*(Q)), and B > 3, we can define
aprocess {Us )(f, T)}=r in Vi X V, by

Uy (& DU, 0r) = (u(®), 0(1)), t 2 7,

where (u(?), w(t)) is the solution of Eq (1.1) with external forces f;, f, and initial data (u,, w.).
Next, let us assume that the external forces f(x, 1), f3(x,1) are tr.c. in L (R;L*(Q)). Then, f7, /2
are tr.b. in L (R;L*(Q)), and

t+1
2 2 2 0 12 0

t+1
2 2 2 0 112 0
I £2 1521 2 s = SUP f 1) 1P ds <UL f3 1< +00, Y fo € H(LY).

Furthermore, we assume flo, f2° are uniformly bounded in L?(Q), i.e., there exists a positive constant
K, which satisfies
sup || £2(x, ) II< K, sup || £(x, 1) [I< K.

teR teR

0
Meanwhile, we suppose the derivatives ddil‘, %, labeled as hy, h,, also belong to LE(R; L2(Q)).

Lemma 3.1. Suppose (u.,w,) € Vi x Vy and (fi, ) € H(f)) X H(f). If B> 3 then there exists a time
to and constants py, I such that, for any t > t,

lu®IP + @I < pr, 3.1)
r+1
f IVu(I? + IV ($)IP + lus)l + 11V - w(s)IPlds < 1. (3.2)

Proof. Multiplying (1.1); and (1.1), with external forces f; € H( flo), H e H( fzo) by u and w,
respectively, and integrating the results equations on €, using Holder’s inequality, Young’s inequality,
and Poincaré’s inequality, it yields

1d
EE(IIM(I)II2 + @) + v + VUl + VIVl + 4@ + allu@ll) + Y - ol
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= 4Kf V Xu-wdx+ (fi,u(t) + (f, w(t))
Q

vA A 1 1
<kl Vu P +4« || w | 5 llulf +77 P W I fi P +2y—/1 I f2 IP
< (& + 0Vl + ZIVolP + 4dlw@)l? + L I fi P +L 1P (3.3)
2 2 2vA 2yA

So, we can obtain that
d 1 1
— (@I + lw@I) + VIVl + IVl + 20'||u(t)||§:} + 24|V - 0l < =IAGOIF + =lIAOIF, (3.4)
dt vA yA

and by Poincaré’s inequality, it yields

d 1
a,—t(llu(t)ll2 + @) + Aa(lu@®]? + llw@)*) < M O +1IADIP), (3.5

where @ = min{y, y}. So, by Gronwall’s inequality, we get

1 t
@I + @I < (el + llwsl?)e™ 7 + ﬂf e IAOIP + 1A6)IP)ds

—Aa(t-7 1 ' —Aa(t-s
< (lutel * + llwor|P)e ™7 + E[f e UAGIP + AP
-1

t—1
+ f eI AGIP + IA)IPds + ..

-2
1
2 2y —da(t- -A -24 2 2
< (el + Nl lP)e ™ T)+E[1+e “t+e “+--~](||f1||L§+||fz||LZ)
1
2 N —day-1 2 2
< (el + llew- e T)+E(1—e ) (”fl”Li"'”fZ”Li)

—Aa(t—1 1 1
< (el + Nl e + —(1 + _)(”fl”iz + IIleliz), V>
Aa Aa b b

2202 (luc P Hlw-1?)
(+aa)(lfi |Iii+||f2|\i%) ’

Therefore, there must exists a time #y > 7 + t In such that, ¥t > 1o,

2 1
(I + llw(@)I” < FC E)(Ilﬁllii + IIlelii) =p1 (3.6)

Taking ¢ > ty, integrating (3.4) from 7 to ¢ + 1, and noticing (3.6), we get

r+1
f IV + Ve ()I* + 2(7||u(s)||§i} +2ullV - w(s)|I’1ds
t

1 1+1 1 t+1
< (lu@IP + llw®IP) + —f Ifi(s)IPds + —f I /2(s)IPdss
vad J, vad J,

1
<pr+ /l_(Hfl“iz +AIL), V= 1. (3.7
a b b

Letting 6; = min{v,y, 20, 2u}, we have
f+1 | l
01 f [IVu(s)I? + V()| + ||u<s>||£1l +IV - w()IPlds < py + E(”fl”ii + IIlelii), Vi > 1.
t
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Letting 1y = £(p1 + (UIAIZ, + IA4I2,)). we have

r+1
f IVu()IP + V(I + ()l + IV - w()IPlds < I, Ve 1.
t

This completes the proof of Lemma 3.1.

O

Lemma 3.2. Assume 8 > 3, (u,,w;) € Vi X V, and (fi, f>») € H( flo) X H( f;)). Then, there exists a time

t, and a constant p, such that
Bl Bl
IVu@)I + V@) + f (Au()I + AW + lllul = Vull® + IV]ul = [P)ds < pa,
1

foranyt > t,.

Proof. Taking the inner product of —Au in H, with the first equation of (1.1), we obtain

ld -1 .
SVl + (& + AP + ol Vul? + (‘;(f l)z)nvmﬂ‘nz
= —b(u,u,Au) + 2Kf V X w - Audx + (fi(t), Au).
Q

In [18], we find that, when 8 > 3,
+ _
f (- Vi) - Audx < % I Au [P +% 11l Ve |2 +C | Ve |1
Q

N?

2 . .
V— + i and N is sufficiently large such that

where C; =

2
)tﬁ and N < %-

N2 (,8 -3 (v + K)(NF1 + 1)

|2Kf
Q
I(f1(0), Au) <R AR+

so combining (3.10)—(3.12) with (3.9), we have

And, because

|| Vo I,

||f1( ) ||2

8o(B—1)

—IIVMII —IIAMII + orllul T Vul? + G+ 17

2||f1()||2
V+K

IVl = |2

82
< 2C,||Vull? L IIV 1> +
< Co(||Vul? +||Vw|| +1A@IP),

where C; = max{2C), ¥, 2},

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)
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Applying uniform Gronwall’s inequality to (3.13), we obtaint, V1 > 1, + 1 = 14,

8o(B—1)
B+ 1)

where Cj is a positive constant dependent on Cs, I;, and || f7 IIi2

1+1
IIVu(t)||2+f (V—IlAu(S)II + ollu(s)T VI + ——[Vlus)| = II) s<C; (314

Taking the inner product of —Aw in H, with the second equahtion of (1.1), we get
1d 2 2 2 2
EEIIVCUII +4klIVoll” + YIIAwll™ + plVV - o]

= -b(u, w, Aw) + 2Kf VXu-Awdx + (f5(t), Aw)
Q

3
< %IIAC«)II2 +— IIVMIIIIAMIIIIVwII . IIVMII + —IIfz(t)II (3.15)
In the last inequality of (3.15), we used Agmon’s inequality and the trilinear inequality. Then,
d
EIIV&)II2 + %IlAwll2 +2ulIVV - 0l < Ca(IVullllAulllVl® + IVul* + 1| LOIP), (3.16)

22
where C, = max{—L, 8 23
Y Y v

By the uniform Gronwall’s inequality, we easily obtain that, forr > #; + 1 = 1,
4+ 7
IVw®)|* + f (§||Aw(s)||2 +2ullVV - w(s)|P)ds < Cs, fort >t + 1 = t,, (3.17)
t

where Cs is a positive constant dependent on C3, Cy, and || f3 ||i2
b
Adding (3.14) with (3.17) yields

r+1 - "
IVu()I* + IV ()I* + f UAuIP + AP + lu(s)I = Vu()IP + [IVlu(s)| = 1P)ds < C,

for t > t,. Hence, Lemma 3.2 is proved. O

Lemma 3.3. Suppose that (u;,w,) € Vi X V, and (fi, f>) € 7—((]‘?) X 7—((f20). Then, for B > 3, there
exists a time t; and a constant p3 such that

lu(®llgs1 + IV - I < p3, (3.18)

foranyt > t.

Proof. Multiplying (1.1); by u,, then integrating the equation over 2, we have

||v ||2+——|| )]

2
+
”ut” 2 d ﬁ B+1

= —b(u,u,u,) + 2Kf VXw-udx+ (fi(t),u,)
Q

1 32

—[lu|l” +
2||t|| VT

AIMS Mathematics Volume 9, Issue 4, 9608-9630.
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The trilinear inequality (2.4), Agmon’s inequality, and Poincaré’s inequality are used in the last
inequality of (3.19).
Hence,

d 200
v+ K)EIIVMII2 ,ﬁ@” w5y < Colll Vue IPIl Au I +IV@IP + LA (0IP), (3.20)

where C¢ = max{ W 12«2, 3).
By (3.20), using Lemmas 3.1 and 3.2 and the uniform Gronwall’s inequality, we have

lullgs1 < C, Y2t +1=1. (3.21)

Similar to (3.19), multiplying (1.1), by w, and integrating it over Q, we get

ud
llw, | +2K—||w|| +——||V >+ —||V~w||2:—b(u,w,wz)+2KfV><u~wzdx+(fz(t),wz)
2dt 2dt Q
1 3d§ 3
—llw > + —= || Au ||’|| Ve | +6&%||Vul* + =|| )% 3.22
2|| A& VT I Aw ||7]] Il [IVul| 2||f2( ll (3.22)
Hence,

d d d
d— Nl w P +y— I Vo IP +u— | V-  IP< Co(l Au IPll Voo IP + 1| Vu [P + 1| @0 1P (3.23)
dt dt dt
By (3.23), using Lemma 3.2 and the uniform Gronwall’s inequality, we infer that
IV-w@®I <C, Vt>1. (3.24)

The proof of Lemma 3.3 is finished. O

Lemma 3.4. Suppose (u.,w;) € Vi X V, and (f1, f») € H(f?) x H(fY). If B > 3, then there exists a
time ty and a constant ps, such that

lu(IP + llw (I < ps, (3.25)

forany s > ty.

Proof. Taking the inner products of #, and w, with the first and second equations of (1.1), respectively,
and using (3.19) and (3.22), we find

Y+ K yd d s pd
> + llew | +Td_”V ull® + —EIIV&)IIZ+2/<Ellw(t)||2 ﬁ——ll (Z)II,,;1 —a,—tIIV%uII2

=—=b(u,u,u,) — b(u,w, w, + 2Kf

V><w~u,dx+2KfV><u-a),dx+(f](t),u,)+(f2(t),a),)
Q Q

1
E(Ilutll2 + ) + G AP + 1A@IP + IVul?
+IVoIP+ 1| Va [Pl Au IP + 1| Vo IPI] Aue |P), (3.26)

AIMS Mathematics Volume 9, Issue 4, 9608-9630.
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2
where C; = max{ %,6/& %}. The trilinear inequality (2.4), Agmon’s inequality, and Poincaré’s
inequality are used in the last inequality of (3.26).

Integrating (3.26) over [t, ¢ + 1] and using Lemmas 3.1-3.3, we get

t+1
f Ul (IP + Nl (IP)ds < ps, Vi > 13, (3.27)
t

where py is a positive constant dependent on C7, pa, p3, || f? ”22’ and || f7 ||iz.
b b
We now differentiate (2.1); with respect to ¢, then take the inner product of u, with the resulting

equation to obtain

1d
37 | w, 1P+ + &) || Vg, |
= —b(u;, u, u;) — f G (w)u; - udx + 2k f V X w; - udx + (fir, uy). (3.28)
Q Q

Then, we differentiate (2.1), with respect to ¢ and take the inner product with w, to obtain
d 2 2 2 2
37 | w; 17+l w, 17 +y Il Vo I7 +p [V - o |

= -b(u,, w, w;) + 2Kf VX u - wdx + (f, w,). (3.29)
o)

Adding (3.28) with (3.29), we have

1d
EE(”MIHZ +llwilP) + & + OIVu P + YIVo,l? + 4l + pllV - wil?

Vth~u,dx+2KfV><u,~wtdx

< 1bCur, w, up)l + 1b(ur, w, o)l + 2k f
Q

Q

+(firs ) + (fors 1) — f G (u)u; - u,dx

Q

7
= Z L. (3.30)
From Lemma 2.4 in [15], we know that G’(u) is positive definite, so

Ly =— f G’ (wu, - u,dx < 0. (3.31)
Q

For L, using the trilinear inequality (2.5) and Lemma 3.2, we have

1 3
Ly < kllu 2Vl 2V

v
<

+ K
7 IVl + Clluag ||Vl

K

<
+

< IV, || + Cllu|)?, fort > t,. (3.32)

N

AIMS Mathematics Volume 9, Issue 4, 9608-9630.



9618

For L,, by Holder’s inequality, Gagliardo-Nirenberg’s inequality, and Young’s inequality, we have

L, < CllugllallwllsllVel]
1 3 1 3
< Cllud*IVudl*llew # [V lI* Vel

vV+K 0%
< TIIVutII2 + ZIIthll2 + C(llu|” + llw ), for > 1.

vV+k
Ly+ Ly < TIIVutII2 + %IIthII2 + C(lulP + llwll*)-
By (3.30)—(3.34), we get

d
E(Hutllz + ”wt”z) < C(||ut||2 + ||U)t||2) + (fir, ur) + (fzz, wy)
< CUludl® + llewd®) + Al + 11l

Thanks to

t+1

r+1
2 2 2 2 2 2
Il fi(s) 17 ds <Il fir <l Ay I}z Il f2:(s) I ds <Il for 2=l B2 172
¢ b b Je b b

and applying uniform Gronwall’s inequality to (3.35), we have forany s > t3 + 1 = 14,
(I + llw(s)I* < C.

Thus, Lemma 3.4 is proved.

(3.33)

(3.34)

(3.35)

(3.36)

O

Lemma 3.5. Suppose (u,,w;) € Vi X V, and (f1, f>) € H(fY) X H(fy). Then, for B > 3, there exists a

constant pg such that
IAu@IP + A < ps,

foranyt > ty.

Proof. Taking the inner product of —Au in H; with the first equation of (1.1), we have

¥ 408 — 1 "
v+ | Au P +o || 1l = Vu | +% I Vil = |2
= —(u;, Au) — (B(u), Au) + 2« f V X w-Audx + (fi(t), Au)
Q
4(v + k) ) 5 )
< A B
<% | Au || +2(v+/<) Il o | +2(v+/<) | B(u) ||
6K> 3
Vo |I? H°.
+v+/<” w || +2(v+/<) Il Al
Because
B 2 . 201 vy |12
00 | Buw) ||” < 010 | e (1511 Ve ||

(3.37)

(3.38)
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2

< il | Ve |P]] A ||
2(v + k)

+
4 - Sl AuIP +C || Vu |,

IA

combining (3.39) with (3.38), we obtain

V+K 6k 3
Au |P< 24C || Vu |l + Vo |* +
c | Aw | Y Iy || | Vi || —— Il Vo || Y

From the assumption of f7(¢), we can easily get

sup || /(@) 1< sup || 20 IS K,V fi € HE).

teR teR

By Lemmas 3.2 and 3.4, we obtain
[[Au(t)|| < C, forany t > t,.
Taking the inner product of Aw with (2.1),, we get

YAWI? + 4k || Vo I +u || VV - w |
= —(w;, Aw) — (B, w), Aw) + 2k(V X u, Aw) + (f2(1), Aw)

< % Il Aw IP +C(l @, IP + 1| Bat, w) 1P + 1| Va [P + 1| foe) 1)

And, by Agmon’s inequality,

1B, )P < Cllull%, IVl
< ClIVulllAullVel?
< NAulP? + C || Vu ||| Vo || .

From the assumption on fzo(t), we can easily obtain

sup || 20 1< sup || £2() I< K,V fo € H(D).

teR teR

By Lemma 3.2, Lemma 3.4, (3.42), (3.43), (3.44), and (3.45), we get
lJAw(?)|| < C, for any 1 > t4.

By (3.42) and (3.46), Lemma 3.5 is proved for all 7 > #4.

I i) 1P

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

O

Lemma 3.6. Suppose (u,, w;) € V\ X Vo and (f1, f>) € H(fY) x H(f}). Then, for B > 3, there exists a

time ts and a constant p; satisfying

IVu DI + IV, (DI < p7, Vit > 5.

(3.47)
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Proof. In the proof of Lemma 3.4, from (3.30)—(3.34) we can also get

d v+ K
E(II w P+ 1l o IIP) + > | Vau, II? +% | Vo I +2u || V- w, |
<SCllu P+ o D)+ 1 A@ I+ 11 AO 1P (3.48)

Integrating (3.48) from ¢ to 7 + 1, and according to Lemma 3.4, we have
t+1
f V(I + IV ()P + IV - w,(9)IP)ds
t

< C(llu DI + llw, DI + II+1(|IMI(S)||2 + llw()IP)ds + Im Ifu(s)IPds + ftm I fau(9)IPds)
< C+ Il + I
<C, Vt> 1. (3.49)
By Lemma 3.5, we get
lu@Ollg2 + llw@Dllg2 < C, V1 > 14 (3.50)
So, by Lemma 3.2, applying Agmon’s inequality, we get
(Do + llw@Dlleo < C, V1 > 1. (3.51)

Taking the derivative of (2.1); and (2.1), with respect to ¢, then multiplying by Au, and Aw,,
respectively, and integrating the resulting equations over €2, we then have
1d
EE(IIV%II2 + IVl + v + Ol AW + YAwil + 4Vl + || VY - o, 1P
< 1bCuy, u, Al + 16, uy, Al + 1b(u, w, Awy)| + [b(uy, w, Aw,y)|
+ 2/<f |V X w; - Au,ldx + 2Kf IV Xu - Aw,ldx + | f G (wu, - Au,dx|
Q Q Q
+ (fi Aug) + (for, Awy)
9
=i (3.52)
i=1
For Ji, J,, using (2.6) and Lemmas 3.2 and 3.5, we have
1 1
Ji < kIVu IVl > [|Auel|> [| Asey |

v+

K
< lAw|* + ClIVu |, Vt > ty, (3.53)

<

and

1 1

Jo < Kl VullllVall> |Au ] |Aw|
1 3
< klIVulll V|2 | w2
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+
< %llAutllz + C||Vu, |, ¥t > t4. (3.54)

For J5 and J4, similar to (3.53) and (3.54), we get

1 1
Js < KIVUllIVo,l  lIAw ]l |Aw
s?MwW+CWww,wzu, (3.55)

1 1
Js < KIVilIVol llAw] i IAw|
s?m@W+mww%wzu. (3.56)

For Js, Jg, and J7, applying Holder’s inequality and Young’s inequality, we have
V+K
Js+Jo < ?IlAuzII2 + %IIAthI2 + C(IVulP + IV, (3.57)

and thanks to (3.51),

-1
J7 < Cllult llullAw|

<Y ’SL “NAwlP + CllwlP, Vi > 1. (3.58)
For Jg and Jy, we have
Js < S AulP + CllfulP (3.59)
Js < HilAwlP + I (3.60)
By (3.52)—(3.60), we obtain
%(IIVMII2 + IV ) < CUIVul® + IV llP) + Cllud> + CAlfilP + AP (3.61)

Then, by (3.27), (3.49), and using the uniform Gronwall’s lemma, we get
||Vu,(s)||2 + ||Va),(s)||2 <C, Vs>2u+1=ts. (3.62)
Thus, Lemma 3.6 is proved. O

4. Existence of uniform attractors

In this section, we consider the existence of the (V| X V5, V| X V,)-uniform (w.r.t. (fi, f5) € H( flﬂ) X
H(fY)) attractor and the (V; x Vo, H*(Q) x H*(Q))-uniform attractor for {U; 4)(f, D}z, fi X fo €

HD) < H).

Lemma 4.1. Suppose > 3. The family of processes {U, 1,)(t, Dlze, i X fo € H( flo) X H( fzo),
corresponding to (2.1) is (Vy X Vo) X (H(f?) x H(f;)), Vi X Va)-continuous for T > ts.
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Proof. Let 7, <C [r,+00) be a time sequence, U( e f(”))(t’ iy, wr) = W™ (1), w™(1)),
1 /2
U, (& Tz, w7) = (u(?), w(1)) and
@ (@0), @ (1) = (u(t) = (@), (1) = 0" (1))
= U(fl afZ)(t’ T)(MT’ wT) - U(f](n),f;ﬂ))(t’ T)(MT,” an)'

It is evident that #7(¢) is the solution of

ou"(t
= &( ) 4 By - BUP(0) + (v + OAR” + Glu) - GU™) = 2V x & + ( fi= "™, 4.1)
and @"(¢) is the solution of the following system
0™ (1) O — ) ) ") =) Q)
(9t + B(u, w) — Bu™,w™) + 4k + yAw™ — uVV - 0" = 2kV X ™ + (L= f,7), (4.2)

for each n.
Taking the inner product of (4.1) with Ai™ in H,, we get
1d =(n)|2 =(n) (n) . (m) A=) =(n) 12 () =(n)
EE”VM II* + b(u, u, Ay — b(u'™, u", Au"™) + (v + k) || Au™ ||© +(G(u) — G(u'"), Au"")
= 2k(V x @™, Aa™) + (i = £, Aa™).

4.3)
Taking the inner product of (4.2) with Ao™ in H,, we have

1d
5 ZIVDVIP + bt w0, AD) = b, ", AD) + 4KIVEIP + 7 1| A" I 40| VY - & |P
= 2(V x @, AD™) + (f, — ;" Ad™).

(4.4)
Combining (4.3) with (4.4), we get
5%(||va<">||2 + V™) + b(u, u, Ai™) — bu™, u™, Aa™) + (v + 0| Az
+(G(u) = G™), Ai™) + b(u, 0, Ad™) = b(u™, W™, AD™)
+ 4K | VOO P +y | A@™ | +u || VV - @™ |
= 2k(V x @™, Aa™) + 2k(V x 2", Ad™) + (fi — £, A7) + (f — £V, Ad™) (4.5)
Due to
b(u, u, Ai™) — b, u™, Aa™) = b@@"™, u, Aa™) + b, 1™, Au™), (4.6)
b(u, w, Ad"™) — b(u™, W™, Ad™) = b(@™, w, Aw™) + b™, ™, Ad™), 4.7)
and
b@™, u, AG™)| < KIVaA™|IVull2 || Aull* |AZ™ |
< %kllfm‘")ll2 + ClIVa™ |PIVullllAull, (4.8)
AIMS Mathematics
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1 1
@™, @, Aa™)| < KIVu® Va1 |AZ"|1* 4G
v+
5
1 1
b(@E", w, AD™) < KIVA IVl 4w I? 14"

< %HA&)(’”II2 + ClIVa®|P|[VolllAwll,

k
< A" + CIIVu®™| IV,

1 1
b, o™, Ad™) < K|Vu™|IVa™|12 |A™]|2]|A™||
< %IIA(D(’”II2 +C || Vu™ |I*| Vo™ |,
2«|(V x @™, Aa™)| < 2«[|Aa™||[|[Vo™)|

v+k

5
26(V x 1™, Ad™)|| < 2« || Aa™IIVa™ |

y ~n =n
< leAw( P+ CIva™|?,

5
4(v + k)

<

lAa™|? + CIIVa™ |1,

2
[

+k
i = £, AT < V?HA#”)IIZ +
n s —n Yix—n 1 n
(o = £, A™)| < ZnAw( N2 + ;Ilfz o A

2
IG() — G| = f o~ = P dx
Q

<C f [l (@] + [l = WP | - u®)Pdx
Q
<C f DA™ Pdx + C f [l + P2 ™ e Pd x
Q Q
<CHLu P70 0w 12272 + 11 u™ 112272) 11 u®™ 12,11 V™ |7,
where @™ (f) = u(t) — u"(¢). In the above inequality, we used the fact that
Ix? = 37| < ep(IdP~" + [yIPHlx -y

for any x,y > 0, where c is an absolute constant.

Therefore,
Yy A=ty « VK o2 5 NI
(Gw) - Gu™),Au") < —|Aa"™|I* + ———|IG(w) — G|
5 4(v + k)
< CU w1287+ w 12872 + 1] u™ 11272) | u™ 121 1] Va™ |
+k
+V5 | AG™ |2 .

By (4.5)—(4.15) and (4.17), we obtain

d
E(IIVL?(")II2 + VO™ < COLu 1287+ w 12272+ 1™ 112872 1 ™ 112,

+[IVulllAull + Ve + [VolllAw] + 1]

4.9)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)
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5
2(v + k)

2 .
+¢m—ﬁm4 (4.18)

-(IVE™ P + V™) +

2
[

Using Gronwall’s inequality in (4.18) yields

5 t
Vi |? + Vo™ < (V| + VoI + = —— f — f"IPds
V™|~ + 1| I (II 2 F+ IVl Y T”fl Sl

+§iﬁﬁ—ﬁwwﬁ
" eXp {C ft[ll w BED (0w 12272+ ™ B2 1™ 11,
+ [IVulllAull + [IVu™|I* + IVolllAw]] + I]dS}. (4.19)
From Lemmas 3.2 and 3.5, and using Agmon’s inequality, we know that
| tt lleo< C, Nl ™ flow< C, V2 > 15.

So, from Lemmas 3.2-3.5, we have

!
exp{C f [ a 12270 0w 12272+ 1™ 12872 ™ 11, +HIVallllAull
T
+[IVuI* + [IVollllAw]| + 1]ds} < +00,

for any giventrand 7, > 7, 7 > 1.
Thus, from (4.19), we have that {Uy; s(f, D fi X fo € H(O) x H(EY) is (Vi X Va) x (H(f?) X
H(SY)), Vi X Va)-continuous, for 7 > fs. o

By Lemma 3.5, the fact of compact imbedding H?> x H?> < V; x V,, and Theorem 3.1 in [16], we
have the following theorems.

Theorem 4.1. Suppose 3 > 3. The family of processes {Uy, ,)(t, D}izr, fi X fo € H(fD) X H(S;) with
respect to problem (1.1) has a (V, X V,, V| X V) uniform attractor A,. Moreover,

ﬂl = U 7((]01 ,fz)(o)’ (420)
ALEHFOXH(fD)

where Ky, 1,)(0) is the section at t = 0 of kernel Ky, 1,y of the processes {U y, 1,)(t, T)}i>r

Theorem 4.2. Suppose B > 3. The family of processes {U p)(t, Dhsr, i X fo € H(Y) X H(D)
with respect to problem (1.1) has a (V, X Vo, H*(Q) x H*(Q))-uniform attractor A,. A, is compact in
H2(Q) x HX(Q), and it attracts every bounded subset of V| X V, in the topology of H*(Q) x H*(Q).

Proof. By Theorem 2.2, we only need to prove that {U s 5,)(f, D}isr, fi X fo € H( flo) X H( fzo) acting on
Vi x Vy is (Vi x Vo, HH(Q) x HA(Q))-uniform (w.r.t. fix fo € H(f) x H(fY)) asymptotically compact.

Thanks to Lemma 3.5, we know that B = {(u X w) € H> x H? : ||Au|* + ||Aw|* < C} is a bounded
(Vi X Vo, HA(Q) x H*(Q))-uniform absorbing set of {U(;; 4,)(t, T)};>-. Then, we just need to prove that,
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for any 7, € R, any 1 — +o0, and (ur,, wr,) € B, {(u,(1), w,(1))};, is precompact in H2(Q) x HX(Q),
Where(un(t) wn(t)) U(f1 fz)(t Tn)(u‘rn w'rn)

Because V| — H;,V, — H, are compact, from Lemma 3.6 we obtain that { (D05 dtw”(t)}n 20
are precompact in H; and H,, respectively.

Next, we will prove {u, (D)}, {w, (1)}, are Cauchy sequences in H?(Q). From (2.1), we have

v + )(Auy (1) — Auy, (1) = —ditunk(t) + dit””-"(t) — B(uy, (1)) + B(un, (1))
= Gy, (1) + G(un (1) + 26V X Wy, (1) — 26V X Wy (1). (4.21)
V(AW (1) = Awy (1)) = UVV -y (1) + uVV - w, (1) = —iwnk(t) + iwn,(t) = B(uy, (1), wy (1))

dt dt
+ B(un_,'(t)’ wnj(t)) - 4Kwnk(t)
+ dkw, (1) + 26V X 1, (1) — 26V X u, (7). (4.22)

Multiplying (4.21) by Au,, (¢) — Au,(t), we obtain

d
v+ 1) | Auy (1) = Au (1) | <l unk(t) PR - I A (1) = Aut, (O || + || By (1)) = Bu (D)) ||

dl Aunk(t) — Auy (0 || + || Gt (1)) = G (D) || - || Avt, () = At (0) |l
+ 2k || Vay, (1) = Ve (1) || - || Auy, (1) —Aun,(t) I

4(v + k) )
< 5 | Au, (2) — Au,, (2) | +4(v+/<) || 7 Uy, (1) — un,(t) II*
2 5 2
+ 010 | B(uy, (1)) — B(u,, (D)) |l +4(V s | G(up, (1) — G (D) |
2
+ = — | V(1) = Yoo, (0 I
so we have
V+K B ) d )
| Auy, (1) — Auy,(0) ||I” < T )II 7 Uy, (1) — un,(t) I
2
+ 010 || B(u, (1)) — B(uy, (1)) |l
5
+ 010 | G(uy, (1) — G(u (1)) II*
2
z p | Vw,, () = Vaw,, (1) 1> (4.23)

Multiplying (4.22) by Aw,, (f) — Aw,,(f) we obtain
Yl Aw,, (1) —Awnj(t) I+ 1| YV - (@i, (1) = wy, () I

d
sl wn (D) = wn,(t) I 1 Awn, (1) = Aw (0 | + (| Bt (1), (1)) = Bty (1), wy (1)) |

|l Awnk(t) —Awnj(t) | +4K || Wy, (1) = Wu; () || - [| Ay, (1) = Awy, (0) |l
+ 2k || Vit () = Vit (1) || - || Awy (1) = Aw, (1) ||
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4 d
s%www>mwwﬂ—nawn o, (0) I

2
=l 1) = w, () I

+ 4— 1| Bt (), W (1)) = Blaty (1), (D) IP +
Y

2

S«
+ | Vit (1) = Vat (1) I,
Y
So we get
% I Awnk(t) - Awnj(t) 12+ 11 YV - (@3 (1) =, (0) |

5
< ol || cWn (1) = nj(t) I”? +— 1| Bt (1), W, (1)) = Blity (8), w0 (D) |
20«° 5k
+ T () - W (0) 1P +— | Vit () = Vit (1) II* .
Y Y

Combining (4.23) with (4.24), we have

V+K

I Aunk(t) - Aun,-(t) I”? +Z | Awn, (1) = Aw, (1) |
5

<

4+

|| 2t (D) = un](t) [ Il Blutn, (£)) = Bt (1)) IIP

4(v + 1)
2
Il Gt (1)) = Gt (1)) | +

2
+ 4(y + K) ” ank(t) anj(t) ”

5 d d 5
* 7 | Z@n (D = —wn (1) I”? e 1| Bt (), W, (1)) = Blaty (8), 0 (D) |

4y =~ dt

20«° 5k
T Il n () = @ () IIP Y Il Vit (1) = Vit (1) I .

(4.24)

(4.25)

Because V, — H, is compact, from Lemma 3.2 we know that {w,(#)},7, is precompact in H,.
And, using the compactness of embedding H*(Q) — V,,H?*(Q) < V, and Lemma 3.5, we have
that {u,(0)}, . {w, (D)}, are precompact in V; and V;, respectively. Considering V| < H;,V, < H,
are compact, from Lemma 3.6 we know that {d%un(t)};“:o, {d%w,,(t)}f;’:o are precompact in H; and H,,

respectively.
Using (2.6), we have

|| Bty (1)) = Bluy, (1)) |I*
< CIl Bty (1), t, () =, (D) IP + 1| Bltt, (1) = 4, (1), 1 (D) 1)
< C(l Vit () 1PN VCtt (1) = 14, () 1| Altt (1) = 10,(0)) ||

+ 11 Vit (1) = 1 () [Pl Vot (@) [l Aut, () 1)) = 0, as k, j — +o0,

and

| Btt (1), Wi, (1)) = Blaty (1), @i (1)) |I?
< C(I Bty (1), 0 (1) = 0 (D) IP + 11 But, (1) = 1 (1), w3 (1)) )

(4.26)
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< C(I Vit (1) 1Pl V(@ (1) = @) (0) ll Alwiy iy = @i (D)
1|Vt (8) = 4 (0)) IP1] Ve, () Il Awy (1) 1) = 0, as k, j — +oo. (4.27)

From the proof of Lemma 4.2 in [15], we have
| Gt (1)) = Gt (1)) 1P C ||t (1) = 1 (2) P> 0, as k, j — +oo. (4.28)

Taking into account (4.25)—(4.28), we have

+
d : 5 At () = Au, () 1P % 1 Aw,, (1) — Aw, (1) IP— 0, as k, j — +oo. (4.29)
(4.29) indicates that the processes {U(y, 5,)(f, 7). are uniformly asymptotically compact in H*(Q) X
H?(Q). So, by Theorem 2.2, it has a (V; x V,, H*(Q) x H?(Q))-uniform attractor A». O

Theorem 4.3. Suppose g > 3. The (V| X V,, Vi X V,)-uniform attractor A of the family of processes
Up & Disn i X fo € 7-((f1°) X 7-((f20) is actually the (V, x Vo, H*(Q) x HX(Q))-uniform attractor
ﬂz, i.e., ﬂ] = ﬂz.
Proof. First, we will prove A; C A,. Because A, is bounded in H?(Q) x H*(Q), and the embedding
H%(Q) x H*(Q) — V, x V, is continuous, A, is bounded in V| X V,. From Theorem 4.2, we know
that A, attracts uniformly all bounded subsets of V| X V,, so A, is a bounded uniform attracting set of
(Ut o)t Dises L X o € H(Y) X H(FY) in Vi X V,. By the minimality of A;, we have A; C A,.
Now, we will prove A, c A,;. First, we will prove A, is a (V; X V>, H*(Q) x H2(Q))—unif0rmly
attracting set of {U( ) (t, D}srs f1 X fo € H(fD) X H(S}). That is to say, we will prove

lim ( sup diStHZ(Q)XHZ(Q)(U(f] ,fz)(l’ T)B, A )) = O, (430)
2F (L EH(POXHY)

forany 7 € Rand B € B(V; X V>).
If we suppose (4.30) is not valid, then there must exist some 7 € R, B € B(V; X V), &9 > 0,
(f("),fz(”)) e H(fY) x H(f), and f,, > +0o, when n — +oo, such that, for all n > 1,

diStHZ(Q)XHZ(Q)(U(fl("),fz("))(tn’ T)B, ﬂl) > 28(). (43 1)
This shows that there exists (u,, w,) € B such that
diStHZ(Q)xH2(Q)(U(fl(’”,fz(”))(tn’ ) (U, Wy), Ay) 2 &. (4.32)

In the light of Theorem 4.2, {U(y, 1)(t, T}isrs f1 X fo € H(FY) X H(S;) has a (Vi x Vo, HH(Q) x HX(Q))-
uniform attractor A, which attracts any bounded subset of V; X V; in the topology of H>(Q) x H*(Q).
Therefore, there exists (£, 1) € H*(Q) x H*(Q) and a subsequence of U, 7, fz("))(t”’ 7)(u,, w,) such that

U o, o0yt D)ty ) = (£,17) - strongly in H>(Q) x H*(Q). (4.33)

On the other side, the processes {U s, 5,)(t, D}z, f1 X fo € H(f)) X H(f)) have a (Vi X Va, Vi X V,)-
uniform attractor A;, which attracts uniformly any bounded subsets of V; X V, in the topology of
V1 X V5. So, there exists (u#, w) € V| X V, and a subsequence of U (7 fm))(tn, 7)(u,, w,) such that

1 72

U(ffm’fz(n))(t,,,?')(un, wy) — (u, w) strongly in V| X V,. (4.34)
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From (4.33) and (4.34), we have (u, w) = ({,n), so (4.33) can also be written as
U o o (tns )1ty w3) = (1, ) strongly in H*(Q) x H*(Q). (4.35)
And, from Theorem 4.1, we know that ‘A; attracts B, so

tim_ disty, v (U (tn, TVt @3), Fr) = 0. (4.36)

n—+oo

By (4.34), (4.36), and the compactness of A; in V| X V,, we have (4, w) € A;. Considering (4.35), we
have

lim diStHz(Q)XHz(Q)(U(fl(”),fz("))(t”’ T)(um (Un), ﬂl)

n—+oo

< lim diStHZ(Q)XHz(Q)(U(fl(”)’fz("))(tn9 T)(I/ln, (,()n), (I/l, (,()))

n—+oo

=0,

which contradicts (4.32). Therefore, A, is a (V; x Vo, HX(Q) x H*(Q))-uniform attractor of
{Uhy. )t Dlizrs L X o € H(Y) X H(fY), and by the minimality of A,, we have A, C A;. O

5. Conclusions

In this paper, we discussed the existence of uniform attractors of strong solutions for 3D
incompressible micropolar equations with nonlinear damping. Based on some translation-compactness
assumption on the external forces, and when 8 > 3, we made a series of uniform estimates on the
solutions in various functional spaces. According to these uniform estimates, we proved the existence
of uniform attractors for the process operators corresponding to the solution of the equation in V; X V,
and H? x H?, and verified that the uniform attractors in V; x V, and H> x H? are actually the same.
Use of Al tools declaration

The authors declare they have not used Artificial Intelligence (Al) tools in the creation of this article.
Acknowledgments

The authors are thankful to the editors and the anonymous reviewers for their valuable suggestions
and comments on the manuscript. This work is supported by National Natural Science Foundation of
China (Nos. 11601417, 12001420).
Conflict of interest

The authors declare no conflict of interest in this paper.

References

1. X. Cai, Q. Jiu, Weak and strong solutions for the incompressible Navier-Stokes equations with
damping, J. Math. Anal. Appl., 343 (2008), 799-809. https://doi.org/10.1016/j.jmaa.2008.01.041

AIMS Mathematics Volume 9, Issue 4, 9608-9630.


https://dx.doi.org/https://doi.org/10.1016/j.jmaa.2008.01.041

9629

10.

11.

12.

13.

14.

15.

16.

17.

18.

J. W. Chen, Z. M. Chen, B. Q. Dong, Existence of H’-global attractors of two-
dimensional micropolar fluid flows, J. Math. Anal. Appl., 332 (2006), 512-522.
https://doi.org/10.1016/j.jmaa.2005.09.011

G. X. Chen, C. K. Zhong, Uniform attractors for non-autonomous p-Laplacian equations,
Nonlinear Anal., 68 (2008), 3349-3367. https://doi.org/10.1016/j.na.2007.03.025

B. Q. Dong, Z. M. Chen, On upper and lower bounds of higher order derivatives for
solutions to the 2D micropolar fluid equations, J. Math. Anal. Appl., 334 (2007), 1386—1399.
https://doi.org/10.1016/j.jmaa.2007.01.047

A. C. Eringen, Theory of micropolar fluids, J. Math. Mech., 16 (1966), 1-18.

G. P. Galdji, S. Rionero, A note on the existence and uniqueness of solutions of the micropolar fluid
equations, Internat. J. Engrg. Sci., 15 (1977), 105-108.

H. Li, Y. Xiao, Large time behavior of solutions to the 3D micropolar equations
with nonlinear damping, Nonlinear Anal. Real World Appl., 65 (2022), 103493.
https://doi.org/10.1016/j.nonrwa.2021.103493

S. S. Lu, Attractors for nonautonomous 2D Navier-Stokes equations with less regular normal
forces, J. Differ. Equ., 230 (2006), 196-212. https://doi.org/10.1016/j.jde.2006.07.009

S. S. Lu, H. Q. Wu, C. K. Zhong, Attractors for nonautonomous 2D Navier-Stokes equations with
normal external force, Discrete Contin. Dyn. Syst., 13 (2005), 701.

G. Lukaszewicz, Long time behavior of 2D micropolar fluid flows, Math. Comput. Model., 34
(2001), 487-509. https://doi.org/10.1016/S0895-7177(01)00078-4

S. Ma, C. Zhong, H. Song, Attractors for non-auronomous 2D Navier-Stokes equations with less
regular symbols, Nonlinear Anal., 71 (2009), 4215-4222. https://doi.org/10.1016/j.na.2009.02.107

J. C. Robinson, Infinite-dimensional dynamical systems: An introduction to dissipative parabolic
PDEs and the theory of global attractors, Cambridge: Cambridge University Press, 2001.

W. Shi, X. Yang, X. Yan, Determination of the 3D Navier-Stokes equations with damping, Electron.
Res. Arch., 30 (2022), 3872-3886. http://dx.doi.org/10.3934/era.2022197

P. B. Silva, F. W. Cruz, L. B. S. Freitas, P. R. Zingano, On the L?>-decay of weak
solutions for the 3D asymmetric fluid equations, J. Differ. Equ., 267 (2019), 3578-36009.
https://doi.org/10.1016/j.jde.2019.04.012

X. L. Song, Y. R. Hou, Attractors for the three-dimensional incompressible Navier-
Stokes equations with damping, Discrete Contin. Dyn. Syst., 31 (2011), 239-252.
http://dx.doi.org/10.3934/dcds.2011.31.239

X. L. Song, Y. R. Hou, Uniform attractors for three-dimensional Navier-Stokes
equations with nonlinear damping, J. Math. Anal. Appl., 422 (2015), 337-351.
https://doi.org/10.1016/j.jmaa.2014.08.044

R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, New York: Springer,
1997. https://doi.org/10.1007/978-1-4612-0645-3

W. Wang, Y. Long, A note on global existence of strong solution to the 3D micropolar equations
with a damping term, Bound. Value Probl., 2021 (2021), 72. https://doi.org/10.1186/s13661-021-
01548-z

AIMS Mathematics Volume 9, Issue 4, 9608-9630.


https://dx.doi.org/https://doi.org/10.1016/j.jmaa.2005.09.011
https://dx.doi.org/https://doi.org/10.1016/j.na.2007.03.025
https://dx.doi.org/https://doi.org/10.1016/j.jmaa.2007.01.047
https://dx.doi.org/https://doi.org/10.1016/j.nonrwa.2021.103493
https://dx.doi.org/https://doi.org/10.1016/j.jde.2006.07.009
https://dx.doi.org/https://doi.org/10.1016/S0895-7177(01)00078-4
https://dx.doi.org/https://doi.org/10.1016/j.na.2009.02.107
https://dx.doi.org/http://dx.doi.org/10.3934/era.2022197
https://dx.doi.org/https://doi.org/10.1016/j.jde.2019.04.012
https://dx.doi.org/http://dx.doi.org/10.3934/dcds.2011.31.239
https://dx.doi.org/https://doi.org/10.1016/j.jmaa.2014.08.044
https://dx.doi.org/https://doi.org/10.1007/978-1-4612-0645-3
https://dx.doi.org/https://doi.org/10.1186/s13661-021-01548-z
https://dx.doi.org/https://doi.org/10.1186/s13661-021-01548-z

9630

19.
20.
21.
22.
23.

24.

25.

% AIMS Press

N. Yamaguchi, Existence of global strong solution to the micropolar fluid system in a bounded
domain, Math. Methods Appl. Sci., 28 (2005), 1507—-1526. https://doi.org/10.1002/mma.617

X.J. Yang, H. Liu, C. FE. Sun, Global attractors of the 3D micropolar equations with damping term,
Math. Found. Comput., 4 (2021), 117-130. https://doi.org/10.3934/mfc.2021007

X. Yang, H. Liu, C. Sun, Trajectory attractors of the 3D micropolar equations with damping term,
Mediterr. J. Math., 19 (2022), 48. https://doi.org/10.1007/s00009-021-01965-5

Z. Ye, Global existence of solution to the 3D micropolar equations with a damping term, Appl.
Math. Lett., 83 (2018), 188-193. https://doi.org/10.1016/j.aml1.2018.04.002

H. Yu, X. Zheng, Asymptotic behavior of weak solutions to the damped Navier-Stokes equations,
J. Math. Anal. Appl., 477 (2019), 1009-1018. https://doi.org/10.1016/j.jmaa.2019.04.068

C. D. Zhao, S. F. Zhou, X. Z. Lian, H'-uniform attractor and asymptotic smoothing effect of
solutions for a nonautonomous micropolar fluid flow in 2D unbounded domains, Nonlinear Anal.
Real World Appl., 9 (2008), 608—627. https://doi.org/10.1016/j.nonrwa.2006.12.005

Y. Zhou, Regularity and uniqueness for the 3D incompressible Navier-Stokes equations with
damping, Appl. Math. Lett., 25 (2012), 1822—1825. https://doi.org/10.1016/j.am1.2012.02.029

©2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 4, 9608-9630.


https://dx.doi.org/https://doi.org/10.1002/mma.617
https://dx.doi.org/https://doi.org/10.3934/mfc.2021007
https://dx.doi.org/https://doi.org/10.1007/s00009-021-01965-5
https://dx.doi.org/https://doi.org/10.1016/j.aml.2018.04.002
https://dx.doi.org/https://doi.org/10.1016/j.jmaa.2019.04.068
https://dx.doi.org/https://doi.org/10.1016/j.nonrwa.2006.12.005
https://dx.doi.org/https://doi.org/10.1016/j.aml.2012.02.029
https://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Uniform estimations of solutions
	Existence of uniform attractors
	Conclusions

