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Abstract: The terrestrial carbon cycle is the most important constitution and plays a prominent
role in the global carbon cycle. This paper investigates the dynamical behaviours and mathematical
properties of a time fractional-order atmosphere-soil-land plant carbon cycle system. We give a
sufficient condition for existence and uniqueness of the solution, and obtain the conditions for local
asymptotically stable of the equilibrium points by using fractional Routh-Hurwitz stability conditions.
Furthermore, we introduce a discretization process to discretize this fractional-order system, and study
the necessary and sufficient conditions of stability of the discretization system. It shows that the
stability of the discretization system is impacted by the system’s fractional parameter. Numerical
simulations show the richer dynamical behaviours of the fractional-order system and verify the
theoretical results.
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1. Introduction

From the researches and reports in recent years, it has been known that the earth is confronting
with environmental pollution and energy crisis and people from all walks of life are trying hard to find
solutions. The most important point is to understand the process of terrestrial carbon cycle, which
plays the prominent position in the global carbon cycle. In different fields, theoretical issues
concerning the carbon cycle have been studied differently, such as in atmosphere science [1], ocean
science [2, 3], forest ecological system [4], geological sciences [5] and so on [6, 7]. Research
achievements mainly concentrate on the carbon source and sink, carbon footprint and carbon
exchange. This study established a dynamical system to investigate the evolution of the carbon cycle.

Carbon cycle change, increases in the NOx emission to the atmosphere and in the atmospheric
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aerosol (Black carbon, PM2.5 etc) amount, will perturb the Earth’s radiative budget and exert large
impact on the Earth’s climate. In [8], Leonid et al. proposed a terrestrial ecosystem carbon life cycle
model to investigate the intensity of carbon source and sink. Enting [9] used Laplace transform to
analyze the carbon cycle. Michela et al. [10] built a carbon cycle dynamic system for Italy, Siena
province and examined the carbon footprint of six carbon emission scenarios. Pan et al. [11]
estimated the global forest carbon balance and Piao et al. [12] described China’s carbon budget and its
change mechanism by remote sensing data and a biogeochemical model. According on China’s
regional terrestrial ecosystem carbon cycle, Fu et al. [13] studied regional atmosphere-soil-land plant
carbon cycle system based on the analysis of the carbon flux. The dynamic behaviour of the system is
studied from the point of view of stability.

On the other hand, fractional-order calculus has gained much popularity from theoretical as well as
application viewpoints. It used to be considered as the generalization of classical integer-order
calculus to real or complex order. Compared with integer calculus, the major merit of fractional
calculus lies in the fact that it has memory. Many people are interested in developing the theoretical
analysis and numerical methods for fractional-order differential equations. Actually, fractional-order
differential equations have recently proved to be an effective and valuable measures in various fields
such as in engineering [14–17], physics [18, 38], mathematical biology [19–21], psychological and
life sciences [22–26] and other scientific fields. Furthermore, more and more researchers have
performed investigation to study the mathematical properties and numerical solutions of the
fractional-order ecological system recently. In [19], Ahmed et al. investigated the fractional-order
predator-prey system and the fractional-order rabies system to obtain the existence and uniqueness of
solutions, the stability of equilibrium points and numerical solutions for these systems. In [26],
authors showed us fractional-order energy demand-supply system which confirmed the energy
resource attractor with a necessary condition about the existence of chaotic behaviors and two
different control strategies. In song et al. [27], a fractional-order delayed predator-prey system was
proposed and analyzed. The main work is investigating the stability of the system. Furthermore, the
authors find that fractional-order can affect the stability of the system without harvesting terms.

We here want to make a more precise depiction to the atmosphere-soil-land plant carbon cycle by
using the time fractional differential operator which lies in the system itself that the memory data of
it. It can characterize the real cycle which also affected by the history. Therefore, by investigating
this system, we may have a better perception and the performer could refer to our result to make some
change when facing some environmental problem. Based on the above analysis, we consider a class
of fractional-order differential system to describe the dynamics of atmosphere-soil-land plant carbon
cycle. The system consists of x1(t), x2(t) and x3(t), where x1(t) is the time-dependent variable of carbon
flux in atmosphere, x2(t) is the carbon flux of soil and x3(t) is the carbon flux of animals and plants.
According to the law of carbon flow, we give the following assumptions:

Assumption 1: in order to maintain a balance, the inflow and outflow is equal to the total carbon
flow.

Assumption 2: the internal carbon flux is determined by the carbon flow of three cycles (atmosphere
cycle, soil cycle and land plant cycle).

Assumption 3: the internal flow of each cycle obeys the rules of supply pattern, receive pattern,
Lotka-Volterra pattern and diffusion pattern.

Assumption 4: the rest of carbon flow is ignored except the large carbon flow changed in the
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atmosphere-soil-land cycle.
On the basis of Assumptions 1–4, we could build the atmosphere-soil-land plant terrestrial

ecosystem carbon cycle dynamic system as shown in Figure 1.

Figure 1. Atmosphere-soil-land plant carbon cycle system.

In this paper, we assume the carbon inflow q1 of the atmosphere cycle and the carbon inflow q2 of
the soil cycle are both constant.

From Figure 1, it shows that a part of carbon flow escapes out with the change of natural
phenomenon in the atmosphere cycle and this carbon flow represents the release of carbon dioxide
from the atmosphere under the combined action of the atmosphere cycle and the land plant cycle
ultimately. And some of it flows into soil cycle by carbon dioxide fixation. What’s more, in the soil
cycle, a part of carbon flow sinks into the atmosphere cycle by breath and decomposition and another
part of it goes out with deposition. In the land plant cycle, a part of carbon flow flows into the
atmosphere cycle by breath and burning and another part of it goes into the soil cycle by
decomposition.

Under the premise of the above hypothesis and Figure 1, the three-dimensional fractional-order
atmosphere-soil-land plant carbon cycle system is obtained as follows:

dαx1

dtα
= q1 − m1x1 − β12x2 + α21x2 − β1x3

(
1 −

x3

A1

)
,

dαx2

dtα
= q2 − m2x2 + β12x2 − α21x2 + α32x3 − α22A2 − β2x1,

dαx3

dtα
= −(α32 + α31)x3 + γ31x1x3,

(1.1)

where α is the fractional order satisfying 0 < α ≤ 1 and dα
dtα is in the sense of the Caputo fractional

derivative, and the coefficients of the system have specific meanings: mi (i = 1, 2) are the carbon
outflow coefficients; Ai (i = 1, 2) are the positive constants; β12 is the receive coefficient of carbon
flow from the atmosphere cycle to the soil cycle; α21 is the supply coefficient of carbon flow from the
soil cycle to the atmosphere; β1 is the diffusion coefficient of the atmosphere cycle that depends on the
carbon reserve of the land plant cycle; α32 is the supply coefficient of carbon flow from the land plant
cycle to the soil cycle; α22 is the diffusion coefficient of the soil cycle; β2 is the diffusion coefficient of
the soil cycle that depends on the carbon reserve of the atmosphere cycle; α32 is the supply coefficient
of carbon flow from the land plant cycle to the soil cycle; α31 is the supply coefficient of carbon flow
from the land plant cycle to the atmosphere cycle; γ31 is the Lotka-Volterra coefficient of carbon flow
from the land plant cycle to the atmosphere cycle.
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A simplified formula is

dαx1

dtα
= q1 − m1x1 + α1x2 − β1x3

(
1 −

x3

K1

)
,

dαx2

dtα
= q2 − β2x1 + α2x2 + α3(x3 − K2),

dαx3

dtα
= −α4x3 + γ1x1x3,

(1.2)

where α1 = α21 − β12, K1 = A1, α2 = β12 − m2 − α21, α3 = α32, K2 = α22
α32

A2, α4 = α32 + α31, γ1 = γ31.
System (1.2) reflects the interactive relationships among the atmosphere cycle, soil cycle and land
plant cycle. In the above system, there are complicated dynamics existing between the variables and
parameters. In addition, it is beneficial to us for more intuitive analysis of the system.

In this article, we first put forward a fractional-order system of atmosphere-soil-land plant carbon
cycle. Moreover, to show more realistic conditions, we give system parameter estimation method. Then
we discuss the sufficient condition for existence and uniqueness of the solution. And the conditions
of local stability of the fractional-order system are analyze by calculating equilibrium points. We also
find the existence of the asymptotically stable attractor of the system and the carbon cycle in the planet
is balanced by numerical simulations. Furthermore, we construct a discretization process of fractional-
order system and study the necessary and sufficient conditions of the stability of the discretization
system. It shows that the fractional-order parameter has an impact on the stability of the discretization
system.

This paper is arranged as follows. Section 2 analyzes the sufficient condition for existence and
uniqueness of the solution of the fractional-order atmosphere-soil-land plant carbon cycle system and
investigates conditions of the local stability of the system. Section 3 discretizes the fractional-order
atmosphere-soil-land plant carbon cycle system and analyzes the necessary and sufficient conditions
of stability of discretization system. We use numerical simulations which not only illustrate our results
with the theoretical analysis ,but also exhibit the complex dynamical behaviors in Section 2 and Section
3, respectively.

2. The fractional-order atmosphere-soil-land plant carbon cycle system

In this section, we use a class of fractional-order differential system called atmosphere-soil-land
plant carbon cycle system to analyze the carbon flux relationship among the atmosphere cycle, the soil
cycle and the land plant cycle.

2.1. Basics of fractional-order calculus

The Caputo definition of fractional derivative [28] is given as

Dα f (t) = Jl−α f (l)(t), α > 0,

where the operator Dα is referred as the “α-order Caputo differential operator”, f (l) represents the l-
order derivative of f (t), l is the smallest integer which is not less than α and Jθ is the θ-order Riemann-
Liouville integral operator which can be described as

Jθu(t) =
1

Γ(θ)

∫ t

0
(t − τ)(θ−1)u(τ)d(τ), θ > 0,
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where Γ(θ) is the Euler’s Gamma function.
In [29–33], stability conditions and their applications to systems of fraction-order differential

equations were reported. We consider the following nonlinear autonomous fractional-order system

DαX(t) = F(X(t)), X(0) = X0, (2.1)

where X(t) = (x1, x2, x3)T ∈ R3, F : R3 → R3 is a nonlinear vector function in terms of X. The Jacobian
matrix evaluated at the equilibrium point X∗ = (x∗1, x

∗
2, x

∗
3) is

J(X∗) =

(
∂Fi

∂x j

)
i j

∣∣∣∣∣
x=x∗

.

The local stability of the equilibrium points of a linearized fractional-order system can be obtained
from the following lemma [29] :

Lemma 2.1. If all the eigenvalues λ1, λ2, λ3 of the equilibrium point X∗ of system (2.1), satisfy the
Matignon’s conditions [30] which can be described as

| arg λi| > απ/2, (i = 1, 2, 3), (2.2)

where | arg λi|(i = 1, 2, 3) denotes the argument value of the eigenvalue λi. Then X∗ is locally
asymptotically stable.

2.2. Existence and uniqueness of the solution

The fractional-order atmosphere-soil-land plant carbon cycle system can be written in the following
form

DαX(t) = F(X(t)), t ∈ (0,T ), X(0) = X0,

where

F(X) =


q1 − m1x1 + α1x2 − β1x3

(
1 − x3

K1

)
q2 − β2x1 + α2x2 + α3(x3 − K2)

−α4x3 + γ1x1x3

 .
X = (x1, x2, x3)T , X0 = (x10, x20, x30)T

Define the supermum norm as

‖N‖ = sup |N(t)|, t ∈ (0,T ]

then, the norm of the matrix M = [mi j[t]] is defined by [35]

‖M‖ =
∑

i, j

sup |mi j[t]|, t ∈ (0,T ].

We investigate the existence and uniqueness of the solution in the region Ω × (0,T ] where

Ω = {(x1, x2, x3 : max(|x1|, |x2|, |x3|) ≤ ξ},
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thus, we get the solution of the system as follows

X = X0 +
1

Γ(α)

∫ t

0
(t − τ)α−1F(X(τ))dτ = H(X),

so

H(X1) − H(X2) =
1

Γ(α)

∫ t

0
(t − τ)α−1F(X1(τ) − X2(τ))dτ.

Finally, according to the above conditions, we get the following inequality

‖H(X1) − H(X2)‖

≤
Tα

Γ(α + 1)
max{m1,−α2, α4 − γ1ξ exp−γ1ξ}‖X1 − X2‖

≤ L‖X1 − X2‖,

where

L =
Tα

Γ(α + 1)
max{m1,−α2, α4 − γ1ξ exp−γ1ξ}.

If L < 1, then the mapping X = H(X) is a contraction mapping and we get the sufficient condition for
existence and uniqueness of the solution of system as follows.

Theorem 2.1. The sufficient condition for existence and uniqueness of the solution of system in the
region Ω × (0,T ] with initial conditions X(0) = X0 and t ∈ (0,T ) is

L =
Tα

Γ(α + 1)
max{m1,−α2, α4 − γ1ξ exp−γ1ξ} < 1.

2.3. Parameter estimation of the atmosphere-soil-land plant carbon cycle system

In the practical application, it is very important to estimate parameters of the system. Next, we give
a simple estimation method for the various parameters involved in the system.

(i) Estimate of the coefficients of diffusion β1, β2.
We use the following formulas to estimate the diffusion coefficients.

β1 =
ν1

ω1
, β2 =

η1

ξ1
,

where ν1 represents the quantity of diffusion in the atmosphere cycle, ω1 represents the total carbon
dioxide, η1 represents the total quality of diffusion in the soil cycle, ξ1 represents the total carbon
dioxide.

(ii) Estimate of the coefficient of supply α1,2,3,4 and the Lotka-Volterra coefficient γ1.
In the case of α1. Let x1(0) = 0, when t is small, we ignore the role of carbon in atmosphere cycle

and land plant cycle, and the approximate assumption x2 = x21, then the first formula in system (1.2)
becomes

ẋ1 = α1x21.
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So, when t = t1, x1 = x21, then from the above formula, we get

α−1
1 = t1,

thus, the above formula implies that: in the case of a certain speed of carbon in atmosphere cycle, α−1
1

equals the time which carbon supply becomes 0 required. So, estimation of the supply coefficient, we
can convert to estimate from the time perspective.

(iii) Estimation of the parameter q1, m1, K1, q2, K2.
According to statistical data fitting, we can get the estimated value of q1, m1, K1, q2, K2.

2.3.1. Stability analysis of fraction-order atmosphere-soil-land plant carbon cycle system

To analyze system and discuss the stability of the system, we first find out the equilibrium points of
system (1.2). Let

dαx1

dtα
= 0,

dαx2

dtα
= 0,

dαx3

dtα
= 0.

After calculating, the system has three equilibrium points

E0 =


α1α3K2−α1q2+α2q1
−α1β2+α2m1

−
q1
α1

+ m1
α1

(
α1α3K2−β2q2+α2q1
−α1β2+α2m1

)
0


T

,

E1 = (x11, x21, x31), E2 = (x12, x22, x32).

(2.3)

For system (1.2), the Jacobian matrix of equilibrium point (x∗, y∗, z∗) is as below

J(x∗, y∗, z∗) =


−m1 α1 −β1 +

2β1
K1

z
−β2 α2 α3

γ1z 0 −α4 + γ1x

 .
Theorem 2.2. The atmosphere cycle and soil cycle equilibrium point E0 = (α1α3K2−α1q2+α2q1

−α1β2+α2m1
,− q1

α1
+

m1
α1

(α1α3K2−β2q2+α2q1
−α1β2+α2m1

), 0) is locally asymptotically stable if α4 > γ1
α1α3K2−α1q2+α2q1
−α1β2+α2m1

, α2 < m1 and m1α2 −

α1β2 < 0.

Proof. The Jacobian matrix of equilibrium point E0 is

J(E0) =


−m1 α1 −β1

−β2 α2 α3

0 0 −α4 + γ1
α1α3K2−α1q2+α2q1
−α1β2+α2m1

 .
The corresponding characteristic polynomial is

f (λ) =

[
λ −

(
−α4 + γ1

α1α3K2 − α1q2 + α2q1

−α1β2 + α2m1

)]
×

[
(λ + m1)(λ − α2) + α1β2

]
.
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So the eigenvalues of the Jacobian matrix J(E0) are

λ1,2 =
α2 − m1

2
±

1
2

√
(m1 + α2)2 − 4α1β2,

λ3 = −α4 + γ1
α1α3K2 − α1q2 + α2q1

−α1β2 + α2m1
.

If α2 < m1 and m1α2−α1β2 < 0, then both eigenvalues λ1,2 are negative. If α4 > γ1
α1α3K2−α1q2+α2q1
−α1β2+α2m1

, then
λ3 is negative. Therefore, all the eigenvalues of the atmosphere cycle and soil cycle equilibrium point
E0 satisfy Matignon’s conditions (2.2). �

Next, the eigenvalues of the two-species equilibrium points E1 and E2 are given by

P(λ) = λ3 + A1λ
2 + A2λ + A3 = 0,

where

A1 =m1 − α2 + α4 − β1x1;

A2 =(α4 − γ1x2)(m1 − α2) − m1α2 + α1β2 + γ1x3

(
β1 −

2β1x3

K1

)
;

A3 = − (α4 − β2x2)(m1α2 − α1β2) − γ1x3

(
α1α3 + m1

(
β1 −

2β1x3

K1

))
+ γ1x3(m1 − α2)

(
β1 −

2β1x3

K1

)
.

Remark 2.1. Since E0 is a land plant free equilibrium and the discriminant of eigenvalues is greater
than zero, which verifies the first statement in Theorem 2.3, we notice that the conditions of Theorem
2.2 is free with the order α.

Now, we use the following theorem to determine the local stability of interior equilibrium points E1

and E2.

Theorem 2.3. [29] If the discriminant of the eigenvalues of equation (2.3.1) is given as

D(P) = 18A1A2A3 + (A1A2)2 − 4A3(A1)3 − 4(A2)3 − 27(A3)2,

then equilibrium points E1 and E2 are locally asymptotically stable if they satisfy the following
fractional Routh-Hurwitz conditions:

(i) If D(P) > 0, then the necessary and sufficient condition for equilibrium point E1(E2), to be
locally asymptotically stable, is A1 > 0, A3 > 0, A1A2 − A3 > 0.

(ii) If D(P) < 0, A1 ≥ 0, A2 ≥ 0, A3 > 0, then E1(E2) is locally asymptotically stable for α < 2
3 .

However, if D(P) < 0, A1 < 0, A2 < 0, α > 2
3 , then all roots of equation (2.3.1) satisfy the condition

|arg(λ)| < απ/2.
(iii) If D(P) < 0, A1 > 0, A2 > 0, A1A2 − A3 = 0, then E1(E2) is locally asymptotically stable for all

α ∈ (0, 1).
(iv) The necessary condition for equilibrium point E1(E2), to be locally asymptotically stable, is

A3 > 0.
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2.4. Numerical simulations

In this subsection, to briefly illustrate the system dynamics, we use a modified Adams-Bashforth-
Moulton algorithm method proposed by [34] to solve the system. The numerical simulation results
show that there is a rather complex nonlinear relationship among the atmosphere cycle, soil cycle
and land plant cycle. As in [13], we select the following parameter values: q1 = 0.1, m1 = 0.03,
α1 = 0.06, β1 = 0.02, K1 = 0.13, q2 = 0.15, β2 = 0.02, α2 = 0.02, α3 = 0.02, K2 = 0.25, α4 = 0.02,
γ1 = 0.0005. Then numerical simulations are performed for α = 0.88, 0.94, 0.97, and 0.99. As can
be seen from Figure 2, the dynamic behavior of the system has obvious differences under different
values. When α = 0.88 and 0.94, an asymptotically stable attractor exists in Figure 2(a) and (b). When
fractional-order parameter α is bigger, the speed of asymptotically stable of the system is faster. When
α = 0.97 and 0.99, Figure 2 (c) and (d) show that the system has a stable limit cycle. Therefore,
different fractional-order parameters α have different effects on the atmosphere-soil-land plant system.
In addition, by observing the relationship among variables with time, we get Figure 3. From Figure
3, we find that the carbon reserve of the atmosphere has a maximum value with time and then keeps
steady; the carbon reserve of the soil also has a maximum value with time, then it has a steady level;
and the carbon reserve of the land plant cycle decreases to a minimal level and keeps steady finally. It
shows that the carbon flow keeps a balance in the atmosphere cycle, soil cycle and land plant cycle.
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Figure 2. Phase diagrams for system using the fixed parameter values and fractional orders:
α = 0.88 (asymptotically stable), α = 0.94 (asymptotically stable), α = 0.97 (limit cycle),
α = 0.99 (limit cycle).

AIMS Mathematics Volume 5, Issue 2, 1532–1549.



1541

0 500 1000 1500 2000 2500 3000 3500
0

10

20
evolution over time of atmosphere−soil−land plant carbon cycle

t

x
1

0 500 1000 1500 2000 2500 3000 3500
−10

0

10

t
x
2

0 500 1000 1500 2000 2500 3000 3500
0

0.05

0.1

t

x
3

Figure 3. The evolution over time of atmosphere-soil-land plant carbon cycle.

3. The discretized fractional-order atmosphere-soil-land plant carbon cycle system

In the following, we adopt the discretization [26, 35] of fractional-order atmosphere-soil-land plant
carbon cycle dynamic system and investigate the necessary and sufficient conditions for the
stabilization of discretized system.

3.1. Discretization process of the fractional-order system

Now, we assume that x1(0) = x10, x2(0) = x20, x3(0) = x30 are the initial values of system (1.2). So
the discretization process of fractional-order atmosphere-soil-land plant carbon cycle dynamic system
(1.2) with piecewise constant arguments is given as [35]

Dαx1(t) =q1 − m1x1

([ t
s

]
s
)

+ α1x2

([ t
s

]
s
)
− β1x3

([ t
s

]
s
) 1 − x3

([
t
s

]
s
)

K1

 ,
Dαx2(t) =q2 − β2x1

([ t
s

]
s
)

+ α2x2

([ t
s

]
s
)

+ α3

(
x3

([ t
s

]
s
)
− K2

)
,

Dαx3(t) = − α4x3

([ t
s

]
s
)

+ γ1x1

([ t
s

]
s
)

x3

([ t
s

]
s
)
.

(3.1)

Firstly, let t ∈ [0, s), so t
s ∈ [0, 1), we obtain

Dαx1(t) = q1 − m1x10 + α1x20 − β1x30

(
1 −

x30

K1

)
,

Dαx2(t) = q2 − β2x10 + α2x20 + α3(x30 − K2),
Dαx3(t) = −α4x30 + γ1x10x30,

(3.2)
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and the solution of (3.2) is reduced to

x11(t) =x10 + Iα
[
q1 − m1x10 + α1x20 − β1x30

(
1 −

x30

K1

)]
=x10 +

tα

αΓ(α)

[
q1 − m1x10 + α1x20 − β1x30

(
1 −

x30

K1

)]
,

x21(t) =x20 + Iα
[
q2 − β2x10 + α2x20 + α3(x30 − K2)

]
=x20 +

tα

αΓ(α)
[
q2 − β2x10 + α2x20 + α3(x30 − K2)

]
,

x31(t) =x30 + Iα (−α4x30 + γ1x10x30)

=x30 +
tα

αΓ(α)
(−α4x30 + γ1x10x30) .

(3.3)

where Iα = tα
αΓ(α) .

Secondly, let t ∈ [s, 2s), so t
s ∈ [1, 2), we get

Dαx1(t) = q1 − m1x11 + α2x21 − β1x31

(
1 −

x31

K1

)
,

Dαx2(t) = q2 − β2x11 + α2x21 + α3(x31 − K2),
Dαx3(t) = −α4x31 + γ1x11x31,

which has the following solution

x12(t) =x11(s) + Iα
[
q1 − m1x11(s) + α1x21(s) −β1x31(s)

(
1 −

x31(s)
K1

)]
=x11(s) +

(t − s)α

αΓ(α)
[
q1 − m1x11(s) + α1x21(s) −β1x31(s)

(
1 −

x31(s)
K1

)]
,

x22(t) =x21(s) + Iα
[
q2 − β2x11(s) + α2x21(s) + α3(x31(s) −K2)]

=x21(s) +
(t − s)α

αΓ(α)
[
q2 − β2x11(s) + α2x21(s) +α3(x31(s) − K2)] ,

x32(t) =x31(s) + Iα
[
−α4x31(s) + γ1x11(s)x31(s)

]
=x31(s) +

(t − s)α

αΓ(α)
[
−α4x31(s) + γ1x11(s)x31(s)

]
.

So, after repeating the discretization process n times, we gain

x1n+1(t) =x1n(ns) +
(t − ns)α

αΓ(α)
[
q1 − m1x11(ns) + α1x21(ns) −β1x31(ns)

(
1 −

x31(ns)
K1

)]
,

x2n+1(t) =x2n(ns) +
(t − ns)α

αΓ(α)
[
q2 − β2x11(ns) + α2x21(ns) +α3(x31(ns) − K2)] ,

x3n+1(t) =x3n(ns) +
(t − ns)α

αΓ(α)
[−α4x31(ns) +γ1x11(ns)x31(ns)

]
,

(3.4)
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where t ∈ [ns, (n + 1)s). For t → (n + 1)s, system (3.4) is simplified to

x1n+1 =x1n +
sα

αΓ(α)
[
q1 − m1x1n + α1x2n −β1x3n

(
1 −

x3n

K1

)]
,

x2n+1 =x2n +
sα

αΓ(α)
[
q2 − β2x1n + α2x2n + α3(x3n − K2)

]
,

x3n+1 =x3n +
sα

αΓ(α)
(−α4x3n + γ1x1nx3n) .

(3.5)

3.2. Stability of the fixed points of the discretized system

In what follows, we discuss the asymptotic stability of system (1.2) at the fixed equilibrium points.
By considering the Jacobian matrix of these fixed points and calculating their eigenvalues, the local
stability of these points based on the roots of the system’s characteristic equation [36] is studied. The
Jacobian matrix of system (3.5) is given by

J(x1n, x2n, x3n) =


1 + sα

αΓ(α) (−m1) sα
αΓ(α)α1

sα
αΓ(α)

(
−β1 +

2β1 x3n
K1

)
sα

αΓ(α) (−β2) 1 + sα
αΓ(α)α2

S α

αΓ(α)α3
sα

αΓ(α)γ1x3n 0 1 + sα
αΓ(α) (−α4 + γ1x1n)

 . (3.6)

Theorem 3.1. The fixed points E0 of system (3.5) is locally asymptotically stable if and only if

0 < −α4 + γ1
α1α3K2 − α1q2 + α2q1

−α1β2 + α2m1
<

2αΓ(α)
sα

,

and one of the following conditions holds:
(i) φ2

2 = ψ and −4 < sα
αΓ(α)φ1 < 0;

(ii) φ2
2 > ψ and −4 < sα

αΓ(α) (φ1 ±

√
φ2

2 − ψ) < 0;

(iii) φ2
2 < ψ and φ1 + sα

4αΓ(α) (φ
2
1 + ψ − φ2

2) < 0,
where

φ1 = α2 − m1, β2 = m1 + α2, ψ = 4α1β2.

Proof. The Jacobian matrix evaluated at E0 is given by

J(E0) =


1 + sα

αΓ(α) (−m1) sα
αΓ(α)α1

sα
αΓ(α) (−β1)

sα
αΓ(α) (−β2) 1 + sα

αΓ(α)α2
S α

αΓ(α)α3

0 0 1 + sα
αΓ(α) (−α4 + γ1ϑ)

 .
where ϑ =

α1α3K2−α1q2+α2q1
−α1β2+α2m1

.
The eigenvalues of J(E1) are

λ1 =1 +
sα

αΓ(α)

(
−α4 + γ1

α1α3K2 − α1q2 + α2q1

−α1β2 + α2m1

)
,

λ2,3 =1 +
sα

2αΓ(α)

(
α2 − m1 ±

√
(m1 + α2)2 − 4α1β2

)
.

So if the fixed point E0 is locally asymptotically stable, it satisfies the stability conditions |λ1| < 1 and
|λ2,3| < 1 by the postulates in this theorem. �
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Next, let us discuss the stability of fixed points E1,2. To simplify calculations, we get the Jacobian
matrix of these fixed points

J(E1,2) =


γ11 γ12 γ13

γ21 γ22 γ23

γ31 γ32 γ33

 ,
where

γ11 = 1 +
sα

αΓ(α)
(−m1), γ12 =

sα

αΓ(α)
α1,

γ13 =
sα

αΓ(α)

(
−β1 +

2β1

K1
x3i

)
, γ21 = −

sα

αΓ(α)
− β2

γ22 = 1 +
sα

αΓ(α)
α2, γ23 =

sα

αΓ(α)
α3, γ31 =

sα

αΓ(α)
γ1x3i,

γ32 = 0, γ33 = 1 +
sα

αΓ(α)
(−α4 + γ1x3i)

(3.7)

and variables x1i, x2i, x3i, i = 0, 1, 2 are defined by equation (2.3). The characteristic equation of J(E1,2)
is expressed as follows:

f (λ) = λ3 + K1λ
2 + K2λ + K3 = 0,

with the coefficients

K1 = − V1 − V5 − V7 − 3,
K2 =V1(V5 + V7) − U2V3 − V2V4 − 2K1 − 3,
K3 =U2(−V2V6 + V3V5) + V7(V2V4 − V1V5 − V5) − K2 − K1 − 1,

(3.8)

where
U1 = sα

αΓ(α)
2β1 x3i

K1
, U2 = sα

αΓ(α)γ1x3i, U3 = sα
αΓ(α)γ1x1i,

V1 = sα
αΓ(α) (−m1), V2 = sα

αΓ(α)α1,
V3 = sα

αΓ(α) (−β1) − U1, V4 = sα
αΓ(α) (−β2),

V5 = sα
αΓ(α)α2, V6 = sα

αΓ(α)α3,
V7 = sα

αΓ(α) (−α4) + U3.
According to the Jury’s criterion [37], if fixed points E1,2 are locally asymptotically stable, they

should satisfy the following conditions:
1 + K1 + K2 + K3 > 0, 1 − K1 + K2 − K3 > 0,
1 − K2 + K1K3 − K2

3 > 0, 1 + K2 − K1K3 − K2
3 > 0.

Therefore, the above conditions indicate that fixed points E1,2 are locally asymptotically stable if
the system’s parameters belong to the following set
{H : [C − B − A − 1] ∈ Ωi,∀i = 1, 2, 3}
where
H = (α1, α2, α3, α4, α5, β1, β2, α, s),

Ω1 =

(
−A−3+

√
(A2−4B)−2A+1

2 ,
−A−3−

√
(A2−4B)−2A+1

2

)
,
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Ω2 = (−B − A − 1, B + 3A + 7) ,

Ω3 =

(
A+3+

√
A2+4B+14A+23

2 , A+3−
√

A2+4B+14A+23
2

)
,

A = V1(V5 + V7),

B = V1(V5 + V7) − U2V3 − V2V4,

C = U2(−V2V6 + V3V5)V7(V2V4 − V1V5 − V5).

3.3. Numerical simulations

Discretization is a new method to analyze the fractional-order system. For discretized system, we
mainly consider the stability of the fixed points of the system. However, even if we can obtain analytical
conditions about stability, it would be a little difficult to deal with them thoroughly by theory.

So, in order to analyze the stability of the fixed points, we adopt numerical simulations to study the
global dynamical behaviours of system (3.5). In the simulation process, some dynamical behaviours
of system (3.5) can be shown, for example asymptotic behaviours near the equilibrium points and the
stable limit cycle. In the following, we will find that when fractional-order parameters α and s with
different values, it will have strong effect on the stability of system (3.5).

First, as in [13], we fix parameters q1, m1, α1, β1, K1, q2, β2, α2, α3, K2, α4, γ1. Then we vary
parameters α and s. On the basis of the above-mentioned parameters values and setting α = 0.9,
α = 0.98 and s = 0.6, we get Figure 4(a) and (b) which depicts the phase portraits of the system (3.5).
When α = 0.9, α = 0.98 and s = 0.4, we gain Figure 4(c) and (d). In the case of Figure 4(a) − (d),
discretized system (3.5) is similar with fractional-order system (1.2) under increasing fractional-order
parameter α and fixing parameter s. When α = 0.9, 0.98 and s = 0.09, the phase portraits of system
(3.5) are depicted in Figure 4(e) − ( f ), respectively. From Figure 4(c) − ( f ), we notice that increasing
parameter s and decreasing fractional-order parameter αmake the behavior of system (3.5) stable. And
when α = 0.3, 0.5 and s = 0.09, Figure 4(g)−(h) shows that the stable limit cycle of system (3.5) which
confirms the above result; because it is shown that the above result is reversible when s is small and
decreasing fractional-order parameter α destabilize the stable behaviour of system (3.5).

4. Conclusions

In this paper, we introduced the fractional-order atmosphere-soil-land plant carbon cycle system
and adopted discretization method to discretize this system. We analyzed some dynamic behaviours
of the fractional-order atmosphere-soil-land plant carbon cycle system. We obtained the sufficient
condition for existence and uniqueness of the solution and the conditions of local stability of the
equilibrium points of the fractional-order system. Furthermore, for discretization system, the
necessary and sufficient conditions of stability of the discretization system were also obtained. In
discretization system, we knew that when applying the discretization process on fractional-order
atmosphere-soil-land plant carbon cycle system as α→ 1, the discretization would be Euler’s process.
In addition, we found that, the stability of the discretization system were impacted by the fractional
parameter. Numerical Simulations verified the correctness of our results.
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Figure 4. Trajectory of the system (3.5) in phase space when the coefficient are fixed and (a)
α=0.9, s = 0.6; (b) α = 0.98, s = 0.6; (c) α = 0.9, s = 0.4; (d) α = 0.98, s = 0.4; (e) α = 0.9,
s = 0.09; (f) α = 0.98, s = 0.09; (g) α = 0.3, s = 0.09; (h) α = 0.5, s = 0.09.
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