In this paper, we investigated n-dimensional fractional hybrid differential equations (FHDEs) with nonlinear boundary conditions in a nonlinear coupled system. For this purpose, we used Dhage's fixed point theory, and applied the Krasnoselskii-type coupled fixed point theorem to construct existence conditions of the solution of the FHDEs. To illustrated this idea, suitable examples are presented in 3-dimensional space at the end of the paper.
Citation: Salma Noor, Aman Ullah, Anwar Ali, Saud Fahad Aldosary. Analysis of a hybrid fractional coupled system of differential equations in n-dimensional space with linear perturbation and nonlinear boundary conditions[J]. AIMS Mathematics, 2024, 9(6): 16234-16249. doi: 10.3934/math.2024785
[1] | M. Latha Maheswari, K. S. Keerthana Shri, Mohammad Sajid . Analysis on existence of system of coupled multifractional nonlinear hybrid differential equations with coupled boundary conditions. AIMS Mathematics, 2024, 9(6): 13642-13658. doi: 10.3934/math.2024666 |
[2] | Yige Zhao, Yibing Sun, Zhi Liu, Yilin Wang . Solvability for boundary value problems of nonlinear fractional differential equations with mixed perturbations of the second type. AIMS Mathematics, 2020, 5(1): 557-567. doi: 10.3934/math.2020037 |
[3] | Jianhua Tang, Chuntao Yin . Analysis of the generalized fractional differential system. AIMS Mathematics, 2022, 7(5): 8654-8684. doi: 10.3934/math.2022484 |
[4] | Md. Asaduzzaman, Md. Zulfikar Ali . Existence of positive solution to the boundary value problems for coupled system of nonlinear fractional differential equations. AIMS Mathematics, 2019, 4(3): 880-895. doi: 10.3934/math.2019.3.880 |
[5] | Bashir Ahmad, P. Karthikeyan, K. Buvaneswari . Fractional differential equations with coupled slit-strips type integral boundary conditions. AIMS Mathematics, 2019, 4(6): 1596-1609. doi: 10.3934/math.2019.6.1596 |
[6] | Zaid Laadjal, Fahd Jarad . Existence, uniqueness and stability of solutions for generalized proportional fractional hybrid integro-differential equations with Dirichlet boundary conditions. AIMS Mathematics, 2023, 8(1): 1172-1194. doi: 10.3934/math.2023059 |
[7] | Madeaha Alghanmi, Shahad Alqurayqiri . Existence results for a coupled system of nonlinear fractional functional differential equations with infinite delay and nonlocal integral boundary conditions. AIMS Mathematics, 2024, 9(6): 15040-15059. doi: 10.3934/math.2024729 |
[8] | Iyad Suwan, Mohammed S. Abdo, Thabet Abdeljawad, Mohammed M. Matar, Abdellatif Boutiara, Mohammed A. Almalahi . Existence theorems for $ \Psi $-fractional hybrid systems with periodic boundary conditions. AIMS Mathematics, 2022, 7(1): 171-186. doi: 10.3934/math.2022010 |
[9] | Saeed M. Ali, Mohammed S. Abdo, Bhausaheb Sontakke, Kamal Shah, Thabet Abdeljawad . New results on a coupled system for second-order pantograph equations with $ \mathcal{ABC} $ fractional derivatives. AIMS Mathematics, 2022, 7(10): 19520-19538. doi: 10.3934/math.20221071 |
[10] | Dehong Ji, Weigao Ge . A nonlocal boundary value problems for hybrid ϕ-Caputo fractional integro-differential equations. AIMS Mathematics, 2020, 5(6): 7175-7190. doi: 10.3934/math.2020459 |
In this paper, we investigated n-dimensional fractional hybrid differential equations (FHDEs) with nonlinear boundary conditions in a nonlinear coupled system. For this purpose, we used Dhage's fixed point theory, and applied the Krasnoselskii-type coupled fixed point theorem to construct existence conditions of the solution of the FHDEs. To illustrated this idea, suitable examples are presented in 3-dimensional space at the end of the paper.
Fractional calculus is the area of mathematics concerned with the integral and derivative of any arbitrary order, whether real or complex. In the sixteenth century, classical calculus began its journey from solving ordinary order differential equations to tackling equations of arbitrary order. Joseph Louis Lagrange (Lacroix) provided the formal definition for the first time. Subsequently, other mathematicians such as Riemann-Liouville, Abel, Grownwald, and L’Hospital made significant contributions to this field [1,2].
Fractional differential equations (abbreviated as FDEs) provide a more accurate presentation of real-world problems that involve mathematical equations with memory terms. Ordinary calculus fails to clearly explain these memory terms, leading to increased attention and investigation in this area. Fractional calculus finds application across the globe and has been utilized in a wide variety of physical processes across many different scientific disciplines, including natural sciences, engineering, physics, chemistry, biology, and more [3,4,5]. This area has been explored from various perspectives, such as qualitative, stability, and optimization theory. The mathematical model’s inclusion of physical phenomena is guaranteed by the qualitative theory. Over the past thirty years, many mathematicians have struggled to find solutions to fractional differential equations [6,7]. Most often the iteration and fixed point techniques have been employed in existence theory. However, coupled systems of FDEs find applications in numerous fields, like physics, economics, biology, chemistry, and more [8,9]. Recently, the presence of solutions for FDE’s that involve Caputo derivatives were examined in [10,11]. Authors in [12,13] discussed the coupled system of FDEs having different boundary conditions using topological degree theory.
Additionally, a fundamental class of FDEs called fractional hybrid differential equations (FHDEs) has been studied by numerous researchers. Due to their perturbative nature, FHDEs are particularly attractive to mathematicians working in the dynamical system. The existence theory for coupled systems of FHDEs can be developed using the fixed point approach and prior estimate methods [14,15,16,17,18].
Various researchers have studied coupled systems of FHDEs using Dhage's fixed point theory [19,20]. While reviewing the literature, we noted that FHDEs with linear perturbation and nonlinear integral boundary conditions have been studied in up to 2-dimensional or rarely up to 3-dimensional space. Rare articles are available that address the study of FHDEs corresponding to integral boundary conditions in 3-dimensional, and in n-dimensional real space. FHDEs in higher dimension arise in various fields of sciences and engineering due to their ability to model complex systems with multi-scale phenomena, non-local interaction, and memory effects. Using fixed point techniques, Kumam et al. in [17] examined the following CFHDEs:
{Dρ(ϰ(ˉϑ)−f1(ˉϑ,ϰ(ˉϑ)))=f2(ˉϑ,ϝ(ˉϑ),Iαϝ(ˉϑ)),Dρ(ϝ(ˉϑ)−f1(ˉϑ,ϝ(ˉϑ)))=f2(ˉϑ,ϰ(ˉϑ),Iαϰ(ˉϑ)), | (1.1) |
where ˉϑ∈[0,l],l>0, ρ∈(n−1,n]. System (1.1) is subject to the conditions:
ϰ(0)=δ1ϰ(η1),ϝ(0)=δ1ϝ(η1),ϰ(1)=δ2ϰ(η2),ϝ(1)=δ2ϝ(η2),ϰi(0)=0ϝi(0)=0,∀ i=1,2,...,n−1. |
In the above system, α>0, η1,η2∈(0,1) f1:[0,l]×R→R is continues, f1(ˉϑ,ϰ(ˉϑ))∣ˉϑ=0=0 and f2:[0,l]×R×R→R, and Dρ is the Caputo fractional derivative (CFD) of order [ρ] ([ρ] is the integer part of ρ). Motivated by the work of Kumam et al., we are fascinated in the presence of a solution to the following n-dimensional FHDEs in a nonlinear coupled system:
{Dα1(ϰ1(ˉϑ)−P1(ˉϑ,ϰ1(ˉϑ),ϰ2(ˉϑ),...,ϰn(ˉϑ)))=Q1(ˉϑ,ϰ1(ˉϑ),ϰ2(ˉϑ),...,ϰn(ˉϑ)),Dα2(ϰ2(ˉϑ)−P2(ˉϑ,ϰ1(ˉϑ),ϰ2(ˉϑ),...,ϰn(ˉϑ)))=Q2(ˉϑ,ϰ1(ˉϑ),ϰ2(ˉϑ),...,ϰn(ˉϑ)),Dα3(ϰ3(ˉϑ)−P3(ˉϑ,ϰ1(ˉϑ),ϰ2(ˉϑ),...,ϰn(ˉϑ)))=Q3(ˉϑ,ϰ1(ˉϑ),ϰ2(ˉϑ),...,ϰn(ˉϑ)),⋮Dαn(ϰn(ˉϑ)−Pn(ˉϑ,ϰ1(ˉϑ),ϰ2(ˉϑ),...,ϰn(ˉϑ)))=Qn(ˉϑ,ϰ1(ˉϑ),ϰ2(ˉϑ),...,ϰn(ˉϑ)), | (1.2) |
where ˉϑ∈[0,1]. System (1.2) is subject to the conditions:
{ϰ1(0)=h1(ϰ1);ϰ1(1)=1Γ(α1)∫10(1−ˉs)α1−1φ1(ˉs,ϰ1(ˉs))dˉs,ϰ2(0)=h2(ϰ2);ϰ2(1)=1Γ(α2)∫10(1−ˉs)α2−1φ2(ˉs,ϰ2(ˉs))dˉs,ϰ3(0)=h3(ϰ1);ϰ3(1)=1Γ(α3)∫10(1−ˉs)α3−1φ3(ˉs,ϰ3(ˉs))dˉs,⋮ϰn(0)=hn(ϰn);ϰn(1)=1Γ(αn)∫10(1−ˉs)αn−1φn(ˉs,ϰn(ˉs))dˉs, |
where Dαi is the CFD, αi∈(1,2], Pi:[0,1]×Rn→R, hi:R→R, and φi:[0,1]×R→R are continuous mappings, and Qi:[0,1]×Rn→R are continuous or piece-wise continues mappings.
In this paper, Ψ={ψ:R+→R+ such that ψ(t)<t for t>0}, C([0,1]×R,R), denotes the space of continues mappings, Pi,Qi:[0,1]×Rn→R, hi:R→R, and φi:[0,1]×R→R are mappings having the following properties:
(1) The maps Pi:[0,1]×Rn→R, hi:R→R, and φi:[0,1]×R→R are continuous mappings.
(2) The maps Qi:[0,1]×Rn→R are continuous or piece-wise continuous mappings.
Now we recollect some results, facts, and definitions [14,15,16,17,18,19,20]:
Definition 2.1. The Riemenn-Liouville (R-L) integral of order [α]: α>0 ([α] is the integer part of α) of a mapping g:R+→R is defined as:
Iαg(ˉϑ)=1Γ(α)∫ˉϑ0(ˉϑ−ˉs)α−1g(ˉs)dˉs, |
under the criterion that the right-hand side is defined piece-wise over R+.
Definition 2.2. The CFD of order [α]: α>0 ([α] is the integer part of α) of a mapping g:R+→R is defined as:
Dαg(ˉϑ)=1Γ(m−α)∫ˉϑ0(ˉϑ−ˉs)m−α−1gm(ˉs)dˉs, |
under the criterion that the right-hand side is defined piece-wise over R+, and m=[α]+1.
Definition 2.3. For a mapping ϰ(ˉϑ)∈C([0,1]×R,R), the integral Iα, α∈(n−1,n] is defined as:
Iα(Dαϰ(ˉϑ))=a0+a1ˉϑ+a2ˉϑ2+...+an−1ˉϑn−1+Iαg(ˉϑ), |
where Dαϰ(ˉϑ)=g(ˉϑ).
Definition 2.4. A mapping T:X→X: X∈C([0,1]×R,R) is a contraction on X if there exist 0<α<1, which satisfies the following condition for all ϰ,ϝ∈X,
‖T(ϰ)−T(ϝ)‖≤α‖ϰ−ϝ‖. |
Definition 2.5. A mapping T:X→X: X∈C([0,1]×R,R) has a coupled fixed point (ϰ,ϝ) if T(ϰ,ϝ)=ϰ and T(ϝ,ϰ)=ϝ.
Definition 2.6. Consider a Banach space X and a subset S of X, which is bounded, convex, and closed, and B:S→X. Then B is completely continuous if it is:
(1) Continuous on S.
(2) Uniformly bounded on S.
(3) Uniformly continuous on S.
Theorem 2.7. Consider a Banach space X and a subset S of X, which is bounded, convex, and closed, and ˜S=S×S. Let A:X→X and B:S→X be two operators such that:
(C1) There is a positive constant α<1, and ψA∈Ψ such that:
‖A(ϰ)−A(ϝ)‖≤αψA‖ϰ−ϝ‖. |
(C2) B is completely continuous on S.
(C3) ϰ=A(ϰ)+B(ϝ)⟹ϰ∈S for ∀ϝ∈S.
Then the operator T(ϰ,ϝ)=A(ϰ)+B(ϝ) has one or more coupled fixed point(s) in ˜S.
For the analysis of existence results, we assume that for ∀ ϰ,ϝ∈C([0,1]×Rn,R), where ϰ(ˉϑ)=(ϰ1(ˉϑ),ϰ2(ˉϑ),...,ϰn(ˉϑ)), ϝ(ˉϑ)=(ϝ1(ˉϑ),ϝ2(ˉϑ),...,ϝn(ˉϑ)), ˉϑ∈[0,1], the following conditions hold:
(A1): |h(ϰi)−h(ϰj)|≤|ϰi−ϰj|; i,j=1,2,3,...
(A2): There are constants M≥L>0 such that:
|P(ˉϑ,ϰ1(ˉϑ),ϰ2(ˉϑ),...,ϰn(ˉϑ))−P(ˉϑ,ϝ1(ˉϑ),ϝ2(ˉϑ),...,ϝn(ˉϑ))|≤L|ϰ(ˉϑ)−ϝ(ˉϑ)|2n(M+|ϰ(ˉϑ)−ϝ(ˉϑ)|). |
(A3): There exists a continuous mapping g(ˉϑ)∈C([0,1],R) such that:
Q(ˉϑ,ϰ1(ˉϑ),ϰ2(ˉϑ),...,ϰn(ˉϑ))≤g(ˉϑ). |
Lemma 3.1. If Pi(ˉϑ,ϰ1(ˉϑ),ϰ2(ˉϑ),...,ϰn(ˉϑ))∣ˉϑ=0=Pi(ˉϑ,ϰ1(ˉϑ),ϰ2(ˉϑ),...,ϰn(ˉϑ))∣ˉϑ=1=0 for each i=1,2,3...n, then the representation of Eq (1.2) in integral form is given by:
ϰi(ˉϑ)=Pi(ˉϑ,ϰ1(ˉϑ),ϰ2(ˉϑ),...,ϰn(ˉϑ))+(1−ˉϑ)hi(ϰi)+ˉϑΓ(αi)∫10(1−ˉs)αi−1φi(ˉs,ϰi(ˉs))dˉs−ˉϑΓ(αi)∫10(1−ˉs)αi−1Qi(ˉs,ϰ1(ˉs),ϰ2(ˉs),...,ϰn(ˉs))dˉs+1Γ(αi)∫ˉϑ0(ˉϑ−ˉs)αi−1Qi(ˉs,ϰ1(ˉs),ϰ2(ˉs),...,ϰn(ˉs))dˉs, |
for each i=1,2,3,...,n.
Proof. Applying Iα1 on ϰ1(ˉϑ) of Eq (1.2), we get:
ϰ1(ˉϑ)−P1(ˉϑ,ϰ1(ˉϑ),ϰ2(ˉϑ),...,ϰn(ˉϑ))=a0+a1ˉϑ+Iα1Q1(ˉϑ,ϰ1(ˉϑ),ϰ2(ˉϑ),...,ϰn(ˉϑ)). | (3.1) |
Applying the initial conditions, ϰ1(0)=h1(ϰ1) and P1(ˉϑ,ϰ1(ˉϑ),ϰ2(ˉϑ),...,ϰn(ˉϑ))∣ˉϑ=0=0, we get:
a0=h1(ϰ1). |
Also ϰ1(1)=1Γ(α1)∫10(1−ˉs)α1−1φ1(ˉs,ϰ1(ˉs))dˉs, and P1(ˉϑ,ϰ1(ˉϑ),ϰ2(ˉϑ),...,ϰn(ˉϑ))∣ˉϑ=1=0 gives us
1Γ(α1)∫10(1−ˉs)α1−1φ1(ˉs,ϰ1(ˉs))dˉs=a0+a1+Iα1Q1(ˉϑ,ϰ1(ˉϑ),ϰ2(ˉϑ),...,ϰn(ˉϑ))∣ˉϑ=1 |
a0=h1(ϰ1), and
Iα1Q1(ˉϑ,ϰ1(ˉϑ),ϰ2(ˉϑ),...,ϰn(ˉϑ))∣ˉϑ=1=1Γ(α1)∫10(1−ˉs)α1−1Q1(ˉs,ϰ1(ˉs),ϰ2(ˉs),...,ϰn(ˉs))dˉs |
gives us
a1=1Γ(α1)∫10(1−ˉs)α1−1φ1(ˉs,ϰ1(ˉs))dˉs−h1(ϰ1)−1Γ(α1)∫10(1−ˉs)α1−1Q1(ˉs,ϰ1(ˉs),ϰ2(ˉs),...,ϰn(ˉs))dˉs. |
Putting the values of a0,a1, and Iα1Q1(ˉϑ,ϰ1(ˉϑ),ϰ2(ˉϑ),...,ϰn(ˉϑ))∣ˉϑ=1 in Eq (3.1), we get:
ϰ1(ˉϑ)−P1(ˉϑ,ϰ1(ˉϑ),ϰ2(ˉϑ),...,ϰn(ˉϑ))=h1(ϰ1)+(1Γ(α1)∫10(1−ˉs)α1−1φ1(ˉs,ϰ1(ˉs))dˉs−h1(ϰ1)−1Γ(α1)∫10(1−ˉs)α1−1Q1(ˉs,ϰ1(ˉs),ϰ2(ˉs),...,ϰn(ˉs))dˉs)ˉϑ+Iα1Q1(ˉs,ϰ1(ˉs),ϰ2(ˉs),...,ϰn(ˉs)), |
which after simplification gives:
ϰ1(ˉϑ)=P1(ˉϑ,ϰ1(ˉϑ),ϰ2(ˉϑ),...,ϰn(ˉϑ))+(1−ˉϑ)h1(ϰ1)+ˉϑΓ(α1)∫10(1−ˉs)α1−1φ1(ˉs,ϰ1(ˉs))dˉs−ˉϑΓ(α1)∫10(1−ˉs)α1−1Q1(ˉs,ϰ1(ˉs),ϰ2(ˉs),...,ϰn(ˉs))dˉs+1Γ(α1)∫ˉϑ0(ˉϑ−ˉs)α1−1Q1(ˉs,ϰ1(ˉs),ϰ2(ˉs),...,ϰn(ˉs))dˉs. |
Similarly, we can find ϰ2(ˉϑ),ϰ3(ˉϑ),...,ϰn(ˉϑ), where
ϰi(ˉϑ)=Pi(ˉϑ,ϰ1(ˉϑ),ϰ2(ˉϑ),...,ϰn(ˉϑ))+(1−ˉϑ)hi(ϰi)+ˉϑΓ(αi)∫10(1−ˉs)αi−1φi(ˉs,ϰi(ˉs))dˉs−ˉϑΓ(αi)∫10(1−ˉs)αi−1Qi(ˉs,ϰ1(ˉs),ϰ2(ˉs),...,ϰn(ˉs))dˉs+1Γ(αi)∫ˉϑ0(ˉϑ−ˉs)αi−1Qi(ˉs,ϰ1(ˉs),ϰ2(ˉs),...,ϰn(ˉs))dˉs, |
for each i=1,2,3,...,n. This completes the proof.
Let us define A,B:Rn→Rn, by A=(A1,A2,A3,...,An), and B=(B1,B2,B3,...,Bn), where
Ai=Pi(ˉϑ,ϰ1(ˉϑ),ϰ2(ˉϑ),...,ϰn(ˉϑ))+(1−ˉϑ)hi(ϰi),Bi=ˉϑΓ(αi)∫10(1−ˉs)αi−1φi(ˉs,ϰi(ˉs))dˉs−ˉϑΓ(αi)∫10(1−ˉs)αi−1Qi(ˉs,ϰ1(ˉs),ϰ2(ˉs),...,ϰn(ˉs))dˉs+1Γ(αi)∫ˉϑ0(ˉϑ−ˉs)αi−1Qi(ˉs,ϰ1(ˉs),ϰ2(ˉs),...,ϰn(ˉs))dˉs, |
for each i=1,2,3,..,n. Now define X:Rn→Rn by X=A+B. Then the solution of Eq (1.2) in operator form is given by:
{(ϰ1(ˉϑ),ϰ2(ˉϑ),...,ϰn(ˉϑ))=X(ϰ1(ˉϑ),ϰ2(ˉϑ),...,ϰn(ˉϑ))=A(ϰ1(ˉϑ),ϰ2(ˉϑ),...,ϰn(ˉϑ))+B(ϰ1(ˉϑ),ϰ2(ˉϑ),...,ϰn(ˉϑ)). | (3.2) |
Lemma 3.2. The operator A satisfies ‖A(ϰ)−A(ϝ)‖≤αψA(‖ϰ−ϝ‖), where α<1,andψA∈Ψ,for∀ϰ,ϝ∈C([0,1]×Rn,R).
Proof. Let ϰ(ˉϑ)=(ϰ1(ˉϑ),ϰ2(ˉϑ),...,ϰn(ˉϑ)), and ϝ(ˉϑ)=(ϝ1(ˉϑ),ϝ2(ˉϑ),...,ϝn(ˉϑ)). Consider
|A(ϰ(ˉϑ))−A(ϝ(ˉϑ))|=|(A1,A2,A3,...,An)(ϰ(ˉϑ))−(A1,A2,A3,...,An)(ϝ(ˉϑ))|=|A1(ϰ(ˉϑ))−A1(ϝ(ˉϑ)),A2(ϰ(ˉϑ))−A2(ϝ(ˉϑ)),...,An(ϰ(ˉϑ))−An(ϝ(ˉϑ))|≤|A1(ϰ(ˉϑ))−A1(ϝ(ˉϑ))|+|A2(ϰ(ˉϑ))−A2(ϝ(ˉϑ))|+⋯+|An(ϰ(ˉϑ))−An(ϝ(ˉϑ))|. | (3.3) |
Now consider,
|A1(ϰ(ˉϑ))−A1(ϝ(ˉϑ))|=|P1(ˉϑ,ϰ1(ˉϑ),ϰ2(ˉϑ),...,ϰn(ˉϑ))+(1−ˉϑ)h1(ϰ1)−P1(ˉϑ,ϝ1(ˉϑ),ϝ2(ˉϑ),...,ϝn(ˉϑ))−(1−ˉϑ)h1(ϝ1)|≤|P1(ˉϑ,ϰ1(ˉϑ),ϰ2(ˉϑ),...,ϰn(ˉϑ))−P1(ˉϑ,ϝ1(ˉϑ),ϝ2(ˉϑ),...,ϝn(ˉϑ))|+|(1−ˉϑ)h1(ϰ1)−(1−ˉϑ)h1(ϝ1)|≤L|ϰ(ˉϑ)−ϝ(ˉϑ)|2n(M+|ϰ(ˉϑ)−ϝ(ˉϑ)|)+|ϰ1−ϝ1|. |
Similarly, for each i=1,2,3...,n,
|Ai(ϰ(ˉϑ))−Ai(ϝ(ˉϑ))|≤L|ϰ(ˉϑ)−ϝ(ˉϑ)|2n(M+|ϰ(ˉϑ)−ϝ(ˉϑ)|)+|ϰi−ϝi|, |
and hence Eq (3.3) becomes:
|A(ϰ(ˉϑ))−A(ϝ(ˉϑ))|≤n(L|ϰ(ˉϑ)−ϝ(ˉϑ)|2n(M+|ϰ(ˉϑ)−ϝ(ˉϑ)|))+n∑i=1|ϰi−ϝi|=L|ϰ(ˉϑ)−ϝ(ˉϑ)|2(M+|ϰ(ˉϑ)−ϝ(ˉϑ)|)+|ϰ−ϝ|. |
Taking Supˉϑ∈[0,1] on both sides we get,
‖A(ϰ)−A(ϝ)‖≤L‖ϰ−ϝ‖2(M+‖ϰ−ϝ‖)+‖ϰ−ϝ‖=12(L‖ϰ−ϝ‖M+‖ϰ−ϝ‖+2‖ϰ−ϝ‖). |
Hence:
‖A(ϰ)−A(ϝ)‖≤αψA(‖ϰ−ϝ‖), |
where
α=12 and ψA(‖ϰ−ϝ‖)=L‖ϰ−ϝ‖M+‖ϰ−ϝ‖+2‖ϰ−ϝ‖. |
This completes the proof.
Lemma 3.3. Let S={ϰ∈Rn:‖ϰ‖≤N}, where
N≥n(L+P0+‖h‖+‖φ‖Γ(α+1)+2‖g‖Γ(α+1)) |
and
P0=maxi{P0i},‖h‖=maxi{‖hi‖},‖φ‖Γ(α+1)=maxi{‖φi‖Γ(αi+1)}, |
and‖g‖Γ(α+1)=maxi{‖gi‖Γ(αi+1)}. |
Then the operator B is:
(1) Continuous on S.
(2) Uniformly bounded on S.
(3) Uniformly continuous on S.
Proof. Clearly S is bounded, convex, and closed.
(1) For continuity, let {ϰn} be a sequence in S that converges to ϰ=(ϰ1,ϰ2,...,ϰn) in S. Consider ϰm=(ϰ1m,ϰ2m,ϰ3m,...,ϰnm)∈{ϰn}. Consider,
|B(ϰm(ˉϑ))−B(ϰ(ˉϑ))|=|(B1,B2,B3,...,Bn)(ϰm(ˉϑ))−(B1,B2,B3,...,Bn)(ϰ(ˉϑ))|=|(B1(ϰm(ˉϑ))−B1(ϰ(ˉϑ)),B2(ϰm(ˉϑ))−B2(ϰ(ˉϑ)),...,Bn(ϰm(ˉϑ))−Bn(ϰ(ˉϑ)))|≤|B1(ϰm(ˉϑ))−B1(ϰ(ˉϑ))|+|B2(ϰm(ˉϑ))−B2(ϰ(ˉϑ))|+⋯+|Bn(ϰm(ˉϑ))−Bn(ϰ(ˉϑ))|. | (3.4) |
Now consider,
|B1(ϰm(ˉϑ))−B1(ϰ(ˉϑ))|=|ˉϑΓ(α1)∫10(1−ˉs)α1−1φ1(ˉs,ϰ1m(ˉs))dˉs−ˉϑΓ(α1)∫10(1−ˉs)α1−1Q1(ˉs,ϰ1m(ˉs),ϰ2m(ˉs),...,ϰnm(ˉs))dˉs+1Γ(α1)∫ˉϑ0(ˉϑ−ˉs)α1−1Q1(ˉs,ϰ1m(ˉs),ϰ2m(ˉs),...,ϰnm(ˉs))dˉs−(ˉϑΓ(α1)∫10(1−ˉs)α1−1φ1(ˉs,ϰ1(ˉs))dˉs−ˉϑΓ(α1)∫10(1−ˉs)α1−1Q1(ˉs,ϰ1(ˉs),ϰ2(ˉs),...,ϰn(ˉs))dˉs|+1Γ(α1)∫ˉϑ0(ˉϑ−ˉs)α1−1Q1(ˉs,ϰ1(ˉs),ϰ2(ˉs),...,ϰn(ˉs))dˉs)|≤|ˉϑΓ(α1)∫10(1−ˉs)α1−1(φ1(ˉs,ϰ1m(ˉs))−φ1(ˉs,ϰ1(ˉs)))dˉs|+|ˉϑΓ(α1)∫10(1−ˉs)α1−1(Q1(ˉs,ϰ1m(ˉs),ϰ2m(ˉs),...,ϰnm(ˉs))−Q1(ˉs,ϰ1(ˉs),ϰ2(ˉs),...,ϰn(ˉs)))dˉs|+|1Γ(α1)∫ˉϑ0(ˉϑ−ˉs)α1−1(Q1(ˉs,ϰ1m(ˉs),ϰ2m(ˉs),...,ϰnm(ˉs))−Q1(ˉs,ϰ1(ˉs),ϰ2(ˉs),...,ϰn(ˉs)))dˉs|≤ˉϑΓ(α1)∫10(1−ˉs)α1−1|φ1(ˉs,ϰ1m(ˉs))−φ1(ˉs,ϰ1(ˉs))|dˉs+ˉϑΓ(α1)∫10(1−ˉs)α1−1|Q1(ˉs,ϰ1m(ˉs),ϰ2m(ˉs),...,ϰnm(ˉs))−Q1(ˉs,ϰ1(ˉs),ϰ2(ˉs),...,ϰn(ˉs))|dˉs+1Γ(α1)∫ˉϑ0(ˉϑ−ˉs)α1−1|Q1(ˉs,ϰ1m(ˉs),ϰ2m(ˉs),...,ϰnm(ˉs))−Q1(ˉs,ϰ1(ˉs),ϰ2(ˉs),...,ϰn(ˉs))|dˉs, |
which tends to zero when m⟶1.
Similarly, for each i=1,2,3...,n,
|Bi(ϰm(ˉϑ))−Bi(ϰ(ˉϑ))|⟶0 as m⟶1, |
and hence Eq (3.4) gives:
|B(ϰm(ˉϑ))−B(ϰ(ˉϑ))|⟶0 as m⟶1. |
Hence B is continues on S.
(2) For uniform boundedness, consider ϰ=(ϰ1,ϰ2,...,ϰn)∈S,
|B(ϰ(ˉϑ))|=|(B1,B2,B3,...,Bn)(ϰ(ˉϑ))|=|B1(ϰ(ˉϑ))|+|B2(ϰ(ˉϑ))|+|B3(ϰ(ˉϑ))|+⋯+|Bn(ϰ(ˉϑ))|. | (3.5) |
Consider:
|B1(ϰ(ˉϑ))|=|ˉϑΓ(α1)∫10(1−ˉs)α1−1φ1(ˉs,ϰ1(ˉs))ds−ˉϑΓ(α1)∫10(1−ˉs)α1−1Q1(ˉs,ϰ1(ˉs),ϰ2(ˉs),...,ϰn(ˉs))dˉs+1Γ(α1)∫ˉϑ0(ˉϑ−ˉs)α1−1Q1(ˉs,ϰ1(ˉs),ϰ2(ˉs),...,ϰn(ˉs))dˉs)≤|ˉϑΓ(α1)∫10(1−ˉs)α1−1φ1(ˉs,ϰ1(ˉs))dˉs|+|ˉϑΓ(α1)∫10(1−ˉs)α1−1Q1(ˉs,ϰ1(ˉs),ϰ2(ˉs),...,ϰn(ˉs))dˉs|+|1Γ(α1)∫ˉϑ0(ˉϑ−ˉs)α1−1Q1(ˉs,ϰ1(ˉs),ϰ2(ˉs),...,ϰn(ˉs))dˉs|≤‖φ1‖Γ(α1+1)+2‖g1‖Γ(α1+1). |
Similarly, for each i=1,2,3...,n,
|Bi(ϰ(ˉϑ))|≤‖φi‖Γ(αi+1)+2‖gi‖Γ(αi+1)≤‖φ‖Γ(α+1)+2‖g‖Γ(α+1). |
Hence Eq (3.5) gives:
|B(ϰ(ˉϑ))|≤n(‖φ‖Γ(α+1)+2‖g‖Γ(α+1))≤N. |
Hence B is uniformly bounded on S.
(3) For uniform continuity, consider ϰ=(ϰ1,ϰ2,...,ϰn)∈S, and ˉϑ1,ˉϑ2∈[0,1] (ˉϑ1<ˉϑ2).
|B(x(ˉϑ1))−B(x(ˉϑ2))|=|(B1,B2,B3,...,Bn)(ϰ(ˉϑ1))−(B1,B2,B3,...,Bn)(ϰ(ˉϑ2))|=|B1(ϰ(ˉϑ1))−B1(ϰ(ˉϑ2))|+|B2(ϰ(ˉϑ1))−B2(ϰ(ˉϑ2))|+|B3(ϰ(ˉϑ1))−B3(ϰ(ˉϑ2))|+⋯+|Bn(ϰ(ˉϑ1))−Bn(ϰ(ˉϑ2))|. | (3.6) |
Consider:
|B1((ϰ(ˉϑ1)))−B1(ϰ(ˉϑ2))|=|ˉϑ1Γ(α1)∫10(1−ˉs)α1−1φ1(ˉs,ϰ1(ˉs))dˉs−ˉϑ1Γ(α1)∫10(1−ˉs)α1−1Q1(ˉs,ϰ1(ˉs),ϰ2(ˉs),...,ϰn(ˉs))dˉs+1Γ(α1)∫ˉϑ10(ˉϑ1−ˉs)α1−1Q1(ˉs,ϰ1(ˉs),ϰ2(ˉs),...,ϰn(ˉs))dˉs−(ˉϑ2Γ(α1)∫10(1−ˉs)α1−1φ1(ˉs,ϰ1(ˉs))dˉs−ˉϑ2Γ(α1)∫10(1−ˉs)α1−1Q1(ˉs,ϰ1(ˉs),ϰ2(ˉs),...,ϰn(ˉs))dˉs+1Γ(α1)∫ˉϑ20(ˉϑ2−ˉs)α1−1Q1(ˉs,ϰ1(ˉs),ϰ2(ˉs),...,ϰn(ˉs))dˉs)|≤|ˉϑ2−ˉϑ1Γ(α1)∫10(1−ˉs)α1−1φ1(ˉs,ϰ1(ˉs))dˉs|+|ˉϑ2−ˉϑ1Γ(α1)∫10(1−ˉs)α1−1Q1(ˉs,ϰ1(ˉs),ϰ2(ˉs),...,ϰn(ˉs))dˉs|+|1Γ(α1)(∫ˉϑ10(ˉϑ1−ˉs)α1−1−∫ˉϑ20(ˉϑ2−ˉs)α1−1)Q1(ˉs,ϰ1(ˉs),ϰ2(ˉs),...,ϰn(ˉs))dˉs|≤|ˉϑ2−ˉϑ1Γ(α1)∫10(1−ˉs)α1−1φ1(ˉs,ϰ1(ˉs))dˉs|+|ˉϑ2−ˉϑ1Γ(α1)∫10(1−ˉs)α1−1Q1(ˉs,ϰ1(ˉs),ϰ2(ˉs),...,ϰn(ˉs))dˉs|+|1Γ(α1)(∫ˉϑ10((ˉϑ1−ˉs)α1−1−(ˉϑ2−ˉs)α1−1)−∫ˉϑ2ˉϑ1(ˉϑ2−ˉs)α1−1)Q1(ˉs,ϰ1(ˉs),ϰ2(ˉs),...,ϰn(ˉs))dˉs|≤|ˉϑ2−ˉϑ1Γ(α1)∫10(1−ˉs)α1−1φ1(ˉs,ϰ1(ˉs))dˉs|+|ˉϑ2−ˉϑ1Γ(α1)∫10(1−ˉs)α1−1Q1(ˉs,ϰ1(ˉs),ϰ2(ˉs),...,ϰn(ˉs))dˉs|+|1Γ(α1)(∫ˉϑ10((ˉϑ1−ˉs)α1−1−(ˉϑ2−ˉs)α1−1))Q1(ˉs,ϰ1(ˉs),ϰ2(ˉs),...,ϰn(ˉs))dˉs|+|∫ˉϑ2ˉϑ1(ˉϑ2−ˉs)α1−1Q1(ˉs,ϰ1(ˉs),ϰ2(ˉs),...,ϰn(ˉs))dˉs|≤(ˉϑ2−ˉϑ1)‖φ1‖Γ(α1+1)+‖g1‖Γ(α1+1)((ˉϑα12−ˉϑα11)+(ˉϑ2−ˉϑ1)), |
which tends to zero when ˉϑ2⟶ˉϑ1.
Similarly, for each i=1,2,3...,n,
|Bi((ϰ(ˉϑ1)))−Bi(ϰ(ˉϑ2))|⟶0 as ˉϑ2⟶ˉϑ1. |
Hence Eq (3.6) gives:
|B((ϰ(ˉϑ1)))−B(ϰ(ˉϑ2))|⟶0 as ˉϑ2⟶ˉϑ1. |
Hence B is uniformly continuous on S, and hence the result follows.
Theorem 3.4. Suppose (A1)−(A3) holds, then there exists a solution to the n-dimensional nonlinear CFHDEs of Eq (1.2).
Proof. From Eq (3.2), the solution of Eq (1.2) is given by:
{(ϰ1(ˉϑ),ϰ2(ˉϑ),...,ϰn(ˉϑ))=X(ϰ1(ˉϑ),ϰ2(ˉϑ),...,ϰn(ˉϑ))=A(ϰ1(ˉϑ),ϰ2(ˉϑ),...,ϰn(ˉϑ))+B(ϰ1(ˉϑ),ϰ2(ˉϑ),...,ϰn(ˉϑ)). |
From Lemma 3.2, the operator A satisfies
‖A(ϰ)−A(ϝ)‖≤αψA(‖ϰ−ϝ‖), |
where α<1, and ψA∈Ψ, for ∀ϰ,ϝ∈C([0,1]×Rn,R). Hence C1 of Theorem 2.7 is satisfied.
Let S={ϰ∈Rn: ‖ϰ‖≤N}, where
N≥n(L+P0+‖h‖+‖φ‖Γ(α+1)+2‖g‖Γ(α+1)) for each i=1,2,3,...,n, |
where
P0=maxi{P0i}, ‖h‖=maxi{‖hi‖}, ‖φ‖Γ(α+1)=maxi{‖φi‖Γ(αi+1)}, |
and ‖g‖Γ(α+1)=maxi{‖gi‖Γ(αi+1)}. |
From Lemma 3.3, the operator B is:
(1) Continuous on S.
(2) Uniformly bounded on S.
(3) Uniformly continuous on S.
Hence B is equi-continues and hence is completely continuous on S. Hence, C2 of Theorem 2.7 is satisfied. To prove C3 of Theorem 2.7, let ϰ=(ϰ1,ϰ2,...,ϰn)∈X and ϝ=(ϝ1,ϝ2,...,ϝn)∈S such that ϰ=A(ϰ)+B(ϝ). We need to prove ϰ∈S. Consider:
|ϰ(ˉϑ)|=|A(ϰ(ϑ))+B(ϝ(ˉϑ))|≤|A(ϰ(ˉϑ))|+|B(ϝ(ˉϑ))|=|A(ϰ(ˉϑ))|+n(‖φ‖Γ(α+1)+2‖g‖Γ(α+1)) (using Lemma (3.3 (ii))). | (3.7) |
Consider:
|A(ϰ(ˉϑ))|=|(A1,A2,A3,...,An)(ϰ(ˉϑ))|=|A1(ϰ(ˉϑ))∣+∣A2(ϰ(ˉϑ))∣+...+∣An(ϰ(ˉϑ))|. | (3.8) |
Now consider,
|A1(ϰ(ˉϑ))|=|P1(ˉϑ,ϰ1(ˉϑ),ϰ2(ˉϑ),...,ϰn(ˉϑ))+(1−ˉϑ)h1(ϰ1)|+≤|P1(ˉϑ,ϰ1(ˉϑ),ϰ2(ˉϑ),...,ϰn(ˉϑ))|+|(1−ˉϑ)h1(ϰ1)|=|P1(ˉϑ,ϰ1(ˉϑ),ϰ2(ˉϑ),...,ϰn(ˉϑ))−P1(ˉϑ,0,0,...,0)+P1(ˉϑ,0,0,...,0)|+|(1−ˉϑ)h1(ϰ1)|≤|P1(ˉϑ,ϰ1(ˉϑ),ϰ2(ˉϑ),...,ϰn(ˉϑ))−P1(ˉϑ,0,0,...,0)|+|P1(ˉϑ,0,0,...,0)|+|h1(ϰ1)|≤L|x(ˉϑ)|2n(M+|x(ˉϑ)|)+|P01|+|h1(ϰ1)|≤L+|P01|+|h1(ϰ1)|. |
Similarly, for each i=1,2,3...,n,
|Ai(ϰ(ˉϑ))|≤L+|P0i|+|hi(ϰi)|. |
Hence, Eq (3.7) gives:
|ϰ(ˉϑ)|≤nL+n∑i=1(|P0i|+|hi(ϰi)|)+n(‖φ‖Γ(α+1)+2‖g‖Γ(α+1)). |
Taking Supˉϑ∈[0,1], we get:
‖ϰ‖≤n(L+P0+‖h‖+‖φ‖Γ(α+1)+2‖g‖Γ(α+1))≤N. |
Hence, ϰ∈S. Therefore, by Theorem 2.7, the operator X(ϰ1(ˉϑ),ϰ2(ˉϑ),...,ϰn(ˉϑ))=A(ϰ1(ˉϑ),ϰ2(ˉϑ),...,ϰn(ˉϑ))+B(ϰ1(ˉϑ),ϰ2(ˉϑ),...,ϰn(ˉϑ)) has a fixed point on S, which is required.
To clarify Theorem 3.4, in this section, we construct the following example in 3-dimensional Euclidean space R3.
Example 4.1. Consider the following 3-dimensional FHDE:
D32(ϰ1(ˉϑ))−(e−ˉϑ|ϰ1(ˉϑ)−ϰ2(ˉϑ)−ϰ3(ˉϑ)|15+|ϰ1(ˉϑ)−ϰ2(ˉϑ)−ϰ3(ˉϑ)|)=ˉϑ33−|cosϰ1(ˉϑ)−cosϰ2(ˉϑ)−cosϰ3(ˉϑ)|,D32(ϰ2(ˉϑ))−(e−ˉϑ|ϰ2(ˉϑ)−ϰ1(ˉϑ)−ϰ3(ˉϑ)|15+|ϰ2(ˉϑ)−ϰ1(ˉϑ)−ϰ3(ˉϑ)|)=ˉϑ33−|cosϰ2(ˉϑ)−cosϰ1(ˉϑ)−cosϰ3(ˉϑ)|,D32(ϰ3(ˉϑ))−(e−ˉϑ|ϰ3(ˉϑ)−ϰ1(ˉϑ)−ϰ2(ˉϑ)|15+|ϰ3(ˉϑ)−ϰ1(ˉϑ)−ϰ2(ˉϑ)|)=ˉϑ33−|cosϰ3(ˉϑ)−cosϰ1(ˉϑ)−cosϰ2(ˉϑ)|. | (4.1) |
{ϰ1(0)=12ϰ1ϰ1(1)=1Γ(32)∫10(1−ˉs)12e−ϰ1dˉs,ϰ2(0)=34ϰ2ϰ2(1)=1Γ(32)∫10(1−ˉs)12e−ϰ2dˉs,ϰ3(0)=13ϰ3ϰ3(1)=1Γ(32)∫10(1−ˉs)12e−ϰ3dˉs. |
Here we have:
P1(ˉϑ,ϰ1(ˉϑ),ϰ2(ˉϑ),ϰ3(ˉϑ))=e−ˉϑ|ϰ1(ˉϑ)−ϰ2(ˉϑ)−ϰ3(ˉϑ)|15+|ϰ1(ˉϑ)−ϰ2(ˉϑ)−ϰ3(ˉϑ)|,P2(ˉϑ,ϰ1(ˉϑ),ϰ2(ˉϑ),ϰ3(ˉϑ))=e−ˉϑ|ϰ2(ˉϑ)−ϰ1(ˉϑ)−ϰ3(ˉϑ)|15+|ϰ2(ˉϑ)−ϰ1(ˉϑ)−ϰ3(ˉϑ)|,P3(ˉϑ,ϰ1(ˉϑ),ϰ2(ˉϑ),ϰ3(ˉϑ))=e−ˉϑ|ϰ3(ˉϑ)−ϰ1(ˉϑ)−ϰ2(ˉϑ)|15+|ϰ3(ˉϑ)−ϰ1(ˉϑ)−ϰ2(ˉϑ)|,Q1(ˉϑ,ϰ1(ˉϑ),ϰ2(ˉϑ),ϰ3(ˉϑ))=ˉϑ33−|cosϰ1(ˉϑ)−cosϰ2(ˉϑ)−cosϰ3(ˉϑ)|,Q2(ˉϑ,ϰ1(ˉϑ),ϰ2(ˉϑ),ϰ3(ˉϑ))=ˉϑ33−|cosϰ2(ˉϑ)−cosϰ1(ˉϑ)−cosϰ3(ˉϑ)|,Q3(ˉϑ,ϰ1(ˉϑ),ϰ2(ˉϑ),ϰ3(ˉϑ))=ˉϑ33−|cosϰ3(ˉϑ)−cosϰ1(ˉϑ)−cosϰ2(ˉϑ)|,h1(ϰ1)=12ϰ1,φ1(ϰ1,ˉs)=(1−ˉs)12e−ϰ1,h2(ϰ2)=34ϰ2,φ2(ϰ2,ˉs)=(1−ˉs)12e−ϰ2,h3(ϰ3)=13ϰ3,φ3(ϰ3,ˉs)=(1−ˉs)12e−ϰ3. |
To check the assumptions \left(A_{1}\right)-\left(A_{3}\right), we first consider:
\begin{eqnarray*} \left|h_{1}\left(\varkappa_{1}\right)-h_{2}\left(\varkappa_{2}\right)\right| & = & \left|\frac{1}{2}\varkappa_{1}-\frac{3}{4}\varkappa_{2}\right|\\ & \leq & \frac{1}{2}\left|\varkappa_{1}-\varkappa_{2}\right|\\ & \leq & \left|\varkappa_{1}-\varkappa_{2}\right|. \end{eqnarray*} |
Similarly for each i, j = 1, 2, 3,
\left|h_{i}\left(\varkappa_{1}\right)-h_{j}\left(\varkappa_{2}\right)\right|\leq\left|\varkappa_{1}-\varkappa_{2}\right|. |
For M = 15\; \text{ and }L = 13 < M, we have,
\begin{align*} & \left|P_{1}\left(\bar{\vartheta}, \varkappa_{1}\left(\bar{\vartheta}\right), \varkappa_{2}\left(\bar{\vartheta}\right), \varkappa_{3}\left(\bar{\vartheta}\right)\right)-P_{2}\left(\bar{\vartheta}, \varkappa_{1}\left(\bar{\vartheta}\right), \varkappa_{2}\left(\bar{\vartheta}\right), \varkappa_{3}\left(\bar{\vartheta}\right)\right)\right|\\ = & \left|\frac{e^{-\bar{\vartheta}}\left|\varkappa_{1}\left(\bar{\vartheta}\right)-\varkappa_{2}\left(\bar{\vartheta}\right)-\varkappa_{3}\left(\bar{\vartheta}\right)\right|}{15+\left|\varkappa_{1}\left(\bar{\vartheta}\right)-\varkappa_{2}\left(\bar{\vartheta}\right)-\varkappa_{3}\left(\bar{\vartheta}\right)\right|}-\frac{e^{-\bar{\vartheta}}\left|\varkappa_{2}\left(\bar{\vartheta}\right)-\varkappa_{1}\left(\bar{\vartheta}\right)-\varkappa_{3}\left(\bar{\vartheta}\right)\right|}{15+\left|\varkappa_{2}\left(\bar{\vartheta}\right)-\varkappa_{1}\left(\bar{\vartheta}\right)-\varkappa_{3}\left(\bar{\vartheta}\right)\right|}\right|\\ \leq & \left|\frac{e^{-\bar{\vartheta}}\left|\varkappa_{1}\left(\bar{\vartheta}\right)-\varkappa_{2}\left(\bar{\vartheta}\right)-\varkappa_{3}\left(\bar{\vartheta}\right)\right|}{15+\left|\varkappa_{1}\left(\bar{\vartheta}\right)-\varkappa_{2}\left(\bar{\vartheta}\right)\right|+\left|\varkappa_{3}\left(\bar{\vartheta}\right)\right|}-\frac{e^{-\bar{\vartheta}}\left|\varkappa_{2}\left(\bar{\vartheta}\right)-\varkappa_{1}\left(\bar{\vartheta}\right)-\varkappa_{3}\left(\bar{\vartheta}\right)\right|}{15+\left|\varkappa_{2}\left(\bar{\vartheta}\right)-\varkappa_{1}\left(\bar{\vartheta}\right)\right|+\left|\varkappa_{3}\left(\bar{\vartheta}\right)\right|}\right|\\ \leq & \frac{\left|e^{-\bar{\vartheta}}\right|2\left|\varkappa_{1}\left(\bar{\vartheta}\right)-\varkappa_{2}\left(\bar{\vartheta}\right)\right|}{15+\left|\varkappa_{1}\left(\bar{\vartheta}\right)-\varkappa_{2}\left(\bar{\vartheta}\right)\right|+\left|\varkappa_{3}\left(\bar{\vartheta}\right)\right|}\\ \leq & \frac{2\left|\varkappa_{1}\left(\bar{\vartheta}\right)-\varkappa_{2}\left(\bar{\vartheta}\right)\right|}{15+\left|\varkappa_{1}\left(\bar{\vartheta}\right)-\varkappa_{2}\left(\bar{\vartheta}\right)\right|}\\ \leq & \frac{13\left|\varkappa_{1}\left(\bar{\vartheta}\right)-\varkappa_{2}\left(\bar{\vartheta}\right)\right|}{6\left(15+\left|\varkappa_{1}\left(\bar{\vartheta}\right)-\varkappa_{2}\left(\bar{\vartheta}\right)\right|\right)}\\ = & \frac{L\left|\varkappa_{1}\left(\bar{\vartheta}\right)-\varkappa_{2}\left(\bar{\vartheta}\right)\right|}{2\left(3\right)\left(M+\left|\varkappa_{1}\left(\bar{\vartheta}\right)-\varkappa_{2}\left(\bar{\vartheta}\right)\right|\right)}. \end{align*} |
Similarly for each i, j = 1, 2, 3,
\begin{align*} \left|P_{i}\left(\bar{\vartheta}, \varkappa_{1}\left(\bar{\vartheta}\right), \varkappa_{2}\left(\bar{\vartheta}\right), \varkappa_{3}\left(\bar{\vartheta}\right)\right)-P_{j}\left(\bar{\vartheta}, \varkappa_{1}\left(\bar{\vartheta}\right), \varkappa_{2}\left(\bar{\vartheta}\right), \varkappa_{3}\left(\bar{\vartheta}\right)\right)\right| \leq \frac{L\left|\varkappa_{1}\left(\bar{\vartheta}\right)-\varkappa_{2}\left(\bar{\vartheta}\right)\right|}{2\left(3\right)\left(M+\left|\varkappa_{1}\left(\bar{\vartheta}\right)-\varkappa_{2}\left(\bar{\vartheta}\right)\right|\right)}. \end{align*} |
Now consider,
Q_{1}\left(\bar{\vartheta}, \varkappa_{1}\left(\bar{\vartheta}\right), \varkappa_{2}\left(\bar{\vartheta}\right), \varkappa_{3}\left(\bar{\vartheta}\right)\right) = \frac{\bar{\vartheta}^{3}}{3}-\left|\text{cos}\varkappa_{1}\left(\bar{\vartheta}\right)-\text{cos}\varkappa_{2}\left(\bar{\vartheta}\right)-\text{cos}\varkappa_{3}\left(\bar{\vartheta}\right)\right|\leq\frac{\bar{\vartheta}^{3}}{3}. |
Similarly for each i = 1, 2, 3, there exist g_{i}\left(\bar{\vartheta}\right)\in\mathcal{\mathfrak{C}}\left(\left[0, 1\right], \mathbb{\mathscr{\mathfrak{R}}}\right)
Q_{i}\left(\bar{\vartheta}, \varkappa_{1}\left(\bar{\vartheta}\right), \varkappa_{2}\left(\bar{\vartheta}\right), \varkappa_{3}\left(\bar{\vartheta}\right)\right)\leq g_{i}\left(\bar{\vartheta}\right). |
Finally, take P_{0} = 0\; \text{ and }L = 13, for each i = 1, 2, 3,
\begin{align*} &\frac{\left\Vert g_{i}\left(\bar{\vartheta}\right)\right\Vert }{\Gamma\left(\frac{3}{2}+1\right)} = \frac{1}{\Gamma\left(\frac{5}{2}\right)}\int_{0}^{1}\left|\frac{\bar{\vartheta}^{3}}{3}\right|d\bar{\vartheta} = \frac{1}{1.3293}\left(\frac{1}{12}\right) = 0.06268, \\ &\Gamma\left(\frac{5}{2}\right) = \Gamma\left(1+\frac{3}{2}\right) = \frac{3}{2}\Gamma\left(\frac{3}{2}\right) = \frac{3}{2}\Gamma\left(1+\frac{1}{2}\right) = \frac{3}{2}\times\frac{1}{2}\Gamma\left(\frac{1}{2}\right) = \frac{3}{2}\times\frac{1}{2}\sqrt{\pi} = 1.3293, \\ &\frac{\left\Vert \varphi_{1}\right\Vert }{\Gamma\left(\frac{3}{2}+1\right)} = \frac{1}{\Gamma\left(\frac{5}{2}\right)}\int_{0}^{1}\left(1-\bar{s}\right)^{\frac{1}{2}}e^{-\varkappa_{1}}d\bar{s} = \frac{1}{1.3293}\left(0.66668\right) = 0.5015, \\ &\frac{\left\Vert \varphi_{2}\right\Vert }{\Gamma\left(\frac{3}{2}+1\right)} = \frac{1}{\Gamma\left(\frac{5}{2}\right)}\int_{0}^{1}\left(1-\bar{s}\right)^{\frac{1}{2}}e^{-\varkappa_{2}}d\bar{s} = \frac{1}{1.3293}\left(0.66668\right) = 0.5015, \\ &\frac{\left\Vert \varphi_{3}\right\Vert }{\Gamma\left(\frac{3}{2}+1\right)} = \frac{1}{\Gamma\left(\frac{5}{2}\right)}\int_{0}^{1}\left(1-\bar{s}\right)^{\frac{1}{2}}e^{-\varkappa_{3}}d\bar{s} = \frac{1}{1.3293}\left(0.66668\right) = 0.5015, \end{align*} |
and
\begin{align*} \left\Vert h_{1}\left(\varkappa_{1}\right)\right\Vert & = \int_{0}^{1}\left|\frac{1}{2}\varkappa_{1}\right|d\varkappa_{1} = \frac{1}{4}, \\ \left\Vert h_{2}\left(\varkappa_{2}\right)\right\Vert & = \int_{0}^{1}\left|\frac{3}{4}\varkappa_{2}\right|d\varkappa_{2} = \frac{3}{8}, \\ \left\Vert h_{3}\left(\varkappa_{3}\right)\right\Vert & = \int_{0}^{1}\left|\frac{1}{3}\varkappa_{3}\right|d\varkappa_{3} = \frac{1}{6}. \end{align*} |
So \text{ }\left\Vert h\right\Vert = \frac{3}{8}, \frac{\left\Vert \varphi\right\Vert }{\Gamma\left(\alpha+1\right)} = 0.5015, \text{ and }\frac{\left\Vert g\right\Vert }{\Gamma\left(\alpha+1\right)} = 0.06268.
n\left(L+P_{0}+\left\Vert h\right\Vert +\frac{\left\Vert \varphi\right\Vert }{\Gamma\left(\alpha+1\right)}+2\frac{\left\Vert g\right\Vert }{\Gamma\left(\alpha+1\right)}\right) = 3\left(13+0+0.5015+0.06268\right) = 40.69254. |
Hence N\geq41. All of the assumptions from \left(A_{1}\right)-\left(A_{3}\right) hold, hence by Theorem 3.4, we come to an end that problem (4.1) possesses a solution.
We have successfully investigated an n -dimensional FHDE with nonlinear boundary conditions in a nonlinear coupled system. We utilized Dhage's fixed point theory and applied the Krasnoselskii-type coupled fixed point theorem to establish conditions adequate for the existence of solutions to our problem. To illustrate our idea, we provided a suitable example in 3-dimensional space.
Salma Noor: Investigation, Methodology, Writing–original draft; Aman Ullah: Conceptualization, Project administration, Supervision, Validation; Anwar Ali: Formal Analysis, Visualization, Writing–review & editing; Saud Fahad Aldosary: Data curation, Funding acquisition, Resources, Software. All authors have read and approved the final version of the manuscript for publication.
The authors declare that they have not used artificial intelligence (AI) tools in the creation of this article.
This study was supported via funding from Prince Sattam bin Abdulaziz University project number (PSAU/2024/R/1445).
The authors declare that there exist no conflicts of interest regarding this research work.
[1] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integral and derivatives: Theory and applications, Philadelphia: Gordon and Breach Science Publishers, 1993. |
[2] |
J. T. Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 1140–1153. https://doi.org/10.1016/j.cnsns.2010.05.027 doi: 10.1016/j.cnsns.2010.05.027
![]() |
[3] |
R. Metzler, J. Klafter, Boundary value problems for fractional diffusion equations, Phys. A, 278 (2000), 107–125. https://doi.org/10.1016/S0378-4371(99)00503-8 doi: 10.1016/S0378-4371(99)00503-8
![]() |
[4] |
B. Ahmed, S. K. Ntouyas, A. Alsaedi, New existence results for nonlinear fractionaldifferential equations with three-point integral boundary conditions, Adv. Differ. Equ., 2011 (2011), 107384. https://doi.org/10.1155/2011/107384 doi: 10.1155/2011/107384
![]() |
[5] |
C. F. Li, X. N. Luo, Y. Zhou, Existence of positive solutions of the boundary value problem for nonlinear fractional differential equations, Comput. Math. Appl., 59 (2010), 1363–1375. https://doi.org/10.1016/j.camwa.2009.06.029 doi: 10.1016/j.camwa.2009.06.029
![]() |
[6] |
R. P. Agarwal, M. Belmekki, M. Benchohra, A survey on semilinear differential equations and inclusions involving Riemann-Liouville fractional derivative, Adv. Differ. Equ., 2009 (2009), 981728. https://doi.org/10.1155/2009/981728 doi: 10.1155/2009/981728
![]() |
[7] |
K. Balachandran, S. Kiruthika, J. J. Trujillo, Existence results for fractional impulsive integrodifferential equations in Banach spaces, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 1970–1977. http://dx.doi.org/10.1016/j.cnsns.2010.08.005 doi: 10.1016/j.cnsns.2010.08.005
![]() |
[8] |
B. Ahmad, J. J. Nieto, Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions, Comput. Math. Appl., 58 (2009), 1838–1843. https://doi.org/10.1016/j.camwa.2009.07.091 doi: 10.1016/j.camwa.2009.07.091
![]() |
[9] |
V. Gafychuk, B. Datsko, V. Meleshko, Mathematical modeling of time fractional reaction-difusion systems, J. Comput. Appl. Math., 220 (2008), 215–225. https://doi.org/10.1016/j.cam.2007.08.011 doi: 10.1016/j.cam.2007.08.011
![]() |
[10] |
X. Su, Boundary value problem for a coupled system of nonlinear fractional differential equations, Appl. Math. Lett., 22 (2009), 64–69. https://doi.org/10.1016/j.aml.2008.03.001 doi: 10.1016/j.aml.2008.03.001
![]() |
[11] |
C. Zhai, R. Jiang, Unique solutions for a new coupled system of fractional differential equations, Adv. Differ. Equ., 2018 (2018), 1. https://doi.org/10.1186/s13662-017-1452-3 doi: 10.1186/s13662-017-1452-3
![]() |
[12] |
A. Ali, M. Sarwar, M. B. Zada, K. Shah, Degree theory and existence of positive solutions to coupled system involving proportional delay with fractional integral boundary conditions, Math. Meth. Appl. Sci., 2020, 1–13. https://doi.org/10.1002/mma.6311 doi: 10.1002/mma.6311
![]() |
[13] |
A. Ali, M. Sarwar, M. B. Zada, T. Abdeljawad, Existence and uniqueness of solutions for coupled system of fractional differential equations involving proportional delay by means of topological degree theory, Adv. Differ. Equ., 2020 (2020), 470. https://doi.org/10.1186/s13662-020-02918-0 doi: 10.1186/s13662-020-02918-0
![]() |
[14] |
D. Baleanu, H. Khan, H. Jafari, R. A. Khan, M. Alipour, On existence results for solutions of a coupled system of hybrid boundary value problems with hybrid conditions, Adv. Differ. Equ., 2015 (2015), 318. https://doi.org/10.1186/s13662-015-0651-z doi: 10.1186/s13662-015-0651-z
![]() |
[15] |
T. Bashiri, S. M. Vaezpour, C. Park, A coupled fixed point theorem and application to fractional hybrid differential problems, Fixed Point Theory Appl., 2016 (2016), 23. https://doi.org/10.1186/s13663-016-0511-x doi: 10.1186/s13663-016-0511-x
![]() |
[16] |
B. Ahmad, S. K. Ntouyas, A. Alsaedi, Existence results for a system of coupled hybrid fractional differential equations, Sci. World J., 2014 (2014), 426438. https://doi.org/10.1155/2014/426438 doi: 10.1155/2014/426438
![]() |
[17] |
W. Kumam, M. B. Zada, K. Shah, R. A. Khan, Investigating a coupled hybrid system of nonlinear fractional differential equations, Discrete Dyn. Nat. Soc., 2018 (2018), 5937572. https://doi.org/10.1155/2018/5937572 doi: 10.1155/2018/5937572
![]() |
[18] |
A. Ali, M. Sarwar, K. Shah, T. Abdeljawad, Study of coupled system of fractional hybrid differential equations via prior estimate method, Fractals, 30 (2022), 2240213. https://doi.org/10.1142/S0218348X22402137 doi: 10.1142/S0218348X22402137
![]() |
[19] |
H. Akhadkulov, F. Alsharari, T. Y. Ying, Applications of Krasnoselskii-Dhage type fixed-point theorems to fractional hybrid differential equations, Tamkang J. Math. 52 (2021), 281–292. https://doi.org/10.5556/j.tkjm.52.2021.3330 doi: 10.5556/j.tkjm.52.2021.3330
![]() |
[20] |
B. C. Dhage, S. B. Dhage, J. R. Graef, Dhage iteration method for initial value problems for nonlinear first order hybrid integrodifferential equations, J. Fixed Point Theory Appl., 18 (2016), 309–326. https://doi.org/10.1007/s11784-015-0279-3 doi: 10.1007/s11784-015-0279-3
![]() |
1. | McSylvester Ejighikeme Omaba, Growth estimates of solutions to fractional hybrid partial differential equations, 2025, 13, 26668181, 101141, 10.1016/j.padiff.2025.101141 |