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Abstract: For ρ ∈ [0, 1) and ε > 0, the non-autonomous 3D Brinkman-Forchheimer equation with
singularly oscillating external force

ut − ν∆u + au + b|u|u + c|u|βu + ∇p = f0(x, t) + ε−ρ f1(x,
t
ε

),

divu = 0

are considered, together with the averaged equation

ut − ν∆u + au + b|u|u + c|u|βu + ∇p = f0(x, t),
divu = 0

formally corresponding to the limiting case ε = 0. First, within the restriction ρ < 1 and under suitable
translation-compactness assumptions on the external forces, the uniform (w.r.t.ε) boundedness of the
related uniform attractorsAε is established when 1 < β ≤ 4/3. This fact is not at all intuitive, since in
principle the blow up of the oscillation amplitude might overcome the averaging effect due to the term
t
ε

in f1. Next, the convergence of the attractorAε of the first equation to the attractorA0 of the second
one as ε→ 0+ is established.
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1. Introduction

For ρ ∈ [0, 1) and ε > 0, we consider the following non-autonomous Brinkman-Forchheimer
equation with a singularly oscillating external force on Ω ⊂ R3:

ut − ν∆u + au + b|u|u + c|u|βu + ∇p = f0(x, t) + ε−ρ f1(x, t
ε
), in Ω × (τ,T ),

divu = 0, in Ω × (τ,T ),
u|t=τ = uτ, in Ω,

u = 0, on ∂Ω × (τ,T ),

(1.1)

where Ω is an open, bounded domain of R3 with sufficiently smooth boundary ∂Ω. u = (u1, u2, u3) is
the fluid velocity vector, ν is the Brinkman coefficient, a > 0 is the Darcy coefficient, b > 0, c > 0 are
the Forchheimer coefficients, p is the pressure, β ∈ (1, 4

3 ] is a constant.
Along with (1.1), we consider the averaged Brinkman-Forchheimer equation

ut − ν∆u + au + b|u|u + c|u|βu + ∇p = f0(x, t), in Ω × (τ,T ),
divu = 0, in Ω × (τ,T ),
u|t=τ = uτ, in Ω,

u = 0, on ∂Ω × (τ,T ),

(1.2)

without by rapid and singular oscillations, which formally corresponds to ε = 0.
The Brinkman-Forchheimer equation describes the motion of fluid flow in a saturated porous

medium and has been studied by many researchers. We should note that most of the previous studies
have been focused on physical viewpoint or numerical simulation viewpoint(see [1–8]), or continuous
dependence of solutions on the coefficients ν, b and c (see [9–15]). The asymptotic behavior of
solutions was examined in [16–22], where [16–21] were mainly for the case of the parameter β = 2.
In [16], using condition (C) method, Uğurlu showed the existence of global attractor in H1

0(Ω).
In [17], Wang and Lin showed that Brinkman-Forchheimer equation has a global attractor in H2(Ω)
by a very clever way. In [18], using the method of regularization of solutions and the compact
embedding to deduce the uniformly ω-limit compactness of the associated evolutionary process, You,
Zhao and Zhou proved the existence of uniform attractor in H1

0(Ω). In [19], the existence of
D-pullback attractors was deduced by establishing the D-pullback asymptotical compactness of
θ-cocycle. In [20], Song and Qiao proved the existence and structure of the uniform attractor in H1

0(Ω)
for the processes associated to the fluid when the external force f0(x, t) is translation compact in
L2

loc(R, (L
2(Ω))3) and investigated the averaging problems of the equations with oscillating external

forces. In [21], Zhang, Su and Wen investigated the existence of global attractor and uniform attractor
for the 3D autonomous and nonautonomous Brinkman-Forchheimer equations. For β , 2, in [22],
using condition (C) method, Ouyang and Yang proved the existence of global attractor in H1

0(Ω) when
1 < β ≤ 4

3 .
Stability of attractors for a dynamical system with some oscillating (or perturbed) external forces

is very important in natural phenomenon. Indeed, this issue has been considered by some
mathematicians and engineers. Chepyzhov et al. [23] studied the non-autonomous sine-Gordon type
equations with rapidly oscillating external force. Efendiev and Zelik [24, 25] considered the
reaction-diffusion systems with rapidly oscillating coefficients and nonlinear rapidly oscillating in
time. Chepyzhov and Vishik [26–28] investigated the Navier-Stokes equations with terms that rapidly
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oscillate with respect to spatial and time variables. Qin et al. [29] investigated the uniform attractors
for a 3D non-autonomous Navier-Stokes-Voight equation with singularly oscillating forces. Anh and
Toan [30] considered the nonclassical diffusion equation on RN(N ≥ 3) with a singularly oscillating
external force. Medjo [31] and [32] used different methods to discuss non-autonomous planetary 3D
geostrophic equation with oscillating external force and its global attractor. Medjo [33] investigated a
non-autonomous two-phase flow model with oscillating external force and its global attractor. As far
as we know, there is almost no paper dealing with 3D Brinkman-Forchheimer equations with rapidly
oscillating terms have been published.

Motivated by [22] and [23–33], we consider the properties of (1.1), depending on the small
parameter ε, which reflects the rate of fast time oscillation in the term ε−ρ f1( t

ε
, x), having the growing

amplitude of order ε−ρ. By using the method in [27, 29, 30, 32, 33], under suitable assumptions on the
external force, we prove the stability of the uniform attractor Aε(0 < ε ≤ 1) associated to problem
(1.1)-(1.2) as ε → 0+ in space H. The uncertainty of parameter β brings a lot of trouble to our proof,
because when β is too large, some Sobolev embedding inequlaities can not be used. In the proof
process of this paper, we finally determine that 1 < β ≤ 4

3 , just like in [22].
The main purpose of this paper is to show:

(1) the uniform (w.r.t.ε) boundedness of the familyAε in H which is defined in Section 3:

sup
ε∈[0,1]

‖ Aε ‖H< +∞;

(2)the convergence ofAε toA0 as ε→ 0+ in the standard Hausdorff semidistance in H, i.e.,:

lim
ε→0+

distH(Aε,A0) = 0.

This paper is organized as follows. In Section 2, we present the notations and preliminaries that are
required for this study. In Section 3, we show the existence of uniform attractorAε and we demonstrate
the structure of the uniform attractor. In Section 4, we verify the uniform boundedness of the uniform
attractorAε. In Section 5, we prove the convergenceAε → A0 as ε→ 0+.

Nomenclature
u fluid velocity vector(m/s) p pressure
R3 three-dimensional whole space Ω open, bounded domain of R3

u1, u2, u3 velocity components t time
∂Ω boundary of a domain ν Brinkman coefficient
a Darcy coefficient b, c Forchheimer coefficient
β power of nonlinear term f external force

2. Notations and preliminaries

Given a space X, we usually denote the norm in X by ‖ · ‖X, and we indicate by

distX(B1, B2) = sup
b1∈B1

inf
b2∈B2

‖ b1 − b2 ‖X,
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the Hausdorff semidistance in X from a set B1 to a set B2. Throughout this paper, we set
Rτ = [τ,+∞), τ ∈ R. C will stand for a generic positive constant, which is different from line to line or
even in the same line.

The mathematical setting of our problem is similar to that of the Navier-Stokes equations. Let us
introduce the following spaces

V = {u ∈ (C∞0 (Ω))3 : divu = 0},H = cl(L2(Ω))3V,V = cl(H1
0 (Ω))3V,

where clX denotes the closure in the space X. Operator P is the Helmholtz-Leray orthogonal projection
from (L2(Ω))3 onto H. A := −P∆ is the Stokes operator subject to the nonslip homogeneous Dirichlet
boundary with the domain (H2(Ω))3 ∩ V , and A is a self-adjoint positively defined operator on H. We
define, for σ ∈ R, the scale of Hilbert spaces

Hσ := D(A
σ
2 )

with inner products and norms

〈u, v〉σ := 〈A
σ
2 u, A

σ
2 v〉(L2(Ω))3 , ‖ u ‖Hσ:=‖ A

σ
2 u ‖(L2(Ω))3 .

In particular,
H0 = H,H1 = V,H2 = D(A),

and we have the generalized Poincaré inequality

‖ u ‖Hσ+1≥ λ
1
2
1 ‖ u ‖Hσ ,∀u ∈ Hσ+1, (2.1)

where λ1 is the first eigenvalue of the Stokes operator A.
In this paper, we use (·, ·) and ‖ · ‖ denote the product and the norm of H, i.e.,

(u, v) =

∫
Ω

u · vdx,∀u, v ∈ H, ‖ u ‖= (u, u)
1
2 ,

((·, ·)) and ‖ · ‖V denote the product and norm of V , i.e.,

((u, v)) =

3∑
i=1

∫
Ω

∇ui · ∇vidx,∀u, v ∈ V, ‖ u ‖V= ((u, u))
1
2 .

In this paper, Lp(Ω) = (Lp(Ω))3, and we use ‖ · ‖p to denote the norm in Lp(Ω) (for p , 2).
Assumptions on the external forces The function f0(x, t) and f1(x, t) are taken from the space

L2
b(R; H) of translation bounded functions in L2

loc(R; H), with

‖ f0 ‖
2
L2

b
:= sup

t∈R

∫ t+1

t
‖ f0(s) ‖2 ds = M2

0 , (2.2)

‖ f1 ‖
2
L2

b
:= sup

t∈R

∫ t+1

t
‖ f1(s) ‖2 ds = M2

1 , (2.3)

for some constants M0,M1 ≥ 0.
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Putting

f ε(x, t) :=
{

f0(x, t) + ε−ρ f1(x, t
ε
), ε > 0,

f0(x, t), ε = 0.
(2.4)

It is easy to check that f ε ∈ L2
b(R; H), and

‖ f ε ‖L2
b
≤ Qε :=

{
M0 +

√
2M1ε

−ρ, ε > 0,
M0, ε = 0.

Now we recall some inequalities and a Gronwall-type lemma that will be needed in the sequel.

Lemma 2.1. ( [34]) Let p ∈ [2,∞). Then for every a, b ∈ R,

(|a|p−2a − |b|p−2b)(a − b) ≥ 2−2−p3−p/2|a − b|p.

Lemma 2.2. ( [27]) For every τ ∈ R, every nonnegative locally summable function ϕ on Rτ and every
β > 0, we have ∫ t

τ

ϕ(s)e−β(t−s)ds ≤
1

1 − e−β
sup
θ≥τ

∫ θ+1

θ

ϕ(s)ds, (2.5)

for all t ≥ τ.

Lemma 2.3. ( [23]) Let a real function z(t), t ≥ 0 be uniformly continuous and satisfy the inequality

dz
dt

+ γz(t) ≤ f (t),∀t ≥ 0,

where γ > 0, f (t) ≥ 0 for all t ≥ 0 and f ∈ L1
loc(R

+). Suppose also that∫ t+1

t
f (s)ds ≤ M,∀t ≥ 0.

Then
z(t) ≤ z(0)e−γt + M(1 + γ−1),∀t ≥ 0.

3. On the existence and structure of the uniform attractorAε

We rewrite (1.1) and (1.2) in the abstract form{
ut + νAu + au + G(u) = f ε(x, t),

u|t=τ = uτ,
(3.1)

where the pressure p has disappeared by force of the application of the Helmholtz-Leray projection P,
and G(u) = P(b|u|u + c|u|βu), f ε(x, t) = f0(x, t) + ε−ρ f1(x, t

ε
) and ε > 0 is fixed.

Proposition 3.1. Given f ε ∈ L2
b(R; H) and uτ ∈ H. Then the system (3.1) has a unique weak solution

u(t) satisfying
u ∈ C(Rτ; H) ∩ L∞(Rτ; H) ∩ L2

loc(Rτ; V).
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Proof. We can prove the global existence and uniqueness result by using the Faedo-Galerkin method
(see [35, 36]). �

If the functions f0(t) and f1(t) are translation bounded, i.e. conditions (2.2) and (2.3) hold, equation
(3.1) generates the dynamical process

{U f ε(t, τ), t ≥ τ, τ ∈ R}

acting on H by the formula
U f ε(t, τ)uτ = u(t), t ≥ τ,

where u(t) is the solution to (3.1).

Proposition 3.2. For any ε > 0, the process {U f ε(t, τ)} associated to (3.1) is uniformly compact in H
and it has a uniform (with respect to τ ∈ R) absorbing set Bε in H,

Bε = {u ∈ H| ‖ u ‖≤ C0Qε}, (3.2)

where the constant C0 depends on ν and λ1. Moreover, there exists a uniform attractorAε in H.

Proof. The proof process is similar to the proof in [21], so we omit it here. �
We consider the hullH( f ε) of f ε(x, t) in the space L2

loc(R; H):

H( f ε) = [{ f ε(·, t + h)|h ∈ R}]L2
loc(R;H). (3.3)

Recall thatH( f ε) is compact in L2
loc(R; H) and each element f̂ ε ∈ H( f ε) can be written as

f̂ ε(x, t) = f̂0(x, t) + ε−ρ f̂1(x,
t
ε

), (3.4)

with f̂0 ∈ H( f0) and f̂1 ∈ H( f1), where H( f0) and H( f1) are the hulls of f0 and f1 in L2
loc(R; H)

respectively.
We also note that (see [23])

‖ f̂0 ‖L2
b(R;H)≤‖ f0 ‖L2

b(R;H),∀ f̂0 ∈ H( f0), (3.5)

‖ f̂1 ‖L2
b(R;H)≤‖ f1 ‖L2

b(R;H),∀ f̂1 ∈ H( f1). (3.6)

It follows that
‖ f̂ ε ‖L2

b(R;H)≤‖ f0 ‖L2
b(R;H) +

C
ερ
‖ f1 ‖L2

b(R;H),∀ f̂ ε ∈ H( f ε), (3.7)

where C is independent of f0, f1, ρ and ε.
To describe the structure of the attractorA f̂ ε , we consider the family of equations

dû
dt

+ νAû + aû + G(û) = f̂ ε(x, t), (3.8)

with the external force f̂ ε ∈ H( f ε).
For f̂ ε ∈ H( f ε), the Eq.(3.8) generates a process {U f̂ ε(t, τ)} that satisfies the same properties as

{U f ε(t, τ)}. Moreover, the process {U f̂ ε(t, τ)} has a uniform attractorA f̂ ε that satisfiesA f̂ ε ⊂ A f ε .
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Proposition 3.3. Let f0(x, t), f1(x, t) be translation compact in the space L2
loc(R; H). Then for any fixed

ε, 0 < ε ≤ 1, the family of processes {U f̂ ε(t, τ)}, f̂ ε ∈ H( f ε) corresponding to (3.8) has an absorbing
set Bε, which is bounded in H and satisfies

|Bε|H ≤ C + Cε−ρ. (3.9)

The family {U f̂ ε(t, τ)}, f̂ ε ∈ H( f ε) is (H ×H( f ε); H)-continuous. That is, if

f̂ εn → f̂ ε in L2
loc(R; H), uτn → uτ in H, (3.10)

then
U f̂ εn (t, τ)uτn → U f̂ ε(t, τ)uτ in H. (3.11)

Proof. The first part of the proposition is proved in Proposition 3.2. Now, let us prove the second part.
Let wn = ûn − û = U f̂ εn (t, τ)uτn − U f̂ ε(t, τ)uτ. Then wn satisfies

dwn

dt
+ νAwn + awn + G(ûn) −G(û) = f̂ εn − f̂ ε. (3.12)

Multiplying (3.12) by wn we have

1
2

d
dt
‖ wn ‖

2 +ν ‖ ∇wn ‖
2 +a ‖ wn ‖

2 +(G(ûn) −G(û),wn) = ( f̂ εn − f̂ ε,wn). (3.13)

Noticing b|u|u + c|u|βu is monotonic, i.e.,

(G(ûn) −G(û),wn) = (b|ûn|ûn + c|ûn|
βûn − b|û|û − c|û|βû, ûn − û) ≥ 0, (3.14)

then (3.13) gives
d
dt
‖ wn ‖

2 +a ‖ wn ‖
2≤

1
a
‖ f̂ εn − f̂ ε ‖2 . (3.15)

Applying Gronwall Lemma to (3.15) we have

‖ wn(t) ‖2 ≤‖ wn(τ) ‖2 e−a(t−τ) +
1
a

∫ t

τ

‖ f̂ εn − f̂ ε ‖2 e−a(t−s)ds

≤‖ wn(τ) ‖2 +
1
a

∫ t

τ

‖ f̂ εn − f̂ ε ‖2 ds,∀t ≥ τ. (3.16)

Note that
f̂ εn → f̂ ε in L2

loc(R; H) and uτn → uτ in H as n→ ∞, (3.17)

therefore, it follows from (3.16) that

‖ wn(t) ‖=‖ ûn(t) − û(t) ‖→ 0 as n→ ∞,

and (3.11) is proved, i.e., the family of processes {U f̂ ε(t, τ)}, f̂ ε ∈ H( f ε) is (H×H( f ε); H)-continuous.
�
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We denote by K f̂ ε the kernel of (3.8) with the external force f̂ ε ∈ H( f ε). Let us recall that K f̂ ε is
the family of all complete solutions {û(t), t ∈ R} of (3.8), which are uniformly bounded in H. The set

K f̂ ε(s) = {û(s)|û ∈ K f̂ ε} ⊂ H

is called the kernel section of K f̂ ε at time t = s.
For every ε ∈ [0, 1], the following representation of the uniform attractorAε of equation (3.1) holds:

Aε =
⋃

f̂ ε∈H( f ε)

K f̂ ε(0). (3.18)

Actually, K f̂ ε(0) can be replaced by K f̂ ε(τ), for an arbitrary τ ∈ R.

4. Uniform boundedness ofAε in H

First, we consider the auxiliary linear equation with nonautonomous external force and give some
useful estimates and then prove the uniform boundedness ofAε in H.

Considering the linear equation

Vt + νAV + aV = K(t), V|t=τ = 0, (4.1)

we get the following lemma.

Lemma 4.1. If K ∈ L2
loc(R; V), then the above problem has a unique solution

V ∈ C(Rτ; H2) ∩ L2
loc(Rτ; H3).

Moreover, the inequalities

‖ V(t) ‖2≤ C
∫ t

τ

e−a(t−s) ‖ K(s) ‖2 ds, (4.2)

‖ AV(t) ‖2≤ C
∫ t

τ

e−2a(t−s) ‖ K(s) ‖2V ds, (4.3)∫ t+1

t
‖ ∇V(s) ‖2 ds ≤ C(‖ V(t) ‖2 +

∫ t+1

t
‖ K(s) ‖2 ds) (4.4)∫ t+1

t
‖ A

3
2V(s) ‖2 ds ≤ C(‖ AV(t) ‖2 +

∫ t+1

t
‖ K(s) ‖2V ds) (4.5)

hold for every t ≥ τ and some constant C > 0, independent of the initial time τ ∈ R.

Proof. Multiplying the equation (4.1) byV and A2V respectively, we have

1
2

d
dt
‖ V ‖2 +ν ‖ ∇V ‖2 +a ‖ V ‖2 = (K(t),V)

≤
a
2
‖ V ‖2 +

1
2a
‖ K(t) ‖2, (4.6)

1
2

d
dt
‖ AV ‖2 +ν ‖ A

3
2V ‖2 +a ‖ AV ‖2 = (K(t), A2V)
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≤
1
2ν
‖ K(t) ‖2V +

ν

2
‖ A

3
2V ‖2 . (4.7)

It follows from (4.6) and (4.7) that

d
dt
‖ V ‖2 +a ‖ V ‖2≤

1
a
‖ K(t) ‖2,

d
dt
‖ AV ‖2 +2a ‖ AV ‖2≤

1
ν
‖ K(t) ‖2V .

Applying Gronwall lemma it yields

‖ V(t) ‖2≤
1
a

∫ t

τ

e−a(t−s) ‖ K(s) ‖2 ds,

‖ AV(t) ‖2≤
1
ν

∫ t

τ

e−2a(t−s) ‖ K(s) ‖2V ds.

From (4.6) and (4.7) we also can get

d
dt
‖ V ‖2 +2ν ‖ ∇V ‖2≤

1
a
‖ K(t) ‖2, (4.8)

d
dt
‖ AV ‖2 +ν ‖ A

3
2V ‖2≤

1
ν
‖ K(t) ‖2V . (4.9)

Integrating (4.8) and (4.9) on [t, t + 1] respectively, we obtain

2ν
∫ t+1

t
‖ ∇V(s) ‖2 ds ≤‖ V(t) ‖2 +

1
a

∫ t+1

t
‖ K(s) ‖2 ds, (4.10)

ν

∫ t+1

t
‖ A

3
2V(s) ‖2 ds ≤‖ AV(t) ‖2 +

1
ν

∫ t+1

t
‖ K(s) ‖2V ds.

The proof is finished. �
Setting F(t, τ) =

∫ t

τ
f1(s)ds, t ≥ τ, we assume that

sup
t≥τ,τ∈R

(
‖ F(t, τ) ‖2 +

∫ t+1

t
‖ F(s, τ) ‖2V ds

)
≤ l2. (4.11)

Lemma 4.2. Assume that f1 ∈ L2
loc(R; H) and satisfies (4.11). Then the solution v(t) to the Cauchy

problem

vt + νAv + av = f1

( t
ε

)
, v|t=τ = 0 (4.12)

with ε ∈ (0, 1], satisfies the inequality

‖ v(t) ‖2 +

∫ t+1

t
‖ ∇v(s) ‖2 ds ≤ Cl2ε2,∀t ≥ τ, (4.13)

where C > 0 is a constant independent of f1.
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Proof. Without loss of generality, we may assume τ = 0. DenotingV(t) =
∫ t

0
v(s)ds, we have, for any

t ≥ 0,

∂tV(t) = v(t) =

∫ t

0
∂tv(s)ds,

as v(0) = 0. Integrating (4.12) in time, we see that the functionV(t) solves the problem

∂tV + νAV + aV = Fε(t),V|t=0 = 0, (4.14)

with external force

Fε(t) =

∫ t

0
f1(

s
ε

)ds = ε

∫ t
ε

0
f1(s)ds = εF(

t
ε
, 0).

It follows from (4.11) that
sup
t≥0
‖ Fε(t) ‖≤ lε

and ∫ t+1

t
‖ Fε(s) ‖2V ds = ε3

∫ t+1
ε

t
ε

‖ F(s, 0) ‖2V ds ≤ 2ε2 sup
t≥0

{ ∫ t+1

t
‖ F(s, 0) ‖2V ds

}
≤ 2l2ε2.

By (2.5) we have∫ t

0
e−a(t−s) ‖ Fε(s) ‖2 ds ≤ Cl2ε2,

∫ t

0
e−2a(t−s) ‖ Fε(s) ‖2V ds ≤ Cl2ε2.

So applying Lemma 5.1, we obtain

‖ V(t) ‖2 + ‖ AV(t) ‖2 +

∫ t+1

t
‖ ∇V(s) ‖2 ds +

∫ t+1

t
‖ A

3
2V(s) ‖2 ds ≤ Cl2ε2.

Hence, on account of (4.14) we have

‖ v(t) ‖=‖ ∂tV(t) ‖≤‖ Fε(t) ‖ +ν ‖ AV(t) ‖ +a ‖ V(t) ‖≤ Clε

and
‖ ∇v(s) ‖2=‖ ∇(∂tV(s)) ‖2≤ 3 ‖ Fε(s) ‖2V +3ν2 ‖ A

3
2V(s) ‖2 +3a2 ‖ ∇V(s) ‖2,

from which we derive the integral estimate∫ t+1

t
‖ ∇v(s) ‖2 ds ≤ Cl2ε2.

This finishes the proof. �

Theorem 4.1. Let (4.11) holds true. Then the uniform attractors Aε are uniformly (w.r.t. ε) bounded
in H, that is,

sup
ε∈[0,1]

‖ Aε ‖< ∞.
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Proof. Let u be the solution to (3.1) with initial data uτ ∈ H. For ε > 0, we consider the problem

vt + νAv + av = ε−ρ f1(
t
ε

), v|t=τ = 0. (4.15)

Lemma 4.2 provides the estimate

‖ v(t) ‖2 +

∫ t+1

t
‖ ∇v(s) ‖2 ds ≤ cl2ε2(1−ρ),∀t ≥ τ. (4.16)

Then, the function w(t) = u(t) − v(t) clearly satisfies the equation

wt − ν∆w + aw + b|w + v|(w + v) + c|w + v|β(w + v) + ∇p = f0 (4.17)

with initial condition w|t=τ = uτ. Taking the inner product of (4.17) with w in H, we obtain

1
2

d
dt
‖ w ‖2 + ν ‖ ∇w ‖2 +a ‖ w ‖2 +b(|w + v|(w + v) − |v|v,w) + c(|w + v|β(w + v) − |v|βv,w)

= −b(|v|v,w) − c(|v|βv,w) + ( f0,w). (4.18)

By Lemma 2.1, we have

1
2

d
dt
‖ w ‖2 + ν ‖ ∇w ‖2 +a ‖ w ‖2 +b · 2−53−

3
2 ‖ w ‖33 +c · 2−4−β3−

β+2
2 ‖ w ‖β+2

β+2

≤ −b(|v|v,w) − c(|v|βv,w) + ( f0,w). (4.19)

Noticing

( f0,w) ≤
a
2
‖ w ‖2 +

1
2a
‖ f0 ‖

2, (4.20)

b|(|v|v,w)| = b
∣∣∣∣ ∫

Ω

|v|vwdx
∣∣∣∣

≤ b
( ∫

Ω

|w|6dx
)1/6( ∫

Ω

(|v|v)6/5dx
)5/6

= b ‖ w ‖6‖ v ‖212
5

(4.21)

≤
ν

2d2
0

‖ w ‖26 +C ‖ v ‖412
5
,

and

c|(|v|βv,w)| = c
∣∣∣∣ ∫

Ω

|v|βvwdx
∣∣∣∣

≤ c
( ∫

Ω

|w|6dx
) 1

6
·
( ∫

Ω

(|v|βv)6/5dx
)5/6

= c ‖ w ‖6‖ v ‖β+1
6
5 (β+1)

(4.22)

≤
ν

2d2
0

‖ w ‖26 +C ‖ v ‖2(β+1)
6
5 (β+1)

,
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according to Sobolev inequality

‖ v ‖p≤ d0 ‖ ∇v ‖, 1 ≤ p ≤ 6, (4.23)

combining (4.20)-(4.23) with (4.19) we have

d
dt
‖ w ‖2 +a ‖ w ‖2≤ C ‖ v ‖412

5
+C ‖ v ‖2(β+1)

6
5 (β+1)

+
1
a
‖ f0 ‖

2 . (4.24)

Case I. 1 < β < 4
3 .

Now we use Gagliardo-Nirenberg inequality to obtain

‖ v ‖ 12
5
≤ C ‖ ∇v ‖1/4‖ v ‖3/4, (4.25)

‖ v ‖ 6
5 (β+1)≤ C ‖ ∇v ‖

3β−2
2(β+1) ‖ v ‖

4−β
2(β+1) . (4.26)

Considering 1 < β < 4
3 , so 3β − 2 < 2. Combining (4.25), (4.26) with (4.24), and according to (4.16),

we obtain

d
dt
‖ w ‖2 +a ‖ w ‖2 ≤ C ‖ ∇v ‖‖ v ‖3 +C ‖ ∇v ‖3β−2‖ v ‖4−β +

1
a
‖ f0 ‖

2

≤‖ ∇v ‖2 +C ‖ v ‖6 +C ‖ v ‖
2(4−β)
4−3β +

1
a
‖ f0 ‖

2 (4.27)

≤‖ ∇v ‖2 +Cl6ε6(1−ρ) + C(l2ε2(1−ρ))
4−β
4−3β +

1
a
‖ f0 ‖

2 .

Let g(s) =‖ ∇v(s) ‖2 +Cl6ε6(1−ρ) + C(l2ε2(1−ρ))
4−β
4−3β + 1

a ‖ f0 ‖
2. Noticing (4.16), we have∫ t+1

t
g(s)ds =

∫ t+1

t
[‖ ∇v(s) ‖2 +Cl6ε6(1−ρ) + C(l2ε2(1−ρ))

4−β
4−3β +

1
a
‖ f0 ‖

2]ds

≤ C(l2ε2(1−ρ) + l6ε6(1−ρ) + (l2ε2(1−ρ))
4−β
4−3β + M2

0),∀t ≥ τ. (4.28)

Applying Lemma 2.3 to (4.27) we have

‖ w(t) ‖2 ≤‖ uτ ‖2 e−a(t−τ) + C(1 +
1
a

)(l2ε2(1−ρ) + l6ε6(1−ρ) + (l2ε2(1−ρ))
4−β
4−3β + M2

0)

≤‖ uτ ‖2 e−a(t−τ) + C(l2 + l6 + l
2(4−β)
4−3β + M2

0),∀t ≥ τ. (4.29)

Case II. β = 4
3 .

From (4.24)-(4.26) we have

d
dt
‖ w ‖2 +a ‖ w ‖2 ≤ C ‖ ∇v ‖‖ v ‖3 +C ‖ ∇v ‖2‖ v ‖

8
3 +

1
a
‖ f0 ‖

2

≤‖ ∇v ‖2 +C ‖ v ‖6 +C ‖ ∇v ‖2‖ v ‖
8
3 +

1
a
‖ f0 ‖

2

≤ [1 + C ‖ v ‖
8
3 ] ‖ ∇v ‖2 +C ‖ v ‖6 +

1
a
‖ f0 ‖

2
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≤ (1 + Cl
8
3ε

8
3 (1−ρ)) ‖ ∇v ‖2 +Cl6ε6(1−ρ) +

1
a
‖ f0 ‖

2 . (4.30)

Similar to the derivation of (4.29), we get

‖ w(t) ‖2 ≤‖ uτ ‖2 e−a(t−τ) + C(1 +
1
a

)[(1 + l
8
3ε

8
3 (1−ρ))l2ε2(1−ρ) + l6ε6(1−ρ) + M2

0],

≤‖ uτ ‖2 e−a(t−τ) + C(l2 + l
14
3 + l6 + M2

0),∀t ≥ τ. (4.31)

Recalling that u = w + v, using (4.16), (4.29) and (4.31), we end up with

‖ u(t) ‖2≤‖ uτ ‖2 e−a(t−τ) + C(l2 + l6 + l
2(4−β)
4−3β + l

14
3 + M2

0),∀t ≥ τ. (4.32)

Thus, for every ε ≤ ε0, the process {U f ε(t, τ)} has the absorbing set

B0 := {u ∈ H| ‖ u ‖2≤ C(l2 + l6 + l
2(4−β)
4−3β + l

14
3 + M2

0)}.

On the other hand, if ε0 < ε ≤ 1, the process {U f ε(t, τ)} possesses also the absorbing set (cf (3.2))

Bε0 = {u ∈ H| ‖ u ‖≤ C0Qε0}.

In conclusion, for every ε ∈ [0, 1], the bounded set

B∗ = B0 ∪ Bε0

is an absorbing set for {U f ε(t, τ)} which is independent of ε. Since Aε ⊂ B∗, the proof is completed.
�

5. Convergence of the uniform attractors

The main result of this section is the following.

Theorem 5.1. Let (4.11) hold. Then, the uniform attractor Aε converges to A0 as ε → 0+ in the
following sense:

lim
ε→0+

distH(Aε,A0) = 0.

The proof of this theorem requires some steps. Now, we shall study the difference of two solutions
to (3.1) with ε > 0 and ε = 0, respectively, sharing the same initial data. We denote

uε(t) = U f ε(t, τ)uτ,

with uτ belonging to the absorbing set B∗ found in the previous section. Owing to (4.32), we have the
uniform bound:

‖ uε(t) ‖2≤ R2
1, (5.1)

for some R1 = R1(l,M0) because the size of B∗ depends on l and M0. In particular, for ε = 0, since
uτ ∈ B∗, we have the bound

‖ u0(t) ‖2≤ R2
0, (5.2)

for some R0 = R0(l,M0).
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Lemma 5.1. For every ε ∈ (0, 1], every τ ∈ R and every uτ ∈ B∗, the deviation w̃(t) = uε(t)− u0(t) with
uε(0) = u0(0) = uτ, fulfills the estimate

‖ w̃(t) ‖2≤ Cl2ε2(1−ρ),∀t ≥ τ, (5.3)

for some positive constant C independent of ε.

Proof. Since the deviation w̃(t) solves

w̃t − ν∆w̃ + aw̃ + b|uε|uε − b|u0|u0 + c|uε|βuε − c|u0|βu0 = ε−ρ f1(x,
t
ε

), w̃|t=τ = 0, (5.4)

the difference q(t) = w̃(t) − v(t), where v(t) is the solution to (4.15), fulfills the Cauchy problem

qt − ν∆q + aq + b|uε|uε − b|u0|u0 + c|uε|βuε − c|u0|βu0 = 0, q|t=τ = 0. (5.5)

At this point, we take the scalar product in H of (5.5) with q, so getting

1
2

d
dt
‖ q ‖2 + ν ‖ ∇q ‖2 +a ‖ q ‖2 +b(|uε|uε − |u0|u0, w̃) + c(|uε|βuε − |u0|βu0, w̃)

= b(|uε|uε − |u0|u0, v) + c(|uε|βuε − |u0|βu0, v). (5.6)

Noting the first term on the right-hand side of (5.6) is given by

b(|uε|uε − |u0|u0, v) = b(|uε|w̃, v) + b((|uε| − |u0|)u0, v), (5.7)

we now proceed to estimate the first term on the right-hand side of (5.7). Since

b(|uε|w̃, v) ≤ b
∫

Ω

|uε||w̃||v|dx

≤ b
∫

Ω

|uε|(|v| + |q|)|v|dx (5.8)

≤ b
∫

Ω

|uε||v|2dx + b
∫

Ω

|uε||q||v|dx,

and

b
∫

Ω

|uε||q||v|dx ≤ b
( ∫

Ω

|q|6dx
) 1

6
( ∫

Ω

|uε|2dx
) 1

2
( ∫

Ω

|v|3dx
) 1

3

= b ‖ q ‖6‖ uε ‖‖ v ‖3

≤
ν

4d2
0

‖ q ‖26 +C ‖ uε ‖2‖ v ‖23

≤
ν

4
‖ ∇q ‖2 +C ‖ uε ‖2‖ ∇v ‖2, (5.9)

b
∫

Ω

|uε||v|2dx ≤ b
( ∫

Ω

|uε|2dx
) 1

2
( ∫

Ω

|v|6dx
) 1

6
( ∫

Ω

|v|3dx
) 1

3

= b ‖ uε ‖‖ v ‖6‖ v ‖3
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≤
1

2d2
0

‖ v ‖26 +C ‖ uε ‖2‖ v ‖23

≤
1
2
‖ ∇v ‖2 +C ‖ uε ‖2‖ ∇v ‖2, (5.10)

it follows from (5.8)-(5.10) that

b(|uε|w̃, v) ≤
ν

4
‖ ∇q ‖2 +

1
2
‖ ∇v ‖2 +C ‖ uε ‖2‖ ∇v ‖2 . (5.11)

Now, let us estimate the second term on the right-hand side of (5.7). Noting

b((|uε| − |u0|)u0, v) ≤ b
∫

Ω

|uε − u0||u0||v|dx

= b
∫

Ω

|w̃||u0||v|dx

≤ b
∫

Ω

(|q| + |v|)|u0||v|dx

= b
∫

Ω

|u0||q||v|dx + b
∫

Ω

|v|2|u0|dx, (5.12)

similar arguments as (5.9) and (5.10), we have

b
∫

Ω

|u0||q||v|dx ≤
ν

4
‖ ∇q ‖2 +C ‖ u0 ‖2‖ ∇v ‖2, (5.13)

and
b
∫

Ω

|v|2|u0|dx ≤
1
2
‖ ∇v ‖2 +C ‖ u0 ‖2‖ ∇v ‖2 . (5.14)

Hence, from (5.12)-(5.14) we get

b((|uε| − |u0|)u0, v) ≤
ν

4
‖ ∇q ‖2 +

1
2
‖ ∇v ‖2 +C ‖ u0 ‖2‖ ∇v ‖2 . (5.15)

Combining (5.11), (5.15) with (5.7), we have

b(|uε|uε − |u0|u0, v) ≤
ν

2
‖ ∇q ‖2 + ‖ ∇v ‖2 +C(‖ uε ‖2 + ‖ u0 ‖2) ‖ ∇v ‖2 . (5.16)

Noting the second term on the right-hand side of (5.6) is given by

c(|uε|βuε − |u0|βu0, v) = c(|uε|βw̃, v) + c((|uε|β − |u0|β)u0, v), (5.17)

we now proceed to estimate the first term on the right-hand side of (5.17). Since

c(|uε|βw̃, v) ≤ c
∫

Ω

|uε|β(|q| + |v|)|v|dx

≤ c
∫

Ω

|uε|β|q||v|dx + c
∫

Ω

|uε|β|v|2dx, (5.18)
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so we should estimate the right-hand side of the last inequality in (5.18) term by term. Because

c
∫

Ω

|uε|β|q||v|dx ≤ c
( ∫

Ω

|q|6dx
) 1

6
( ∫

Ω

|uε|2dx
) β

2
( ∫

Ω

|v|
6

5−3β dx
) 5−3β

6

= c ‖ q ‖6‖ uε ‖β‖ v ‖ 6
5−3β

≤
ν

4d2
0

‖ q ‖26 +C ‖ uε ‖2β‖ v ‖2 6
5−3β

≤
ν

4
‖ ∇q ‖2 +C ‖ uε ‖2β‖ ∇v ‖2 (5.19)

and

c
∫

Ω

|uε|β|v|2dx ≤ c
( ∫

Ω

|v|6dx
) 1

6
( ∫

Ω

|uε|2dx
) β

2
( ∫

Ω

|v|
6

5−3β dx
) 5−3β

6

= c ‖ v ‖6 · ‖ uε ‖β · ‖ v ‖ 6
5−3β

≤
1
2
‖ ∇v ‖2 +C ‖ uε ‖2β‖ ∇v ‖2, (5.20)

where the last inequalities in (5.19) and (5.20) are valid only if 6
5−3β ≤ 6, i.e. β ≤ 4

3 , so combining
(5.19), (5.20) with (5.18), we have

c(|uε|βw̃, v) ≤
ν

4
‖ ∇q ‖2 +

1
2
‖ ∇v ‖2 +C ‖ uε ‖2β‖ ∇v ‖2 . (5.21)

Now let us estimate the second term on the right-hand side of (5.17). Since

c((|uε|β − |u0|β)u0, v) ≤ c
∫

Ω

∣∣∣∣|uε|β − |u0|β
∣∣∣∣|u0||v|dx

≤ C
∫

Ω

∣∣∣∣|uε|β−1 + |u0|β−1
∣∣∣∣|w̃||u0||v|dx

≤ C
∫

Ω

|uε|β−1|w̃||u0||v|dx + C
∫

Ω

|u0|β−1|w̃||u0||v|dx, (5.22)

in the second inequality of (5.22) we used the fact that

|xp − yp| ≤ Cp(xp−1 + yp−1)|x − y|

for any x, y ≥ 0, where C is an absolute constant. So let us estimate the right-hand side of the last
inequality in (5.22) term by term. For the first term, we have

C
∫

Ω

|uε|β−1|w̃||u0||v|dx ≤ C
∫

Ω

|uε|β−1|q||u0||v|dx + C
∫

Ω

|uε|β−1|v|2|u0|dx, (5.23)

and

C
∫

Ω

|uε|β−1|q||u0||v|dx ≤ C
( ∫

Ω

|q|6dx
) 1

6
( ∫

Ω

|uε|2dx
) β−1

2
( ∫

Ω

|u0|2dx
) 1

2
( ∫

Ω

|v|
6

5−3β
) 5−3β

6

= C ‖ q ‖6‖ uε ‖β−1‖ u0 ‖‖ v ‖ 6
5−3β
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≤
ν

8
‖ ∇q ‖2 +C ‖ uε ‖2(β−1)‖ u0 ‖2‖ v ‖2 6

5−3β

≤
ν

8
‖ ∇q ‖2 +C ‖ uε ‖2(β−1)‖ u0 ‖2‖ ∇v ‖2, (5.24)

similarly,

C
∫

Ω

|uε|β−1|v|2|u0|dx ≤
1
4
‖ ∇v ‖2 +C ‖ uε ‖2(β−1)‖ u0 ‖2‖ ∇v ‖2 . (5.25)

It follows from (5.23)-(5.25) that

C
∫

Ω

|uε|β−1|w̃||u0||v|dx ≤
ν

8
‖ ∇q ‖2 +

1
4
‖ ∇v ‖2 +C ‖ uε ‖2(β−1)‖ u0 ‖2‖ ∇v ‖2 . (5.26)

Similar arguments as (5.23)-(5.26), for the second term on the right-hand side of inequality (5.22), we
have

C
∫

Ω

|u0|β−1|w̃||u0||v|dx ≤
ν

8
‖ ∇q ‖2 +

1
4
‖ ∇v ‖2 +C ‖ u0 ‖2(β−1)‖ u0 ‖2‖ ∇v ‖2 . (5.27)

Combining (5.26), (5.27) with (5.22), we have

c((|uε|β − |u0|β)u0, v) ≤
ν

4
‖ ∇q ‖2 +

1
2
‖ ∇v ‖2 +C(‖ uε ‖2(β−1) + ‖ u0 ‖2(β−1)) ‖ u0 ‖2‖ ∇v ‖2 . (5.28)

So it follows from (5.17), (5.21) and (5.28) that

c(|uε|βuε − |u0|βu0, v) ≤
ν

2
‖ ∇q ‖2 + ‖ ∇v ‖2 +C ‖ uε ‖2β‖ ∇v ‖2

+ C(‖ uε ‖2(β−1) + ‖ u0 ‖2(β−1)) ‖ u0 ‖2‖ ∇v ‖2 . (5.29)

Now, considering (5.6), (5.16) and (5.29), and according to (5.1) and (5.2), it yields

d
dt
‖ q ‖2 +2a ‖ q ‖2 ≤ 4 ‖ ∇v ‖2 +C(R2

1 + R2
0) ‖ ∇v ‖2 +CR2β

1 ‖ ∇v ‖2

+ C(R2(β−1)
1 + R2(β−1)

0 )R2
0 ‖ ∇v ‖2

≤ C(1 + R2
0 + R2

1 + R2β
1 + (R2(β−1)

0 + R2(β−1)
1 )R2

0) ‖ ∇v ‖2 . (5.30)

Recalling that ‖ q(τ) ‖= 0 and (4.16), Lemma 2.3 entails

‖ q(t) ‖2 ≤ C(1 +
1

2a
)(1 + R2

0 + R2
1 + R2β

1 + (R2(β−1)
0 + R2(β−1)

1 )R2
0)l2ε2(1−ρ)

≤ Cl2ε2(1−ρ).

Finally, as w̃ = q + v, using (4.16) to control ‖ v ‖, we obtain the desired conclusion (5.3). �
In order to study the convergence of the uniform attractors, we actually need a generalization of

Lemma 5.1, which applies to the whole family of equations

ût + νAû + aû + G(û) = f̂ ε, f̂ ε ∈ H( f ε), (5.31)

with the external force f̂ = f̂ ε ∈ H( f ε). To this end, we observe that every function f̂1 ∈ H( f1) fulfills
the inequality (4.11). Defining

F̂1(t, τ) =

∫ t

τ

f̂1(s)ds, t ≥ τ,
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we have

sup
t≥τ,τ∈R

{
‖ F̂1(t, τ) ‖2 +

∫ t+1

t
‖ F̂1(s, τ) ‖2V ds

}
≤ l2. (5.32)

For any ε ∈ [0, 1], let ûε(t) = U f̂ ε(t, τ)uτ be the solution to (5.31) with external force f̂ ε = f̂0 +

ε−ρ f̂1(·/ε) ∈ H( f ε) and uτ ∈ B∗. For ε > 0, we consider the deviation ŵ(t) = ûε(t) − û0(t).

Lemma 5.2. The inequality
‖ ŵ(t) ‖2≤ Cl2ε2(1−ρ),∀t ≥ τ, (5.33)

holds, where C is independent of ε.

Proof. As the similar argument to the proof of Lemma 5.1, with ûε, f̂0 and f̂1 in place of uε, f0 and
f1, respectively. Noting that (5.2) still holds for û0, and the family {U f̂ ε(t, τ)}( f̂ ε ∈ H( f ε)) is (H ×
H( f ε),H)-continuous, and using (5.32) in place of (4.11), finally complete the proof of the lemma. �

We can now complete the proof of Theorem 5.1, using the following argument from [27], which we
report in some detail for the reader’s convenience.
Proof of Theorem 5.1 Let ε > 0 and uε ∈ Aε. Thus, in view of (3.18), there exists a complete bounded
trajectory ûε(t) of (5.31), with the external force

f̂ ε = f̂0 + ε−ρ f̂1(·/ε) ∈ H( f ε), f̂0 ∈ H( f0), f̂1 ∈ H( f1)

such that ûε(0) = uε. For every L ≥ 0 to be specified later, consider the vector

ûε(−L) ∈ Aε ⊂ B∗.

From the straightforward equality
uε = U f̂ ε(0,−L)ûε(−L),

by applying Lemma 5.2, we have that

‖ uε − U f̂0(0,−L)ûε(−L) ‖≤ Clε1−ρ. (5.34)

On the other hand, the set A0 attracts U f̂0(t,−L)B∗, uniformly as f̂0 ∈ H( f0). Then, for every δ > 0,
there is T = T (δ) ≥ 0, independent of L, such that

distH(U f̂0(T − L,−L)ûε(−L),A0) ≤ δ. (5.35)

Setting L = T , and collecting the two above inequalities, we readily get

distH(uε,A0) ≤ Clε1−ρ + δ.

Since uε ∈ Aε and δ > 0 are arbitrary, taking the limit ε→ 0+, the conclusion follows. �

6. Conclusion

In this paper, we investigated a class of three-dimensional Brinkman-Forchheimer equation with
oscillating external forces f ε(x, t) = f0(x, t) + ε−ρ f1(x, t

ε
). Based on some translation-compactness

assumptions on the external forces, we obtained the uniform boundedness of the uniform attractor
Aε of the system (1.1) in (L2(Ω))3, and the convergence of Aε to the attractor A0 of the system
(1.2) as ε → 0+. To prove the uniform boundedness and the convergence of the uniform attractors,
the Gagliardo-Nirenberg inequality is needed. In the proof process, we concluded that the parameter
β ∈ (1, 4

3 ].
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