Citation: Necati Özdemir, Esmehan Uçar. Investigating of an immune system-cancer mathematical model with Mittag-Leffler kernel[J]. AIMS Mathematics, 2020, 5(2): 1519-1531. doi: 10.3934/math.2020104
[1] | L. Marsha, K. R. Conroy, J. L. Davis, et al. Atlas Pathophysiology, Lippincott Williams & Wilkins, 2010. |
[2] | V. Kumar, A. Abbas, J. Aster, Robbins and cotran pathologic basis of disease, Canada: Elsevier, 2014. |
[3] | M. Zanetti, Tapping CD4 T cells for cancer immunotherapy: The choice of personalized genomics, J. Immunol., 194 (2015), 2049-2056. doi: 10.4049/jimmunol.1402669 |
[4] | D. Cassell, J. Forman, Linked recognition of helper and cytotoxic antigenic determinants for he generation of cytotoxic T lymphocytes, Ann. N. Y. Acad. Sci., 532 (1998), 51-60. |
[5] | H. Choudhry, N. Helmi, W. H. Abdulaal, et al. Prospects of IL-2 in cancer immunotherapy, BioMed Res. Int., 2018 (2018), 9056173. |
[6] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006. |
[7] | D. Baleanu, K. Diethelm, E. Scalas, et al. Fractional calculus models and numerical methods, World Scientific, 2012 |
[8] | N. Özdemir, D. Karadeniz, B. B. Iskender, Fractional optimal control problem of a distributed system in cylindrical coordinates, Phys. Lett. A, 373 (2009), 221-226. doi: 10.1016/j.physleta.2008.11.019 |
[9] | F. Evirgen, N. Özdemir, Multistage adomian decomposition method for solving NLP problems over a nonlinear fractional dynamical system, J. Comput. Nonlinear Dyn., 6 (2011), 21003. |
[10] | F. Evirgen, Analyze the optimal solutions of optimization problems by means of fractional gradient based system using VIM, An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 6 (2016), 75-83. |
[11] | Z. Hammouch, T. Mekkaoui, Circuit design and simulation for the fractional-order chaotic behavior in a new dynamical system, Complex Intell. Syst., 4 (2018), 251-260. doi: 10.1007/s40747-018-0070-3 |
[12] | E. Bonyah, A. Atangana, M. A. Khan, Modeling the spread of computer virus via Caputo fractional derivative and the beta derivative, Asia Pacific Journal on Computational Engineering, 4 (2017), 1-15. doi: 10.1186/s40540-016-0019-1 |
[13] | N. Özdemir, M. Yavuz, Numerical solution of fractional Black-Scholes equation by using the multivariate pade approximation, Acta Phys. Pol. A., 132 (2017), 1050-1053. doi: 10.12693/APhysPolA.132.1050 |
[14] | E. Uçar, N. Özdemir, E. Altun, Fractional order model of immune cells influenced by cancer cells, Math. Model. Nat. Phenom., 14 (2019), 308. |
[15] | A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel: theory and applications to heat transfer model, Therm. Sci., 20 (2016), 763-769. doi: 10.2298/TSCI160111018A |
[16] | M. Yavuz, N. Özdemir, H. M. Baskonus, Solutions of partial differential equations using the fractional operator involving Mittag-Leffler kernel, Eur. Phys. J. Plus, 133 (2018), 215. |
[17] | V. F. Morales-Delgadoa, J. F. Gomez-Aguilar, M. A. Taneco-Hernandez, et al. Mathematical modeling of the smoking dynamics using fractional differential equations with local and nonlocal kernel, J. Nonlinear Sci. Appl., 11 (2018), 994-1014. doi: 10.22436/jnsa.011.08.06 |
[18] | N. A. Asif, Z. Hammouch, M. B. Riaz, et al. Analytical solution of a Maxwell fluid with slip effects in view of the Caputo-Fabrizio derivative, Eur. Phys. J. Plus, 133 (2018), 272. |
[19] | I. Koca, Analysis of rubella disease model with non-local and non-singular fractional derivatives, Int. J. Optim. Control Theor. Appl. IJOCTA, 8 (2018), 17-25. |
[20] | D. Avcı A. Yetim, Analytical solutions to the advection-diffusion equation with the AtanganaBaleanu derivative over a finite domain, J. BAUN Inst. Sci. Technol., 20 (2018), 382-395. |
[21] | S. Uçar, E. Uçar, N. Özdemir, et al. Mathematical analysis and numerical simulation for a smoking model with Atangana-Baleanu derivative, Chaos, Solitons & Fractals, 118 (2019), 300-306. |
[22] | D. Baleanu, A. Fernandez, On some new properties of fractional derivatives with Mittag-Leffler kernel, Commun. Nonlinear Sci. Numer. Simulat., 59 (2018), 444-462. doi: 10.1016/j.cnsns.2017.12.003 |
[23] | A. Fernandez, D. Baleanu, H. M. Srivastava, Series representations for fractional-calculus operators involving generalised Mittag-Leffler functions, Commun. Nonlinear Sci. Numer. Simulat., 67 (2019), 517-527. doi: 10.1016/j.cnsns.2018.07.035 |
[24] | S. Uçar, Existence and uniqueness results for a smoking model with determination and education in the frame of non-singular derivatives, Discrete Continuous Dyn. Syst. Ser. S, in press. |
[25] | F. Evirgen, S. Uçar, N. Özdemir, et al. System response of an alcoholism model under the effect of immigration via non-singular kernel derivative, Discrete Continuous Dyn. Syst. Ser. S, in press. |
[26] | J. E. Solis-Perez, J. F. Gomez-Aguilar, A. Atangana, A factional mathematical model of breast cancer competition model, Chaos, Solitons and Fractals, 127 (2019), 38-54. doi: 10.1016/j.chaos.2019.06.027 |
[27] | V. F. Morales-Delgado, J. F. Gomez-Aguilar, K. Saad, et al. Application of the Caputo-Fabrizio and Atangana-Baleanu fractional derivatives to mathematical model of cancer chemotherapy effect, Math. Methods Appl. Sci., 42 (2019), 1167-1193. doi: 10.1002/mma.5421 |
[28] | P. Vereesha, D. G. Prakasha, H. M. Baskonus, New numerical surfaces to the mathematical model of cancer chemotherapy effect in Caputo fractional derivatives, CHAOS, 29 (2019), 1-13. |
[29] | A. Minelli, F. Topputo, F. Bernelli, Controlled drug delivery in cancer immunotherapy: Stability, optimization and monte carlo analysis, SIAM J. Appl. Math., 71 (2011), 2229-2245. doi: 10.1137/100815190 |
[30] | L. G. De Pillis, A. Radunskaya, A mathematical tumour model with immune resistance and drug therapy: An optimal control approach, Journal of Theoretical Medicine, 3 (2001), 79-100. doi: 10.1080/10273660108833067 |
[31] | F. Castiglione, B. Piccoli, Cancer immunotheraphy, mathematical modeling and optimal control, J. Theor. Biol., 247 (2007), 723-732. doi: 10.1016/j.jtbi.2007.04.003 |
[32] | D. Baleanu, A. Jajarmi, M. Hajipour, On the nonlinear dynamical systems within the generalized fractional derivatives with Mittag-Leffler kernel, Nonlinear Dyn., 94 (2018), 397-414. doi: 10.1007/s11071-018-4367-y |