Citation: Wenjun Liu, Zhijing Chen. Dynamical behaviour of fractional-order atmosphere-soil-land plant carbon cycle system[J]. AIMS Mathematics, 2020, 5(2): 1532-1549. doi: 10.3934/math.2020105
[1] | M. Reichstein, M. Bahn, P. Ciais, et al. Climate extremes and the carbon cycle, Nature, 500 (2013), 287-295. doi: 10.1038/nature12350 |
[2] | S. Honjo, T. I. Eglinton, C. D. Taylor, et al. Understanding the Role of the Biological Pump in the Global Carbon Cycle: An Imperative for Ocean Science, Oceanography, 27 (2014), 10-16. |
[3] | L. G. Anderson, R. W. Macdonald, Observing the Arctic Ocean carbon cycle in a changing environment, Polar Res., 34 (2015), 26891. |
[4] | A. Ito, Modelling of carbon cycle and fire regime in an east Siberian larch forest, Ecol. Model., 187 (2005), 121-139. doi: 10.1016/j.ecolmodel.2005.01.037 |
[5] | R. Causebrook, R. E. Dunsmore, Geological Storage of Carbon Dioxide, Latomus, 123 (2004), 218-221. |
[6] | H. Zhang and K. N. Xu, Impact of Environmental Regulation and Technical Progress on Industrial Carbon Productivity: An Approach Based on Proxy Measure, Sustainability, 8 (2016), 819. |
[7] | B. Pang, C. L. Fang and H. M. Liu, Quantitative Study on the Dynamic Mechanism of Smart LowCarbon City Development in China, Sustainability, 8 (2016), 507. |
[8] | L. L. Golubyatnikov and Y. M. Svirezhev, Life-cycle model of terrestrial carbon exchange, Ecol. Model., 213 (2008), 202-208. doi: 10.1016/j.ecolmodel.2007.12.001 |
[9] | I. G. Enting, Laplace transform analysis of the carbon cycle, Environ. Model. Softw., 22 (2007), 1488-1497. doi: 10.1016/j.envsoft.2006.06.018 |
[10] | M. Marchi, F. M. Jorgensen, N. Marchettinia, et al. Modeling the carbon cycle of Siena Province (Tuscany, central Italy), Ecol. Model., 225 (2012), 40-60. doi: 10.1016/j.ecolmodel.2011.11.007 |
[11] | Y. Pan, R. A. Birdsey, J. Fang, et al. A large and persistent carbon sink in the world's forests, Science, 333 (2011), 988-993. doi: 10.1126/science.1201609 |
[12] | S. Piao, J. Fang, P. Ciais, et al. The carbon balance of terrestrial ecosystems in China, Nature, 458 (2009), 1009-1014. doi: 10.1038/nature07944 |
[13] | M. Fu, L. Tian, G. Dong, et al. Modeling on Regional Atmosphere-Soil-Land plant Carbon Cycle Dynamic System, Sustainability, 8 (2016), 303. |
[14] | P. Arena, R. Caponetto, L. Fortuna, et al. Nonlinear noninteger order circuits and systems: An Introduction, World Scientific Series on Nonlinear Science, Series A: Monographs and Treatises, World Sci. Publishing, River Edge, NJ, 2000. |
[15] | S. Song, B. Zhang, X. Song, et al. Neuro-fuzzy-based adaptive dynamic surface control for fractional-order nonlinear strict-feedback systems with input constraint, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019. |
[16] | X. Wang, Z. Wang, X. Zhu, et al. Stability and Hopf Bifurcation of Fractional-Order ComplexValued Neural Networks With Time-Delay, IEEE Access, 7 (2019), 158798-158807. doi: 10.1109/ACCESS.2019.2950276 |
[17] | S. Song, J. H. Park, B. Zhang, et al. Adaptive hybrid fuzzy output feedback control for fractionalorder nonlinear systems with time-varying delays and input saturation, Appl. Math. Comput., 364 (2020), 124662. |
[18] | R. Hilfer, Applications of fractional calculus in physics, World Sci. Publishing, River Edge, NJ, 2000. |
[19] | E. Ahmed and A. S. Elgazzar, On fractional order differential equations model for nonlocal epidemics, Physica A, 379 (2007), 607-614. doi: 10.1016/j.physa.2007.01.010 |
[20] | E. S. A. Shahri, A. Alfi and J. A. T. Machado, Stabilization of fractional-order systems subject to saturation element using fractional dynamic output feedback sliding mode control, J. Comput. Nonlinear Dyn., 12 (2017), 31014. |
[21] | A. M. A. El-Sayed, A. E. M. El-Mesiry, H. A. A. El-Saka, On the fractional-order logistic equation, Appl. Math. Lett., 20 (2007), 817-823. doi: 10.1016/j.aml.2006.08.013 |
[22] | W. M. Ahmad, R. El-Khazali, Fractional-order dynamical models of love, Chaos Solitons Fractals, 33 (2007), 1367-1375. doi: 10.1016/j.chaos.2006.01.098 |
[23] | Z. J. Chen and W. J. Liu, Dynamical behavior of fractional-order energy-saving and emissionreduction system and its discretization, Nat. Resour. Model., 32 (2019), e12203. |
[24] | W. J. Liu and K. W. Chen, Chaotic behavior in a new fractional-order love triangle system with competition, J. Appl. Anal. Comput., 5 (2015), 103-113. |
[25] | Y. D. Liu and W. J. Liu, Chaotic behavior analysis and control of a toxin producing phytoplankton and zooplankton system based on linear feedback, Filomat, 32 (2018), 3779-3789. doi: 10.2298/FIL1811779L |
[26] | D. Q. Chen and W. J. Liu, Chaotic behavior and its control in a fractional-order energy demandsupply system, J. Comput. Nonlin. Dyn., 11 (2016), 061010. |
[27] | P. Song, H. Y. Zhao and X. B. Zhang, Dynamic analysis of a fractional order delayed predator-prey system with harvesting, Theor. Biosci., 135 (2016), 59-72. doi: 10.1007/s12064-016-0223-0 |
[28] | M. Caputo, Linear models of dissipation whose Q is almost frequency independent-II, Geophys. J. R. Astron. Soc., 13 (1967), 529-539. doi: 10.1111/j.1365-246X.1967.tb02303.x |
[29] | A. E. Matouk, Chaos, feedback control and synchronization of a fractional-order modified autonomous Van der Pol-Duffing circuit, Commun. Nonlinear Sci., 16 (2011), 975-986. doi: 10.1016/j.cnsns.2010.04.027 |
[30] | D. Matignon, Stability results for fractional differential equations with applications to control Processing, CESA'96 IMACS Multiconference: Computational Engineering in Systems Applications, (1996), 963-968. |
[31] | A. E. Matouk, Stability conditions, hyperchaos and control in a novel fractional order hyperchaotic system, Phys. Lett. A, 373 (2009), 2166-2173. doi: 10.1016/j.physleta.2009.04.032 |
[32] | A. E. Matouk, Dynamical behaviors, linear feedback control and synchronization of the fractional order Liu system, J. Nonlinear. Syst. Appl., 1 (2010), 135-140. |
[33] | A. S. Hegazi, E. Ahemd and A. E. Matouk, The effect of fractional order on synchronization of two fractional order chaotic and hyperchaotic systems, J. Fract. Calc. Appl., 1 (2011), 1-15. |
[34] | K. Diethelm, N. J. Ford and A. D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dynam., 29 (2002), 3-22. doi: 10.1023/A:1016592219341 |
[35] | A. E. Matouk, A. A. Elsadany, E. Ahmed, et al. Dynamical behavior of fractional-order HastingsPowell food chain model and its discretization, Commun. Nonlinear Sci., 27 (2015), 153-167. doi: 10.1016/j.cnsns.2015.03.004 |
[36] | S. Elaydi, An introduction to difference equations, third edition, Undergraduate Texts in Mathematics, Springer, New York, 2005. |
[37] | L. Edelstein-Keshet, Mathematical models in biology, The Random House/Birkhäuser Mathematics Series, Random House, New York, 1988. |
[38] | J. Cao, S. Xue, J. Lin, et al. Nonlinear Dynamic Analysis of a Cracked Rotor-Bearing System With Fractional Order Damping, J. Comput. Nonlin. Dyn., 8 (2011), 031008. |