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1. Introduction and motivation

Fractional calculus is the area of mathematics concerned with the integral and derivative of any
arbitrary order, whether real or complex. In the sixteenth century, classical calculus began its
journey from solving ordinary order differential equations to tackling equations of arbitrary order.
Joseph Louis Lagrange (Lacroix) provided the formal definition for the first time. Subsequently,
other mathematicians such as Riemann-Liouville, Abel, Grownwald, and L’Hospital made significant
contributions to this field [1,2].

Fractional differential equations (abbreviated as FDEs) provide a more accurate presentation of
real-world problems that involve mathematical equations with memory terms. Ordinary calculus
fails to clearly explain these memory terms, leading to increased attention and investigation in this
area. Fractional calculus finds application across the globe and has been utilized in a wide variety of
physical processes across many different scientific disciplines, including natural sciences, engineering,


http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2024785

16235

physics, chemistry, biology, and more [3-5]. This area has been explored from various perspectives,
such as qualitative, stability, and optimization theory. The mathematical model’s inclusion of physical
phenomena is guaranteed by the qualitative theory. Over the past thirty years, many mathematicians
have struggled to find solutions to fractional differential equations [6,7]. Most often the iteration and
fixed point techniques have been employed in existence theory. However, coupled systems of FDEs
find applications in numerous fields, like physics, economics, biology, chemistry, and more [8, 9].
Recently, the presence of solutions for FDE’s that involve Caputo derivatives were examined in [10,11].
Authors in [12, 13] discussed the coupled system of FDEs having different boundary conditions using
topological degree theory.

Additionally, a fundamental class of FDEs called fractional hybrid differential equations (FHDEs)
has been studied by numerous researchers. Due to their perturbative nature, FHDEs are
particularly attractive to mathematicians working in the dynamical system. The existence theory
for coupled systems of FHDEs can be developed using the fixed point approach and prior estimate
methods [14-18].

Various researchers have studied coupled systems of FHDEs using Dhage’s fixed point
theory [19, 20]. While reviewing the literature, we noted that FHDEs with linear perturbation and
nonlinear integral boundary conditions have been studied in up to 2-dimensional or rarely up to 3-
dimensional space. Rare articles are available that address the study of FHDEs corresponding to
integral boundary conditions in 3-dimensional, and in n-dimensional real space. FHDEs in higher
dimension arise in various fields of sciences and engineering due to their ability to model complex
systems with multi-scale phenomena, non-local interaction, and memory effects. Using fixed point
techniques, Kumam et al. in [17] examined the following CFHDEs:

(o) -s 0ol —si@rlo.e) .
D (F(0) -1 (TF) = 5(0.2(0). 12(7).

where 9 € [0,1],1 > 0, p € (n—1,n]. System (1.1) is subject to the conditions:

% (0) = 012 (1)
F(0) = 61F (1),
% (1) = 6% (m2) 5
F (1) = 6oF (72)

#0)=0 F0)=0, YVi=1,2,...n—1.

In the above system, @ > 0, 11,12 € (0,1) f; : [0,[]xR — R is continues, f; (19, % (19)) lj—o= 0 and f :
[0,]] X R xR — R, and D’ is the Caputo fractional derivative (CFD) of order [p] ([p] is the integer
part of p). Motivated by the work of Kumam et al., we are fascinated in the presence of a solution to
the following n-dimensional FHDESs in a nonlinear coupled system:

D (5 () - Py (31 (7) 2 (B) o (9) = 04 (1 (5). 2 (9) . 9).
D (32 () = Pa (9.1 (8) 2 (6) .0, (6))) = 0 (8764 (9) 02 (9) et (9)
D (3 () = P3 (8,21 (8) .22 (9) . .. 20 (9))) - Q3 (8.1 () 22 ( (

D (1y(8) = P, (.1 (3) 2 () ot () = Q1 (Bos (8) 22 (). (3)
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where 9 € [0, 1]. System (1.2) is subject to the conditions:

21 (0)=hy Ge)s 1 (1) = i [ (1= 977 ¢y (5.1 (5)) 5,
#0) = hy (k)1 # (1) = 15 1 (1= 57 0y (5.2 () 5,
#300) = h3 0e1); %3 (1) = o fol (1= 35" o3 (5,3 (5) 5,

1 - _ N\ =
#n (0) = hy ()3 %0 (1) = 1= [ (1= 9™ 0, (5, %, (5)) d5,
where D% is the CFD, a; € (1,2], P; : [0,1] XR"-> R, h;, : R >R, and ¢; : [0,1] X R — R are
continuous mappings, and Q; : [0, 1] X R"— R are continuous or piece-wise continues mappings.

2. Preliminaries

In this paper, ¥ = {¢ : R*— R* such that ¢ (1) < tfort > 0}, € ([0, 1] x R,R), denotes the space
of continues mappings, P;, Q; : [0, 1] X R"—> R, h; : R = R, and ¢; : [0,1] X R — R are mappings
having the following properties:

(1) The maps P; : [0, 1] X R"— R, h; : R — R, and ¢; : [0, 1] X R — RN are continuous mappings.
(2) The maps Q; : [0, 1] X R"— R are continuous or piece-wise continuous mappings.

Now we recollect some results, facts, and definitions [14-20]:

Definition 2.1. The Riemenn-Liouville (R-L) integral of order [a] : a@ > 0 ([a] is the integer part of «)
of a mapping g : R"— R is defined as:

- 1 f;, - a—1
I“g(¥) = —— P -3 (5)ds,
()= [ -5
under the criterion that the right-hand side is defined piece-wise over ‘R*.

Definition 2.2. The CFD of order [a] : @ > 0 ([a] is the integer part of a) of a mapping g : R — R is
defined as:

N _ 1 g _ ym—a=1l
Dg(ﬂ):mj; (ﬂ—S) 8 (S)dS,
under the criterion that the right-hand side is defined piece-wise over R*, and m = [a] + 1.
Definition 2.3. For a mapping x (1_9) € €([0, 1] X R,R), the integral I*, a € (n — 1,n] is defined as:
I? (D"% (19)) =ap+ a1+ a0 +...+a, 0" + I“g (1_9),
where D®x (19) =g (1_9) .

Definition 2.4. A mapping 7 : X — 2 : Z € €([0, 1] X R,R) is a contraction on X" if there exist
0 < a < 1, which satisfies the following condition for all x,F € 2",

1.7 Go) = T (Pl < allx = Fll.
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Definition 2.5. A mapping 7 : Z - Z : Z € C€([0, 1] X R,R) has a coupled fixed point (x,F) if
T #,F)=xand T (F,x) =F

Definition 2.6. Consider a Banach space 2 and a subset S of X", which is bounded, convex, and
closed, and B : S — 2. Then B is completely continuous if it is:

(1) Continuous on S.
(2) Uniformly bounded on S.
(3) Uniformly continuous on S.

Theorem 2.7. Consider a Banach space 2  and a subset S of 2, which is bounded, convex, and
closed, and S =S x S. Let W : 2" — Z and B : S — X be two operators such that:
(C1) There is a positive constant a < 1, and Yy € ¥ such that:

() = AWEN < aypu |l = FII.

(Cy) B is completely continuous on S.
(C3)x=UAx)+B(F) = x € SforVF € S.
Then the operator 7 (x,F) = W(x) + B (F) has one or more coupled fixed point(s) in S.

3. Main results

For the analysis of existence results, we assume that for ¥V x,F € € ([0, 1] x R",R), where x (1_9) =

(%1 (19),%2 (19),...,%n (f})), F(ﬁ) = (F1 (19),F2 (z_?) o Fy (f})), 9 € [0,1], the following conditions
hold:
(A): 'h(%i) _h(%j)‘ <l =25 i, =1,2,3,...

(A,): There are constants M > L > 0 such that:

o I _ L (9) ~F (9)

[P (3,21 (8) 22 (9), o0 (8)) = P (B,F1 (8) F2 () ... o (9))] < —
2 (M + [ (9) - F(ﬁ)|)

(A3): There exists a continuous mapping g (1_9) € C ([0, 1],%R) such that:

0 (8.1 (). 2 (8). . (9)) < 8 (9).

Lemma 3.1. If P; (9,2, (8) .22 (8). ... 44 (8)) lpoo= P; (821 (9) .22 (9) 1 o2 (9)) I51= O for each
i =1,2,3...n, then the representation of Eq (1.2) in integral form is given by:

el 1
x(9) = Pi(ﬁ,xl (ﬁ),%z(ﬁ),...,%n(ﬁ))+(1—ﬁ)h,-(%i)+%fo (1 - 5% " ¢, (5, % (5) d5

F(a/l f(l )" Qi (5,%1(3), %2 (8) 5 0, %, (3) d5

+r<ai> fo (35" 0.1 (5) %2(5). o, (5))

foreachi=1,2,3,..,n
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Proof. Applying I®! on x, (19) of Eq (1.2), we get:

VA (1_9) - P (1_9, X1 (lg) , " (1_9) s eees Ap (1_9)) =qap+ 011_9 + [ Q] (1_9, X1 (19) %) (19) ey Xy (1_9)) . (31)

Applying the initial conditions, %, (0) = h; (%) and P, (19, % (2_9) %o (19) ey X (19)) l5=0= 0, we get:
ap = hy ().
Also x (1) = 71~ fo‘ (1= 5" 1 (5,21 () d5, and Py (8,1 (9) .22 (9) . ... 2 (D)) g1 = O gives us
1
F(al) L‘ (1 — E)a]_l ©1 (E,%l (5)) ds = ap+a; + Ile (19,%1 (19) V%) (ﬁ) s Apy (19)) |5:1
ag = I’l] (%1) , and
|

Q) (8,21 () 22 (9) o oo 2 (B)) Iy = %al)fo (1= Q1 (5,21 (3), %2 (5) , ..o 2, (5)) d5

gives us
a; = F(Ll) fol(l =" o (5,21 (3)d5 — hy (1) — mf (1= Q1 (5,21 (3),%(3), ... 2, (3)) d5.

Putting the values of ay, a;, and 1! Q, (1_9,%1 (1_9) % (ﬂ) s n( )) l5—; in Eq (3.1), we get:

% (5) - P (5‘,%1 (19) %o (19) ey X (19))

1 1
= (%1)+( f (1= 5" (5,%,(5)d5 — hy (%))
I'(e1) Jo
1
- f A =5)""Q1 (5,1 (5),%#2(5) , ..., %, (5)) a'i)19 + 101 (5,21 (3),%#2(3) , ..., %, (5))
I'(a1) Jo
which after simplification gives:
1
0(8) = Pr(Borr (9).a () o (9) + (1= ) o)+ o [ 1= 9" G (5105
0
1
—~ai—1 _ _ _ _ _
—r(al) f (1= 5" Q1 (5,541 (5)1 72 (5) s s 20 (5)) S
F(ozl) — )" 01 (5,71 (5,52 () s 20 (5)) 5.
Similarly, we can find %, (19) %3 (19) ey A (19) , where

xi(0) = Pi(0.1(9).2(9) s (B)) + (1= B) i (i) + ﬁl) fol(l—s)“f—l ¢i (3, %; (5)) d5

— 5! ds
T l)f( Qi (5,%1(8),%2(3), .., %, (3)) d§
+—f (5-35)"" 0571 (5),72 (8). o 0 (3)) 5,
I'(ai) Jo
for each i = 1,2, 3, ..., n. This completes the proof. m]
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Let us define A, B : R" — R, by A = (A, A, A, ..., A,), and B = (B, By, Bs, ..., B,,) , where

QII':

%i:

i(ﬁ,%l (19),%2 (19) s ees Ko (19)) + (1 - 19) h; (3¢)

o fuGe.

Fa ), 09 0 Gm a1 [[1-9" 060 0 029 )5
)

+r(1ai)f0 (ﬁ_g)m_l 0: (5,%1(5),%:(5), ..., %, (3)) d5,

foreachi = 1,2,3,..,n. Now define 2" : R" — R" by 2 = A + B. Then the solution of Eq (1.2) in
operator form is given by:

{(%1 (8).22(8) 10 (B)) = 2 (1 (B) 202 (D) o 2 (D))

(3.2)

=9 (%1 (1_9) %o (19) ey X (19)) +98B (%1 (19),%2 (1_9) e A (19)) )

Lemma 3.2. The operator N satisfies || A (x) —W(F)|| < ay (|| — F|]), where a < 1, and yq €
Y, for Vx,F € €([0,1] X R",R).

Proof. Let » (z_?) = (%1 (19) %o (19) ey Ay (19)) , and F(ﬁ) = (F1 (1_?) ,F, (f}) s Fy (f})) Consider

IA

IA

¥ (x (7)) - 2 (F (7))
|P1 (31 ()22 (8) o0 () + (1 = B) hu Ger) = Py (3,F1 (), Fa (8), o o (9)) = (1 = ) b (F)|
[Py (9, @,% @ st (8)) = 1 (B.F1 (8)Fa (8) o Fo (3))] +|(1 = B) s Gen) = (1= 8) u F)|

Similarly, foreachi =1,2,3...,n,

e (0) - ) < —EOOL gy

o (M + | (9) - F(ﬁ)|)

and hence Eq (3.3) becomes:

AIMS Mathematics Volume 9, Issue 6, 16234—-16249.
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M + ‘% (19) — F(ﬁ)‘) i=1
L ‘% (3) - F(ﬂ)‘
= - — + % —F|
2(M + | () - F(ﬁ)‘)
Taking Supg ;7 on both sides we get,
L — F] I { Lllx—Fl
W) —AF)| < +lx=Fll= = — " 4 21x—=FII.
(12 () Al < S + % = Fl) |I>e — F| N\ A |l — F|
Hence:
1A (G¢) — WA < afrar (Il = FI)
where ! Ll Fil
% —
= — and —Fl)= ——— +2|x —F|l.
@ =7 an Y (Il = FI) M+ = F + 2| — Fl|
This completes the proof. O
Lemma 3.3. Let S = {x € R" : ||x|]| < N}, where
llell llgll
N >n|L+ Py+ ||| + +2
=N ot o D T e+ D
and el el
@ Qi
P = i Pl . h = i hl s = i ’
o = max;{Po;}, ||hll = max; {||hll} Fatl) max {F(ai+ 1)}

nd ligll — max llg:ll
Ma+1) AT+ D’

Then the operator B is:

(1) Continuous on S.
(2) Uniformly bounded on S.
(3) Uniformly continuous on S.

Proof. Clearly S is bounded, convex, and closed.

(1) For continuity, let {x,} be a sequence in S that converges to » = (%1, %, ...,%,) in S. Consider
Hm = (Clms Koms X3ms s Xum) € {%,} . Consider,

8 (s (7)) - % (< (7))

= |(B1, B2, Bs, ... B,) (20 (7)) - (B1, B2, B, ., B) (D)
= (%1 (e (9 )) ( ( ) B2 (0 (9 )) B (7(7)) - B (o (7)) = B (7))
< (e (3) = 1 (2 ()] + [ 0 (9)) = B2 o ()] -+ + [0 (o () — 2 ()]

(3.4)

AIMS Mathematics Volume 9, Issue 6, 16234—-16249.
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Now consider,
[ 1 (e (7)) = 1 (x(9))

5 1
- e fo (1-5"" (f,mm(mdﬁ—r( = f (1= 57 01 5. 51 (5). % (5) s oo o (5)) 5

'0 —_
+]"(a1) j()\ (1_9_ §>al ] Ql (E,%lm (5)7%2m (E),...,%nm (E))df
9 1 . -
_(F(a’l).f()‘ (-3 "01 G, M(ﬂ)ds—mf (1-15) Ql (5,%1(85), %2 (8), ..., %, (5))d5

(43}

J - E) B Q1 (5, %1 (3),%2(3) 5 s #n (E))di]

T Jo

f (1 =" (@1 G, #1m (5) — @1 (3, %1 (5))) d5

'F(al)

+‘ f (1= 5" (Q1 Gyt (5) 20 () s () = Q1 (5541 (5), 42 () o 0 () 5
T(@1) Jo
1 D e
+ f (ﬂ—g) ‘(Q1 (5, %1m (3) s 22 (5) 5 vees % () — O1 (5,21 (5) , %2 (3) , ..., %, (5))) 5
T(@1) Jo
1
Syai-1 - N _ _ B
S1"(a1)f0 (I =9 o1 (3,21 (3)) — 1 (5,21 (5)| d5
1
" f (1= D" 1Q1 o1 () 2 (5) s oo Ham (3)) = Q1 (5,41 (3) 22 (5) s o 0 ()] 5
L) Jo.

19 —_
+ f (5= 5" 101 Gt (3920 (5) s o () = Q1 (5ut1 (8). 22 () s o 20 ()] .
T (@) Jo

which tends to zero when m — oo.
Similarly, foreachi =1,2,3...,n,

'%i (%m (ﬁ)) - EBi (% (1_9))' —> Qasm — oo,
and hence Eq (3.4) gives:
‘QS (%m (19)) -8B (% (5‘))‘ — 0 as m — oo.

Hence 8B is continues on S.
(2) For uniform boundedness, consider % = (%, %>, ..., %,) € S,

‘%(" (ﬂ))‘ = ‘(%1,282, B3,.... B,) ( (ﬂ))‘
[ e ()] 2 e ()| + [ G (@) -+ +

B, (x(9))]- (3.5)

Consider:

9 1
\%1(%(5))] = ‘r(il)fo (1= 5" 01 (5,71 (5) ds

1
f (1 — g)(}’l—l Q] (E,%] (5),%2 (E)’ ceey %n (E)) d§
0

T(a)

AIMS Mathematics Volume 9, Issue 6, 16234-16249.
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T

<
‘F(al)

1
[ =9 re G snas
0

19 -
f (55" Q151 (5). 72 (8) o0 (5)) df)
0

1
+ ‘F(a/l) fo A =5""01(5,%1 (5), %2 (3) 5 o0 %, (5)) d5
’5 —_
¥ F(al)fo (3-35)"" 01 Gt1 (5,72 (5) s (5)) 5
[l llgll
F(al+1) F(oz1+1)
Similarly, foreachi =1,2,3...,n,
5 lleill llgill lleoll llgll
‘%i(%(ﬁ))‘ﬁF(ai+1)+21“(oz,-+1)_F(a+1) C(@+1)
Hence Eq (3.5) gives:
- llell lIgll
[ (¢ (9))] < n(r(“ 5+ ey 1)) <

Hence B is uniformly bounded on S.

(3) For uniform continuity, consider % = (%, %, ..., %,) € S, and 9,9, € [0, 1] (5‘1 < 192)

8 (x(71)) - 3 (x(22)

| = |1, 8, 85, .8, (2 (91)) - (B1, B2, Bs, .. B,) (D))

=[98 (e (91)) = B (o (92)| + 2 ( (1)) — B2 ( (5))
+ '233 % 191)) - 233( (192))‘ +oo+ (B, (% (191)) -8 (% (52))‘ . (3.6)
Consider:

1 (o (91))) = 1 ((9))
'F(al)f (1= 57 g (5, %l(s))ds—r)f (@ = 5L Q1 5.1 (9 3 ) ot (50) 5
+1"(a,l) i (ﬁl_s)a‘ Ql(5,%1(5),%2(5),...,%,1(5))075—(F( )f( s)‘Yl o1 (5,71 (5))ds
F(al)f (1 =577 Q1 (5,21 (5), %2 (5) o0y % (3)) d5
+r(a1)f (B2-5)"" 01 G .22 @), (5))d§]

T @)

AIMS Mathematics

F(al) f (1= 5" o1 (5,21 () d5

h - 92 @ —
(fo (# - 3)" '—fo (3, - ) ]Ql (5,1 (5) %2 (5) ooy 2y (3)) S

+

F( )fa 01 (5,501 (5), 22 (5) o 2 (5))

Volume 9, Issue 6, 16234—-16249.
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< ﬁrz(;lﬂ)‘ fol(l — 5" @ (5,21 (5))d5| + 0;(;:.‘;1 folu — )"0y (8,21 (5), %2 (3) 5 ooy 20 (5)) 5
1 D a;-1 _ a-1 I a-1

¥ F(al)U; (B -9"" - (32-9)" )—ﬁ (3, - 5)" ]Q1 (5,1 (3), %2 (3) oo 0 (3)) d5

< ﬁ;(;f;l fol(l — 5" ) (5,21 (5)) d5| + ﬂrz(;?)l fol (1= 5" Q) (5,21 (8), %2 (5) 1 ooy 20 () d5
1 D a-1 _ a-1

*lras Uo (@ -9 - (- 5)" )]Q. (521 (3) 72 (5) s 2 (5)) 5

+

) -
fﬂ(ﬁz—g) 01 o1 ()22 (3) st () d5

2 L I
: [+ 1) +r(ag;l+1)((ﬂ2 _191>+(192—191)),

which tends to zero when 9, — 9.
Similarly, foreachi =1,2,3...,n,

5.+ (3)) - . (72 — 057, — 3.
Hence Eq (3.6) gives:
5 ((+(3)) - B3] — 052 — 5.
Hence B is uniformly continuous on &, and hence the result follows. O

Theorem 3.4. Suppose (A\) — (A3z) holds, then there exists a solution to the n-dimensional nonlinear
CFHDEs of Eq (1.2).

Proof. From Eq (3.2), the solution of Eq (1.2) is given by:
{(%1 (3) . 52(3),a (3)) = 2 (1 ()2 () . (9))
= (1 (8) 2 () 0 (9)) + B (1 (B) 2 () . 0 (3)).
From Lemma 3.2, the operator U satisfies
[ Ge) = WEN < apra (12 = FID)

where a@ < 1, and Yy € ¥, for Vx,F € € ([0, 1] X R",R) . Hence C; of Theorem 2.7 is satisfied.
LetS={xeR": ||#|| <N}, where

lll] ligll .
N>n|L+ Py+||h|| + +2 fi hi=1,2,3,...,n,
‘n( o H I+ T D TP T s ) Toreachi n

where

el gl
Py = max; {Po}, Il = max; {Iil}, — =" — = max, :
o = max; (Pog, Il = max (1), = s = maxi | g 2

llgll llg:ll
a8 ek {8 L
M e+ "™NTw+1

From Lemma 3.3, the operator B is:

AIMS Mathematics Volume 9, Issue 6, 16234—-16249.
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(1) Continuous on S.
(2) Uniformly bounded on S.
(3) Uniformly continuous on S.

Hence 8 is equi-continues and hence is completely continuous on S. Hence, C, of Theorem 2.7 is
satisfied. To prove C3 of Theorem 2.7, let x = (%, %5, ...,%,) € Z and F = (F,F>,...,F,) € S such that
% =W(x) + B(F). We need to prove » € S. Consider:

b (8)| = |2 ce ) + B (F (9))| < |21 (9))| + | (F (9)) 3.7)

llell llgll : ..
'91 )‘ + n(F(a D + Zl"(a/ n 1)) (using Lemma (3.3 (i1))).

Consider:

[ (9))] = |2, %o, s, .., W) (3 (9)) (3.8)
= [y (e (8)) 1+ 1% (3 (8)) 1 +..+ 1 2, (2 (B))].

Now consider,

o, (7))
=|P, (19,%1(1_9),%2 (19),...,%n (19))+(1 hl (%1)‘
<Py (1_9,%1(1_9),%2(19),...,%,,( ))‘+‘<1— hl (%1)‘
=[Py (3.1 (8) 22 () s o0 (B)) = Py (.0,0,...,0) + P, (0,0, ...,o)‘ + ‘(1 ~ )y (%1)‘
<[Py (3.1 (8) 22 () s o0 (8)) = Py (8.0, ...,0)| + ‘Pl (3,0.0, ...,o)‘ + 1y Gey)|
L‘x(5)|
< + |Poi| + |hy (1)
2n (M+ 'x 9 ‘)

<L+ |Poi| + |y ().
Similarly, foreachi =1,2,3...,n,
‘Qli (% (19))' < L+ |Poil + |h; ()] -

Hence, Eq (3.7) gives:

el sl

()] < e+ Z: (1Pl 1k Gl + n(r(a ) Te+D)
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Taking Sup;eo 41, We get:

II%IISn(L+PO+||h||Jr lell gl )<N

I'ae+1) IN'e+1))

Hence, » € S. Therefore, by Theorem 2.7, the operator 2 (%1 (1_9) L% (19) ey X (19)) =
A (%1 (19) %o (1_9) e Ay (19))+58 (%1 (1_9) , %o (1_9) ey Ay (19)) has a fixed point on S, which is required. O

4. 3-dimensional Euclidean space

To clarify Theorem 3.4, in this section, we construct the following example in 3-dimensional
Euclidean space R>.

Example 4.1. Consider the following 3-dimensional FHDE:

D3 (3, (9)) - 151: ;:1(;))__%;(2919))__%;(2) _ %3 ~Jeost, (8) - cosra (8) - coss (9)].
D3 (%2 (B)) _ 165_11% (Z_j)_ (fﬁ))_ (Zz ) _ ? —_ ‘cos%z (19) — cosx; (5‘) — cosH3 (19)' ,
D* (s (7)) - 15+ %%3((13) : %1((0)) : %2((13) = 2 Jeoss (9) - cose () - cosa (3)] 4.1

(0= Y 0 (1) = gl ) (1= 9)F e™ds,
1 0)= 30w =gy [ (1 =9t s,
#300) = buy 23 (1) = @fol(l — §)7 eads.

Here we have:

Py (8.5 (9). 22 (9) 2 (9)

Py (8,21 ()., 2(9) .3 (9)) =

P (0,01 (9). 72 (9) 22 (7)) =

0, (19,%1 (19) %o (1_9) %3 (19)) = _? — |cosx; (19) — cosXy (5‘) — coSH3 (19)' ,
0, (19 % (19) %, (19) %3 (19)) = %3 — |cosx, (19) cosx, (1_9) — cosH3 (19)',
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0; (8,7 (8). 2 (9) 23 (3)) = ?—‘cosm (9) - cosr (B) - coss (9)

1
hy (%) = RIS (1,85 =01 - 5)% e

-1
2

3 1o,
hy (32) = 1%2 s (%2, 8) =(1—-35)2e™,

1 3 %
b (es) = 35 03 (x3,5) = (1 = §)7 7.

To check the assumptions (Ay) — (Az) , we first consider:

3
|y (1) — hy ()| = 5%1 - 1%2
< : | |

— | —x

) 1 2

< xy — x|

Similarly for each i, j = 1,2, 3,
| Ger) = 1 Ge2)| < ey = 2o

For M =15 and L = 13 < M, we have,

IA

203 (M + e (8) - %2 (ﬂ)‘)
Similarly for each i, j = 1,2, 3,

P, (8.2, (9) .52 (8) .25 (8)) = P (8.2, (9) .02 (9) .5 ()] < L} (9) -2 (9)
[P (3.1 (8) 2 (8) 3 () = P (3.1 (8) 2 (8) 3 ))\—2(3)(M+|%1(ﬁ)_%2(3)|).
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Now consider,

_ _ B _ ﬁB _ _ _ 193
0, (ﬂ,%l (ﬂ),%z (19) , %3 (ﬂ)) = 3 ‘cos%l (19) — COSHo (19) — cosX3 (ﬂ)' < 3
Similarly for eachi = 1,2, 3, there exist g; (19) e €(0,1],N)
i (19,%1 (19) , X2 (19),%3 (19)) <& (B)
Finally, take Py = 0 and L = 13, for eachi =1,2,3,
gi (9 1 193 1 1
H 3( )H e f e 13293(12) 006268,
r(§+1) r(z) 0 :
5 3\ 3_(3) 3 1\ 3 1.1\ 3 1
r(Zl=r(1+Z|==r(2]==r{1+=]=x=I'|=| == x = Vr =1.3293,
(2) (+2) 2(2) 2(+2) 2X2(2) 2% VT ?
||901|| 1 f 1
1-52e™ds = — (0.66668) = 0.5015,
rG+1) () (1=9)7e™ds = 75553 ( )=
2
||902|| 1 f
1-5)2e™ds = 0.66668) = 0.5015,
rG+1) () (1=9)7e™ds = 75553 ( )
2
||<,03|| 1 f
= (1-75)2ed5s = (0.66668) = 0.5015,
F(%+1) r(%) 0 1.3293
and
h1 1
i Gl = fo sl = 7,
N3 3
iy Gl = fo Tl =3,
b1 1
1723 (3¢3)I| Zf(; 5%3 dxs = 6
So [Ihll = 3. 745 = 0.5015, and 72 = 0.06268.
llell

n|{L+ Py+ ||| +

I'a+1)

2 gl =3(13+0+0.5015 + 0.06268) = 40.69254.
I'ae+1)

Hence N > 41. All of the assumptions from (A;) — (A3) hold, hence by Theorem 3.4, we come to an end

that problem (4.1) possesses a solution.

5. Conclusions

We have successfully investigated an n-dimensional FHDE with nonlinear boundary conditions in
a nonlinear coupled system. We utilized Dhage’s fixed point theory and applied the Krasnoselskii-
type coupled fixed point theorem to establish conditions adequate for the existence of solutions to our
problem. To illustrate our idea, we provided a suitable example in 3-dimensional space.
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