This paper was devoted to establishing some regularity criteria for the 3D generalized Navier-Stokes equations with nonlinear damping term. We focused on considering the role of the damping term in regularity criteria and the global existence brought by these criteria.
Citation: Jianlong Wu. Regularity criteria for the 3D generalized Navier-Stokes equations with nonlinear damping term[J]. AIMS Mathematics, 2024, 9(6): 16250-16259. doi: 10.3934/math.2024786
This paper was devoted to establishing some regularity criteria for the 3D generalized Navier-Stokes equations with nonlinear damping term. We focused on considering the role of the damping term in regularity criteria and the global existence brought by these criteria.
[1] | X. J. Cai, Q. S. Jiu, Weak and strong solutions for incompressible Navier-Stokes equations with Damping, J. Math. Anal. Appl., 343 (2008), 799–809. https://doi.org/10.1016/j.jmaa.2008.01.041 doi: 10.1016/j.jmaa.2008.01.041 |
[2] | Z. J. Zhang, X. L. Wu, M. Lu, On the uniqueness of strong solution to the incompressible Navier-Stokes equations with damping, J. Math. Anal. Appl., 377 (2011), 414–419. https://doi.org/10.1016/j.jmaa.2010.11.019 doi: 10.1016/j.jmaa.2010.11.019 |
[3] | Y. Zhou, Regularity and uniqueness for the 3D incompressible Navier-Stokes equations with damping, Appl. Math. Lett., 25 (2012), 1822–1825. https://doi.org/10.1016/j.aml.2012.02.029 doi: 10.1016/j.aml.2012.02.029 |
[4] | Z. Jiang, J. Wu, X. Chen, Y. Zhou, Regularity and uniqueness for the 3D incompressible Navier-Stokes equations with damping, In Press. |
[5] | Y. Jia, X. W. Zhang, B. Q. Dong, The asymptotic behavior of solutions to three-dimensional Navier-Stokes equations with nonlinear damping, Nonlinear Anal. Real, 12 (2011), 1736–1747. https://doi.org/10.1016/j.nonrwa.2010.11.006 doi: 10.1016/j.nonrwa.2010.11.006 |
[6] | Z. H. Jiang, M. X. Zhu, The large time behavior of solutions to 3D Navier-Stokes equations with nonlinear damping, Math. Method. Appl. Sci., 35 (2012), 97–102. https://doi.org/10.1002/mma.1540 doi: 10.1002/mma.1540 |
[7] | Z. H. Jiang, Asymptotic behavior of strong solutions to the 3D Navier-Stokes equations with a nonlinear damping term, Nonlinear Anal., 75 (2012), 5002–5009. https://doi.org/10.1016/j.na.2012.04.014 doi: 10.1016/j.na.2012.04.014 |
[8] | G. Prodi, Un teorema di unicità per le equazioni di Navier-Stokes, Ann. Mat. Pur. Appl., 48 (1959), 173–182. https://doi.org/10.1007/BF02410664 doi: 10.1007/BF02410664 |
[9] | J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations, Arch. Ration Mech. An., 9 (1962), 187–195. https://doi.org/10.1007/BF00253344 doi: 10.1007/BF00253344 |
[10] | L. Escauriaza, G. Seregin, V. Šverák, Backward uniqueness for parabolic equations, Arch. Ration Mech. An., 169 (2003), 147–157. https://doi.org/10.1007/s00205-003-0263-8 doi: 10.1007/s00205-003-0263-8 |
[11] | H. B. Veiga, A new regularity class for the Navier-Stokes equations in Rn, Chinese. Ann. Math. B, 16 (1995), 407–412. |
[12] | Z. H. Jiang, M. X. Zhu, Asymptotic behavior, regularity criterion and global existence for the generalized Navier-Stokes equations, Bull. Malays. Math. Sci. Soc., 42 (2019), 1085–1100. https://doi.org/10.1007/s40840-017-0531-7 doi: 10.1007/s40840-017-0531-7 |
[13] | J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., 63 (1934), 193–248. https://doi.org/10.1007/BF02547354 doi: 10.1007/BF02547354 |
[14] | J. T. Beale, T. Kato, A. Majda, Remarks on the breakdown of smooth solutions for the 3-D Euler equations, Commun. Math. Phys., 94 (1984), 61–66. http://projecteuclid.org/euclid.cmp/1103941230 |
[15] | Q. S. Jiu, H. Yu, Decay of solutions to the three-dimensional generalized Navier-Stokes equations, Asymptotic Anal., 94 (2015), 105–124. https://doi.org/10.3233/ASY-151307 doi: 10.3233/ASY-151307 |