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1. Introduction

In this paper, we consider the following Cauchy problem of Navier-Stokes equations with the
damping term:

ut + (u · ∇)u + ∇π + Λ2αu + |u|β−1u = 0, (t, x) ∈ R+ × R3, (1.1)
div u = 0, (t, x) ∈ R+ × R3, (1.2)

u(x, 0) = u0, x ∈ R3, (1.3)

where u = u(x, t) ∈ R3, π = π(x, t) ∈ R represent the unknown velocity field and the pressure
respectively. α ≥ 0, β ≥ 1 are real parameters. Λ := (−∆)

1
2 is defined in terms of Fourier transform by

Λ̂ f (ξ) = |ξ| f̂ (ξ).

Damping originates from the dissipation of energy by resistance, which describes many physical
phenomena such as porous media flow, resistance or frictional effects, and some dissipation
mechanisms (see [1] and references cited therein). When α = 1, Cai and Jiu first proved that there
exists a weak solution of (1.1)–(1.3) if β > 1. Furthermore, if β ≥ 7

2 , the global existence of the strong
solution was established. Later, this result was improved by Zhang, Wu and Lu in [2], where the lower
bound of β decreased to 3. Zhou [3] proved the lower bound 3 is critical in some sense. For the general
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case, it is proved that when 3
4 ≤ α < 1, β ≥ 2α+5

4α−2 or 1 ≤ α < 5
4 , β ≥ 1 + 10

4α+1 , the global existence of the
solution was established in [4]. For the asymptotic behavior, one can refer to [5–7] for details.

For the generalized Navier-Stokes equations (our system without damping term) when α = 1, there
are many regularity criteria to the system (1.1)–(1.3). The classical Prodi-Serrin’s-type criteria was
given in [8–10], where it was proved that if a weak solution u ∈ Lp(0,T ; Lq(R3)) with 2

p + 3
q = 1,

q ≥ 3, then the solution is regular and unique. Beirão da Veiga [11] established the analogous result:
∇u ∈ Lp(0,T ; Lq(R3)) with 2

p + 3
q = 2, q ≥ 3

2 . For the general case, in [12], Jiang and Zhu proved that
if Λθu ∈ Lp(0,T ; Lq(R3)) with 2α

p + 3
q ≤ 2α − 1 + θ, θ ∈ [1 − α, 1], q > 3

2α−1+θ
, then the solution remains

smooth on [0,T]. One can refer to [11, 13, 14] for more classical regularity criteria. For the large time
behavior, Jiu and Yu proved the algebraic decay of the solution under specific conditions (see [15]).

Our paper devotes to considering the role of damping terms in regularity criteria for the
system (1.1)–(1.3). We will explain the role of damping term in the following two questions:

(1) When does the dissipative term work better than the damping term?
(2) How does the damping term work?
For the first question, if α ≥ 5

4 , the generalized Navier-Stokes equations (our system without
damping term) exists a global strong solution u ∈ L∞(0,T ; H1(R3))∩L2(0,T ; H1+α(R3)). Consequently,
we only consider the case when 1

2 < α <
5
4 .

For the second question, we utilize two structures brought by the damping term: ‖|u|
β−1

2 ∇u‖2L2

(Theorems 1.1 and 1.2, when 1 < α < 5
4 ) and 1

β+1
d
dt‖u‖

β+1
Lβ+1 (Theorems 1.3 and 1.4, when 1

2 < α < 1).

Actually, ‖|u|
β−1

2 ∇u‖2L2 works better than 1
β+1

d
dt‖u‖

β+1
Lβ+1 , because ‖|u|

β−1
2 ∇u‖2L2 is a first-order estimate

resulting from the damping term while 1
β+1

d
dt‖u‖

β+1
Lβ+1 is a zero-order estimate resulting from the damping

term. However, because of the technical limitation, we still use 1
β+1

d
dt‖u‖

β+1
Lβ+1 when 1

2 < α < 1.

Consequently, when 1
2 < α < 1, how to utilize ‖|u|

β−1
2 ∇u‖2L2 may be an insteresting question.

We give our main theorems as follows.

Theorem 1.1. When 1 < α < 5
4 , β < 1 + 10

4α+1 , assume that the initial data u0(x) ∈ H1(R3) with
div u0 = 0, and u(x, t) is a local strong solution of the system (1.1)–(1.3). If u(x, t) ∈ Lp(0,T ; Lq(R3))
with

2α
p

+
3
q
≤ max{

2(α − 1)
3 − β

, 2α − 1}, min{
9 − 3β

2(α − 1)
,

3
2α − 1

} < q ≤ ∞, (1.4)

then, for any T > 0, the system (1.1)–(1.3) has a global strong solution satisfying

u ∈ L∞(0,T ; H1(R3)) ∩ L2(0,T ; H1+α(R3)) ∩ Lβ+1(0,T ; Lβ+1(R3)).

Remark 1.1. In Theorem 1.1, we roughly combine the regularity criteria brought by the dissipative
term and the damping term. In fact, we can verify that if 1 < α < 5

4 , 2 + 1
2α−1 < β < 1 + 10

4α+1 , then
2(α−1)

3−β > 2α − 1. Consequently, (1.4) becomes

2α
p

+
3
q
≤

2(α − 1)
3 − β

,
9 − 3β

2(α − 1)
< q ≤ ∞, (1.5)

which means that damping the term works better than the dissipative term.
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Theorem 1.2. When 1 < α < 5
4 , 5 − 2α < β < 1 + 10

4α+1 , assume that the initial data u0(x) ∈
H1(R3) with div u0 = 0, and u(x, t) is a local strong solution of the system (1.1)–(1.3). If Λαu(x, t) ∈
Lp(0,T ; Lq(R3)) with

(3 − β)α
p(2α − 5 + β)

+
3
q
≤ α +

3
2
,

3
1 + α

≤ q < ∞,

then, for any T > 0, the system (1.1)–(1.3) has a global strong solution satisfying

u ∈ L∞(0,T ; H1(R3)) ∩ L2(0,T ; H1+α(R3)) ∩ Lβ+1(0,T ; Lβ+1(R3)).

Remark 1.2. In Theorems 1.1 and 1.2, we consider the regularity criteria when β < 1 + 10
4α+1 , because

the global existence was established in [4] when β ≥ 1 + 10
4α+1 . If β ≥ 1 + 10

4α+1 , the regularity criteria
in Theorem 1.1 is satisfied naturally, so we recover the result in [4] when 1 < α < 5

4 .

Theorem 1.3. When 1
2 < α < 1, β < min{ 2α+5

4α−2 ,
3α+2
α
}, assume that the initial data u0(x) ∈ H1(R3) ∩

Lβ+1(R3) with div u0 = 0, and u(x, t) is a local strong solution of the system (1.1)–(1.3). If u(x, t) ∈
Lp(0,T ; Lq(R3)) with

6α − (2α − 1)(β + 1)
p

+
3
q
≤ 2α − 1,

3
2α − 1

< q ≤
6α

2α − 1
, (1.6)

then, for any T > 0, the system (1.1)–(1.3) has a global strong solution satisfying

u ∈ L∞(0,T ; H1(R3)) ∩ L2(0,T ; Hα+1(R3)) ∩ L∞(0,T ; Lβ+1(R3)), ut ∈ L2(0,T ; L2(R3)).

Remark 1.3. If β ≥ 2α+5
4α−2 , the regularity criteria in Theorem 1.3 is satisfied naturally, so we recover the

result in [4] when 3
4 ≤ α < 1.

Theorem 1.4. When 1
2 < α < 1, β < min{ 2α+5

4α−2 ,
3α+2
α
}, assume that the initial data u0(x) ∈ H1(R3) ∩

Lβ+1(R3) with div u0 = 0, and u(x, t) is a local strong solution of the system (1.1)–(1.3). If Λαu(x, t) ∈
Lp(0,T ; Lq(R3)) with

6α − (2α − 1)(β + 1)
p

+
3
q
≤ 3α − 1,

3
3α − 1

< q ≤
6α

3α − 1
,

then, for any T > 0, the system (1.1) has a global strong solution satisfying

u ∈ L∞(0,T ; H1(R3)) ∩ L2(0,T ; Hα+1(R3)) ∩ L∞(0,T ; Lβ+1(R3)), ut ∈ L2(0,T ; L2(R3)).

2. Regularity criteria

Proof of the Theorem 1.1. Multiplying (1.1) by −4u, after integration by parts and taking the
divergence-free property into account, we have

1
2

d
dt
‖∇u‖2L2 + ‖Λ1+αu‖2L2 + ‖|u|

β−1
2 ∇u‖2L2 +

4(β − 1)
(β + 1)2 ‖∇|u|

β+1
2 ‖2L2 =

∫
R3

(u · ∇)u · ∆u dx.
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For
∫
R3(u · ∇)u · ∆udx, we have∫

R3
(u · ∇)u · ∆udx

≤ C‖|u|
β−1

2 ∇u‖L2‖|u|
3−β

2 ∆u‖L2

≤
1
2
‖|u|

β−1
2 ∇u‖2L2 + C‖u‖3−βLq ‖∆u‖2

L
2q

q−3+β

≤
1
2
‖|u|

β−1
2 ∇u‖2L2 + ‖u‖3−βLq ‖∇u‖2(1−θ1)

L2 ‖Λ1+αu‖2θ1
L2

≤
1
2
‖|u|

β−1
2 ∇u‖2L2 +

1
2
‖Λ1+αu‖2L2 + C‖u‖

3−β
1−θ1
Lq ‖∇u‖2L2

≤
1
2
‖|u|

β−1
2 ∇u‖2L2 +

1
2
‖Λ1+αu‖2L2 + C‖u‖

2qα(3−β)
2(α−1)−9+3β

Lq ‖∇u‖2L2 ,

where

1
2
−

3 − β
2q

=
1
3

+ (
1
2
−
α

3
)θ1 +

1 − θ1

2
,

with θ1 =
2q+9−3β

2αq . The conditions in Theorem 1.1 imply θ1 ∈ [ 1
α
, 1). By direct calculation, we have

3 − β
1 − θ1

=
2qα(3 − β)

2(α − 1)q − 9 + 3β
.

Combining the above estimates, we obtain

1
2

d
dt
‖∇u‖2L2 + ‖Λ1+αu‖2L2 + ‖|u|

β−1
2 ∇u‖2L2 +

4(β − 1)
(β + 1)2 ‖∇|u|

β+1
2 ‖2L2

≤
1
2
‖|u|

β−1
2 ∇u‖2L2 +

1
2
‖Λ1+αu‖2L2 + C‖u‖

3−β
1−θ1
Lq ‖∇u‖2L2 .

A standard Gronwall’s inequality shows that

‖∇u‖2L2 +

∫ t

0
(‖Λα+1u‖2L2 + ‖|u|

β−1
2 ∇u‖2L2 + ‖∇|u|

β+1
2 ‖2L2)(s) ds ≤ C( t, ‖u0‖H1).

This completes the proof of the Theorem 1.1. �
Proof of the Theorem 1.2. Multiplying (1.1) by −4u, after integration by parts and taking the
divergence-free property into account, we have

1
2

d
dt
‖∇u‖2L2 + ‖Λ1+αu‖2L2 + ‖|u|

β−1
2 ∇u‖2L2 +

4(β − 1)
(β + 1)2 ‖∇|u|

β+1
2 ‖2L2 =

∫
R3

(u · ∇)u · ∆u dx.

For
∫
R3(u · ∇)u · ∆u dx, we have∫

R3
(u · ∇)u · ∆u

≤ C‖|u|
β−1

2 ∇u‖L2‖|u|
3−β

2 ∆u‖L2
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≤
1
2
‖|u|

β−1
2 ∇u‖2L2 + C‖u‖3−β

L3 ‖∆u‖2
L

6
β

≤
1
2
‖|u|

β−1
2 ∇u‖2L2 + C‖u‖(3−β)(1−θ2)

L2 ‖Λαu‖(3−β)θ2
Lq ‖∇u‖2(1−θ3)

L2 ‖Λ1+αu‖2θ3

L2

≤
1
2
‖|u|

β−1
2 ∇u‖2L2 +

1
2
‖Λ1+αu‖2L2 + C‖Λαu‖

(3−β)θ2
1−θ3

Lq ‖∇u‖2L2

≤
1
2
‖|u|

β−1
2 ∇u‖2L2 +

1
2
‖Λ1+αu‖2L2 + C‖Λαu‖

2(3−β)αq
[(2α+3)q−6][2α−5+β]

Lq ‖∇u‖2L2 ,

where  1
3 = θ2( 1

q −
α
3 ) + 1−θ2

2 ,
β

6 = 1
3 + θ3(1

2 −
α
3 ) + 1−θ3

2 ,

with θ2 =
q

(2α+3)q−6 , θ3 =
5−β
2α . The conditions in Theorem 1.2 imply θ2 ∈ (0, 1], θ3 ∈ ( 1

α
, 1). By direct

calculation, we have

(3 − β)θ2

1 − θ3
=

2(3 − β)αq
[(2α + 3)q − 6][2α − 5 + β]

.

Combining the above estimates, we obtain

1
2

d
dt
‖∇u‖2L2 + ‖Λ1+αu‖2L2 + ‖|u|

β−1
2 ∇u‖2L2 +

4(β − 1)
(β + 1)2 ‖∇|u|

β+1
2 ‖2L2

≤
1
2
‖|u|

β−1
2 ∇u‖2L2 +

1
2
‖Λ1+αu‖2L2 + C‖Λαu‖

2(3−β)αq
[(2α+3)q−6][2α−5+β]

Lq ‖∇u‖2L2 .

A standard Gronwall’s inequality shows that

‖∇u‖2L2 +

∫ t

0
(‖Λα+1u‖2L2 + ‖|u|

β−1
2 ∇u‖2L2 + ‖∇|u|

β+1
2 ‖2L2)(s) ds ≤ C( t, ‖u0‖H1).

This completes the proof of the Theorem 1.2. �
Proof of the Theorem 1.3. Multiplying (1.1) by −4u, ut and adding the two equations, after integration
by parts and taking the divergence-free property into account, we have

1
2

d
dt
‖∇u‖2L2 +

1
2

d
dt
‖Λαu‖2L2 +

1
β + 1

d
dt
‖u‖β+1

Lβ+1 + ‖Λ1+αu‖2L2 + ‖ut‖
2
L2

+‖|u|
β−1

2 ∇u‖2L2 +
4(β − 1)
(β + 1)2 ‖∇|u|

β+1
2 ‖2L2

=

∫
R3

(u · ∇)u · ∆u dx −
∫
R3

(u · ∇)u · ut dx

≤ C‖∇u‖3L3 + C‖u · ∇u‖2L2 +
1
2
‖ut‖

2
L2 .

For ‖∇u‖3L3 , we have

C‖∇u‖3L3
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≤ C‖u‖δ1(1−θ4)
Lq ‖Λ1+αu‖δ1θ4

L2 ‖u‖
(3−δ1)(1−θ5)
Lβ+1 ‖Λ1+αu‖(3−δ1)θ5

L2

≤
1
4
‖Λ1+αu‖2L2 + C‖u‖

2δ1(1−θ4)
2−δ1θ4−(3−δ1)θ5
Lq ‖u‖

2(3−δ1)(1−θ5)
2−δ1θ4−(3−δ1)θ5

Lβ+1

≤
1
4
‖Λ1+αu‖2L2 + C‖u‖

2δ1(1−θ4)
2−δ1θ4−(3−δ1)θ5
Lq ‖u‖β+1

Lβ+1

≤
1
4
‖Λ1+αu‖2L2 + C‖u‖

[6α−(2α−1)(β+1)]q
(2α−1)q−3

Lq ‖u‖β+1
Lβ+1 ,

where 
1
3 = 1

3 + θ4( 1
2 −

1+α
3 ) + 1−θ4

q ,
1
3 = 1

3 + θ5( 1
2 −

1+α
3 ) +

1−θ5
β+1 ,

2(3−δ1)(1−θ5)
2−δ1θ4−(3−δ1)θ5

= β + 1.

By directly calculating, we have
θ4 = 6

(2α−1)q+6 ,

θ5 = 6
(2α−1)(β+1)+6 ,

δ1 =
[(2α−1)q+6][6α−(2α−1)(β+1)]

2(α+1)[(2α−1)q+6]−3[(2α−1)(β+1)+6] ,
2δ1(1−θ4)

2−δ1θ4−(3−δ1)θ5
=

[6α−(2α−1)(β+1)]q
(2α−1)q−3 .

The conditions in Theorem 1.3 imply θ4 ∈ [ 1
1+α

, 1), θ5 ∈ [ 1
1+α

, 1), δ1 ∈ (0, 3).
For ‖u · ∇u‖2L2 , we have

C‖u · ∇u‖2L2

≤ C‖u‖δ2
Lq‖u‖2−δ2

Lβ+1 ‖∇u‖
L

2

1−
δ2
q −

2−δ2
β+1

≤ C‖u‖δ2
Lq‖u‖2−δ2

Lβ+1 ‖u‖
2(1−θ6)
Lβ+1 ‖Λ

1+αu‖2θ6

L2

≤
1
4
‖Λ1+αu‖2L2 + C‖u‖

δ2
1−θ6
Lq ‖u‖

2−δ2
1−θ6

Lβ+1 ‖u‖
2
Lβ+1

≤
1
4
‖Λ1+αu‖2L2 + C‖u‖

δ2
1−θ6
Lq ‖u‖

β+1
Lβ+1

=
1
4
‖Λ1+αu‖2L2 + C‖u‖

(3α+2−αβ)q
αq−3

Lq ‖u‖β+1
Lβ+1

≤
1
4
‖Λ1+αu‖2L2 + C(‖u‖

[6α−(2α−1)(β+1)]q
(2α−1)q−3

Lq + 1)‖u‖β+1
Lβ+1 ,

where 1
2 −

δ2
2q −

2−δ2
2(β+1) = 1

3 + θ6( 1
2 −

1+α
3 ) +

1−θ6
β+1 ,

2−δ2
1−θ6

= β − 1.

By direct calculation, we have θ6 =
2q+9−3β

2(α+1)q+3−3β ,
δ2

1−θ6
= 2

1−θ6
+ 1 − β =

(3α+2−αβ)q
αq−3 .
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The conditions in Theorem 1.3 imply θ6 ∈ [ 1
1+α

, 1).
Combining the above estimates, we obtain

1
2

d
dt
‖∇u‖2L2 +

1
2

d
dt
‖Λαu‖2L2 +

1
β + 1

d
dt
‖u‖β+1

Lβ+1 + ‖Λ1+αu‖2L2 + ‖ut‖
2
L2

+‖|u|
β−1

2 ∇u‖2L2 +
4(β − 1)
(β + 1)2 ‖∇|u|

β+1
2 ‖2L2

≤
1
2
‖Λ1+αu‖2L2 + C(‖u‖

[6α−(2α−1)(β+1)]q
(2α−1)q−3

Lq + 1)‖u‖β+1
Lβ+1 .

A standard Gronwall’s inequality shows that

‖∇u‖2L2 + ‖u‖β+1
Lβ+1 + ‖Λαu‖2L2 +

∫ t

0
(‖∇|u|

β+1
2 ‖2L2 + ‖|u|

β−1
2 ∇u‖2L2 + ‖Λ1+αu‖2L2 + ‖ut‖

2
L2)(τ)dτ

≤ C( t, ‖u0‖H1 , ‖u0‖Lβ+1).

This completes the proof of the Theorem 1.3. �
Proof of the Theorem 1.4. Multiplying (1.1) by −4u, ut and adding the two equations, after integration
by parts and taking the divergence-free property into account, we have

1
2

d
dt
‖∇u‖2L2 +

1
2

d
dt
‖Λαu‖2L2 +

1
β + 1

d
dt
‖u‖β+1

Lβ+1 + ‖Λ1+αu‖2L2 + ‖ut‖
2
L2

+‖|u|
β−1

2 ∇u‖2L2 +
4(β − 1)
(β + 1)2 ‖∇|u|

β+1
2 ‖2L2

=

∫
R3

(u · ∇)u · ∆u dx −
∫
R3

(u · ∇)u · ut dx

≤ C‖∇u‖3L3 + C‖u · ∇u‖2L2 +
1
2
‖ut‖

2
L2 .

For ‖∇u‖3L3 , we have

C‖∇u‖3L3

≤ C‖Λαu‖δ3(1−θ7)
Lq ‖Λ1+αu‖δ3θ7

L2 ‖u‖
(3−δ3)(1−θ5)
Lβ+1 ‖Λ1+αu‖(3−δ3)θ5

L2

≤
1
2
‖Λ1+αu‖2L2 + C‖Λαu‖

2δ3(1−θ7)
2−δ3θ7−(3−δ3)θ5
Lq ‖u‖

2(3−δ3)(1−θ5)
2−δ3θ7−(3−δ3)θ5

Lβ+1

≤
1
2
‖Λ1+αu‖2L2 + C‖Λαu‖

2δ3(1−θ7)
2−δ3θ7−(3−δ3)θ5
Lq ‖u‖β+1

Lβ+1

≤
1
2
‖Λ1+αu‖2L2 + C‖Λαu‖

[6α−(2α−1)(β+1)]q
(3α−1)q−3

Lq ‖u‖β+1
Lβ+1 ,

where 
1
3 = 1−α

3 + θ7(1
2 −

1
3 ) + 1−θ7

q ,
1
3 = 1

3 + θ5( 1
2 −

1+α
3 ) +

1−θ5
β+1 ,

2(3−δ3)(1−θ5)
2−δ3θ7−(3−δ3)θ5

= β + 1.
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By direct calculation, we have 
θ7 =

6−2αq
6−q ,

θ5 = 6
(2α−1)(β+1)+6 ,

δ3 =
(6−q)[6α−(2α−1)(β+1)]

2(α+1)(6−q)−(3−αq)[(2α−1)(β+1)+6] .

The conditions in Theorem 1.3 imply θ7 ∈ [1 − α, 1), θ5 ∈ [ 1
1+α

, 1), δ3 ∈ (0, 3).
We can estimate ‖u · ∇u‖2L2 similarily.
Combining the above estimates, we obtain

1
2

d
dt
‖∇u‖2L2 +

1
2

d
dt
‖Λαu‖2L2 +

1
β + 1

d
dt
‖u‖β+1

Lβ+1 + ‖Λ1+αu‖2L2 + ‖ut‖
2
L2

+‖|u|
β−1

2 ∇u‖2L2 +
4(β − 1)
(β + 1)2 ‖∇|u|

β+1
2 ‖2L2

≤
1
2
‖Λ1+αu‖2L2 + C‖Λαu‖

[6α−(2α−1)(β+1)]q
(3α−1)q−3

Lq ‖u‖β+1
Lβ+1 .

A standard Gronwall’s inequality shows that

‖∇u‖2L2 + ‖u‖β+1
Lβ+1 + ‖Λαu‖2L2 +

∫ t

0
(‖∇|u|

β+1
2 ‖2L2 + ‖|u|

β−1
2 ∇u‖2L2 + ‖Λ1+αu‖2L2 + ‖ut‖

2
L2)(τ)dτ

≤ C( t, ‖u0‖H1 , ‖u0‖Lβ+1).

This completes the proof of the Theorem 1.4. �

3. Conclusions

In this paper, we have established some regularity criteria for the 3D generalized Navier-Stokes
equations with nonlinear damping term. First, we consider the case where the dissipative term is
superior to the damping term, which corresponds to when the damping term works. Second, in
Remark 1.1, we show that the damping term works better than the dissipative term. Furthermore,
we have presented that the damping term has different effects in different cases, which shows the
balance and the interaction between the dissipative term and the damping term as well as the role of
the damping term in regularity criteria. In fact, considering how the damping term works and the
interaction between the dissipative term and the damping term is the main idea of this paper.
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