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1. Introduction

This section briefly outlines the essential definitions and theorems required for understanding this
study. For g € R — {1}, the g-number is defined as:

l-¢q
l-qg

[w]q =

In the definition of the g-number, it noted that lim,_,[n], = n; see [8,9,23]. Moreover, for k € Z,
[k], is referred to as a g-integer.

The g-numbers introduced by Jackson ( [8, 9]) have led to expanded theories that intersect with
established fields; see, [1,6,12,13,18,21,22]. The g-Gaussian binomial coefficients ( [10, 23]) are
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defined as

[m] _ [m],!
rl, [m- rlg'rl,!

Here, m and r denote nonnegative integers. Note that [w],! = [w],[w—-1],---[2]4[1], and [0],! = 1.
The g-binomial theorem ( [10, 14]) can be expressed as:

(@ep)) =(@+p)a+qgp) (a+q""p).
Definition 1.1. Let a be any complex numbers with || < 1. Then, two forms of g-exponential functions
([7,20,23]) can be expressed as

[oe]

N 2 .
e, (@) = Z ol E () = Z ¢ ol respectively.

w=0 w=0

It is noted that lim,_,; e,(@) = ¢” and e, () E,(—a) = 1.

Definition 1.2. The g-derivative of a function f with respect to « is defined by

f(@) - f(qa)

d—ga for a#0,

D,f(a) =
and D, f(0) = f7(0); see [2,5,8,23].

We can prove that f is differentiable at zero, and it is clear that D, = [w],“"'. Because the
polynomials covered in this study deal with multiple variables, we use the derivative with respect to
@, 3, and t, which are expressed as D, ,, D, 5, and D,,, respectively.

Theorem 1.3. Definition 1.2 gives us the following properties:

(1) Dy(f(v)g@) = g(@)D,f(a) + f(qa)D,g(a) = f(a)D,g(a) + gqa)D, f(a),

. (f(a)) g(qa)D, f(a) — f(qa)D,g(a) g(a)qu(a) fla)Dyg(@)

(i) D .
(@) gla)g(qa) g(a)g(qa)

Based on the above, research on g-differential equations and g-difference equations has been
conducted by many mathematicians. Bernoulli’s differential equation, specific forms of differential
equations, has been explored in conjunction with g-numbers, and studies on this topic have also been
undertaken by researchers. In [20], differential equations manifest in the form of Bernoulli’s
differential equation as follows:

q(€o)(1) + 2ga)
@l,q(a)

This equation has g-Euler polynomials as solutions.

Dq@w—l,q(a) +

w—l,q(a') + (‘Ew,q(qa) =0

2
g7 €14(1)

Definition 1.4. The generating function for the g-Euler numbers and polynomials ( [3,4,17]) are

o0 2 ‘
wZ (qu[w]q = eq(Q) 7 Z (G q(a/)[ X = @)+ 1eq(ea), respectively.

q:
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In this definition, when g goes to 1, give standard notation for the Euler numbers and polynomials;
see [11,12]. Let ¢ — 1 in Definition 1.4. Then, we can find the Euler numbers and polynomials as

icea%: Z@w(a)—: 2 el <

o+ 1

w=0

In [15], the authors introduced new Euler polynomials (sine Euler polynomials and cosine Euler
polynomials) by replacing o with complex numbers and studied several properties thereof.
Furthermore, [19] combines the polynomials discussed in [15] with g-numbers to construct a Euler
polynomial that incorporates g-trigonometric functions. The study also reveals associated properties
and symmetrical structures. Specifically, the authors pinpoint approximate roots that fluctuate based
on the value of ¢ and present a visual representation of these roots.

Definition 1.5. The generating function for the ¢g-SINE Euler (QSE) and ¢g-COSINE Euler (QCE)
polynomials [19] are

(o) (o)

9(4) 0)
;S@w,q(a’aﬁ) ]! = (@ + leq(9a)SINq(9B), ;)c@w q(@, ,3)[ ]q or 1€q(9a)COSq(93),
respectively.

In Definition 1.5, when ¢ goes to 1, parametrically Euler or Bernoulli polynomials are obtained.
In [16], C, 4(a,B) and S, ,(, B) are defined as follows:

(o) 0(‘)
;) Cod P17 = €s0)COS(6) Z S wal@, /3) = ¢,(62)SIN,(4B).

An important motivation for this study is to identify g-Bernoulli differential equations whose
solutions are QSE and QCE polynomials. Given that QSE and QCE polynomials include
g-trigonometric functions and two variables, g-Bernoulli’s differential equations are expected to
manifest in various forms.

The organization of this study is as follows: Section 2 outlines the essential elements required to
achieve the key findings of this paper. In this section, we examine the relationships between
polynomials and difference equations, which vary based on the variables involved. Section 3
elaborates on the g-difference equations associated with the QSE polynomial, drawing upon the
lemmas established in the preceding section. We identify multiple g-difference equations that vary
both by the type of polynomial and the variables. Section 4 employs computational methods to
analyze the structure of the approximate roots of higher-order polynomials, aiming to uncover the
QSE polynomial characteristics that emerge as a solution in Section 3. Understanding the form of
these approximate roots enables further verification of the polynomial’s properties.

2. Several lemmas related to the main results
The requisite lemmas are obtained to derive the difference equations related to QCE and QSE
polynomials. In this context, here, you can see that the relationships between the g-derivatives and

QCE and QSE polynomials vary based on the variables @ and S3.
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Lemma 2.1. Let k be a nonnegative integer. Then, the following relations can be formulated:

— k!
[w]q
Tk?‘fz)(k) Coy(@,p).

Proof. After calculating the g-derivative of e (f«) directly, we obtain

(1) Sw—k,q(a/’ ﬁ) = D(k) Sw q(a/’ ﬁ)

(11) Cw kq(a/ ﬁ)

D(l) 2€q(0a) = Oe (ba).

(1) Using the g-derivative and Eq (2.1) in S, ,(, ) with respect to a, we can express the relation:

[Se]

ov
[ ] ! Z a) l,q(a’ﬁ)[a)] '

D(”stq(“ ,3) _GZS 2 .

Applying the coefficient comparison method to Eq (2.2) yields:

[ lq!
DE]{)qu(a/ ﬁ) - [w]q w— lq(a' ﬁ) — {i] w—l,q(a/’ﬁ)'
!
By repeating the same process as in Eq (2.2), we obtain the following:
@ [w],!
Dq,aSw,q(a/’ﬂ) = [w]q[w - 1]qu—2,q(aaﬁ) = —Sw—Z,q(a”ﬁ)’
[w-2],!

DO B [l
g w,q(a/aﬁ) = [w]q[w - l]q[w - 2]qu—3,q(a,IB) - [a)_—?,]q!sw—3 q(a/ ﬁ)

o B [l
g w,q(aaﬁ) - [w]q[w - l]q[w - 2]q T [(‘-) - (m - 1)]qsw—3,q(a’ﬁ) -5 3

_ l’l’l] ' Sw—3,q(a"ﬁ),
q:

(2.1

(2.2)

The relationship between D(k) Swqla,p) and S, (a,p) that manifests at the k-th instance is

captured in Lemma 2.1 (i) that has been obtained.

(i1) Using a method similar to (i) in C,, 4(a, B), we can find Lemma 2.1 (ii); hence, the proof of (ii) is

omitted.
Lemma 2.2. Let k be a nonnegative integer. Then, the following is valid:
w],!
(-1)3 %Sw—k,q(a', q'B), if kis even,
w — k]!
() DipSauqg(@.f) =
!
(-1 )7L Corg(a,¢"'B), if kisodd.
[ - k]q
(-1)3 %Ca}—kﬂ(a’, g'B), if kiseven,
w —k],!
(i) DYYCogle.p) =

. !
-DF %ka,q(a, q¢*B), if kis odd.
!

AIMS Mathematics

O

Volume 9, Issue 6, 16753—-16772.



16757

Proof. The g-derivative for the g-cosine function and g-sine function can be verified as follows:
D,COS,(a) = =SIN,(qa), D,SIN,(a) = COS,(qa), (2.3)

see, [5,19,23].
(1) Upon applying Eq (2.3) in S, 4(, B) with respect to 3, the following is obtained:

pY Z S g, ﬁ) = e,(6)D'"}SIN,(6) = Z C

(2.4)

Continuation of the process based on Eq (2.4) yields:

D')S wg(@.B) = Cugl@,gB), DS y(@.B) = =Suy(. ¢B),
DS (@ B) = —Cug(@.'B),  DL5S wg(@. ) = Suyla.g'B),

At the k-th instance, the desired result is obtained.
(i1) Using the processes outlined in Eqs (2.3) and (2.4) similarly for S, ,(a, 8), we can find Lemma 2.2;
(i1) hence, the related proof process can be omitted. O

Corollary 2.3. If ¢ — 1 in Lemma 2.2, the following result holds:

k (—l)gSw(a,ﬁ), if k is even,
1 —=Su@p) =
P» (-1)FCy (@, f), ifkisodd.

J* (—1)§Cw(a,,3)’ if k is even,
(i1) d_,Bka(a"B) =
(-D)'T' S (@,p), ifkisodd.

Lemma 2.4. For k € nonnegative integer, we have the following relations with €, (a,5) and
ng,q(a’,ﬂ)l

(1) D( g.aS @w q(a :8) [ [ _]]q(] 'S Gaa} k q(a/ ﬁ)
3} [w],!
(i) DXcC, (a.p) = M_—,‘i]q!c@w_k,q(a,ﬁ).

Proof. (1) Using the g-derivative in s €, ,(, B) about a, we get:

[0e] [oe] )

o
D;]()z sC, q(a ﬁ) =0 Z sCy q(a ﬁ) Z[w]qS @w—l,q(a’ﬁ) [w],!

w=0 w=0

(2.5)

After comparing the coefficients of 8“ in Eq (2.5) and continuing to use the same method as in
Eq (2.5), we can formulate:

[w],!

DY) sC,g(@.B) = [wlys Coor g(@. B) =
[w—1],!

S@w—l,q(a’ﬁ)

Via induction, we obtain lemma 2.4 (i).
(i1) If we apply the proof of (i) of the lemma 2.4 similarly to €, ,(a,f), we can derive (ii) of the
lemma; hence, the proof process is omitted. O
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Lemma 2.5. Let k be a nonnegative integer. Then, the following hold:

(—1)5%_9 Cry(a,g"B), if kiseven,
() D\)sCuq@.p) =
k=1 [ ]q

(-1)>= e k]q'c@w ke(a, q kB), if kis odd.
[w],! e
(- 1)2 oA ‘C(Ew kq(@, q k), if kis even,
(i) DG, (0f) = )
ktl [w]q

(—1) 2 Ws‘(ﬁw kq(a Qﬁ) if k 1s odd.

Proof. (i) Applying the g-derivative in €, (@, ) with respect to 5, we obtain

o0 9a)+1 i o
(1) —_— =
D ZS@W(Q ﬁ) ;)C@w,q(a, P - ;[w]qc@w,q(a, iy

Using the coefficient comparison method and induction, we can write:

[w],!
[w = 1],

anS@wq(a :8) w] [w - l]qS@w Zq(a' q ﬁ)

D(l()yS@wq(a/ ﬂ) qC(Ew lq(a Qﬁ) 'C@w lq(a Qﬁ)

[w],!
w-2],!

to derive the desired result.

S @w—Z,q(aa 612,3),

(2.6)

(i1) If we apply the proof process of (i) of Lemma 2.5 similarly to €, ,(a, 5), we can derive (ii) of the

lemma; hence, the proof process is omitted.

3. Multiple g-difference equations for QSE and QCE polynomials

O

In this section, we use the lemmas of the previous section to verify the g-difference equations
associated with QSE and QCE polynomials. The g-difference equations that vary based on the variables

are shown to have QSE and QCE polynomials as solutions.

Theorem 3.1. The g-difference equation of the form

(Ew w (Ew
DS @ ) + T DS (0 ) + e DS () +

[ ]q q,a 1] ‘ q,a [ 2] q,a
B peng G, DS GoyS G =0
[2_](1! g, w,q(a'uB) + Le qa w,q(aaﬁ) + 0.9 w,q(a,ﬁ) - S w,q(a'nB) -

has €, ,(a, B) as a solution.

AIMS Mathematics Volume 9, Issue 6, 16753-16772.
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Proof. Using the generating function of QSE polynomials, we find a relation for s€, ,(a,f), €, , and
S wqla,pB) as

[ (o)

e 6@
D sCula, B) Z[Z[ ] cek,qsw_k,qm,ﬁ)) o (3.1)
k=0 q:

w=0 w=0

Comparing both sides of Eq (3.1) for 6“ yields

w

sCogl@P) = ) [ ] CrgS k(. B). (3.2)
=0 L™ g
If we replace Eq (3.2) with Lemma 2.1. (i), we can write

w

¢
$Cug@B) = ) m DS wa(@ ). (3.3)
k=0 “9°

We obtain the desired result by expanding the series in Eq (3.3). O
Corollary 3.2. For g — 1 in Theorem 3.1, the following holds:

¢, dv de-! €, dw—Z

S S )+ e
€ d* d

+ Ed ) a)(a/ ﬁ) + @l w(a’ ﬁ) + @()Sw(a’ ﬁ) S@w(a,ﬁ) =

(Q’IB)+...

Theorem 3.3. The polynomial c(fw,q(a/, f) is a solution of

@w W w 1 w— w 2 w
—LDCy (e, B) + A D( " VC,q(@,B) + ——1_D?C,q(a.p)
[w],! - 1],! -2],!
CEz
T - D(Z) CU) q(a’ﬁ) + @l,qD(ql,Zva,q(a"ﬁ) + QEO,qu,q(a'aﬁ) - chw,q(a’ﬁ) =0

[2] !

Proof. Using a procedure similar to Eq (3.1) for the QCE polynomial, we can write:

4w
Cog@p)= " [ k] €ty Comtgl@s ). (3.4)
k=0 L™ g
Using Lemma 2.1.(i1), Eq (3.4) becomes Eq (3.5):
Cog(@, ) = i@ DY\ Cogla. ). (3.5)
CVYwg\W, -~ [k]q w,q .
From Eq (3.5), we can derive Theorem 3.3. |

Theorem 3.4. Let w be a nonnegative integer. Then, the g-difference equation below, for variable S,
has €, ,(a, B) as the solution.
(1) If w is an even number, then

(_1)% @w,q
[w],!

(-D*E,
w2,

(_1)%@44)—14

D(tu 2)Sw , 2-w
TN S P)

D{)S wgla, g “B) + DYV Cogla, q'™B) +

AIMS Mathematics Volume 9, Issue 6, 16753-16772.
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€ 0 ) M i _
t+e [2] 'Dq"gsw,q(a,’ q ﬁ) - @l,quﬁCw,q(a» q ﬁ) + @O,qu,q(a/aﬂ) - S@w,q(a’aﬁ) =0.
q

(i1) If w is an odd number, then

w+l

-DF €y 0 o DT Cly o DT €y 0 Y
[w—]q!DqﬂC‘“"’(a’q B) + [a)——l]q!Dq’ﬁ Swgla,q “p) + [w——Z]q!Dqﬁ Cogla,qB)
@2’4 (2 -2 6] -1
+e - [Z_]q!DqﬁSw,q(a/’ q ﬁ) - (gl,qu’IBCw,q(a’ q B) + @O,qu,q(aaﬁ) - S@w,q(aaﬁ) =0.
Proof. In Lemma 2.2, we can formulate
- k]!
(-D): %ng}gs w0q(@ qB), if kis even,
q!
S v-kgla,B) = o (3.6)
o lw—k],! o
(- %D%Cw,q(a, q7*B), ifkis odd.
q!
Applying Eq (3.6) in Eq (3.2), we can complete the proof of Theorem 3.4. O
Corollary 3.5. Setting ¢ — 1 in Theorem 3.4, the following holds:
(1) If w is an even number, then
(=DIE, a* (=D?E,, a! (-1)T Eyop a2
— oS u(@ )+ Cola,p) + Swla,
Wl apeo OB T g Col @B =T g o @ B)
€, d? d
o= gd—ﬂsz(a,ﬁ) - @1@Cw(a,ﬁ) + &S w(@, B) = s€u(@, B) = 0.
(i1) If w is an odd number, then
-h*7¢E, d (=D €,y a”! (D7 €,p a2
— 5 Cu(@,p) + Swl@,p) + Cola,
ol apeCHeP T T aper P T Ty g G @ P
€, d* d
t+- - Ed_ﬁzsw(aaﬁ) - @1%Cw(a’ﬁ) + CEOSw(al>ﬁ) - S(Ea)(al’ﬁ) =0.

Theorem 3.6. For variable g, €, ,(, B) is one of the following solutions of the g-difference equations:
(1) If w is an even number, then

(_1)%€w,q (w) - (_1)%7260)—14 (w-1) —w
ol DaiCoa@d B+ 0T DL S wa(@q P
(DT Chry (o » G, .
B IDC gl P) + - - oL LD Cog(,q7°B)

q- q-

+ @l,qD(ql’;Sw,q(a’ q_lﬁ) + @O,ch,q(a"ﬁ) - C@w,q(aaﬁ) = 0
(i1) If w 1s an odd number, then

(-1)T €,

(_1)%@w—1q (w—-1) 1-
————D_  Coyla,q “B)
], A dp

(w) -
DqﬁSw,q(a’, q ﬁ) + [(1) _ l]q‘ q.8
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(_l)mz w-2,9 D@2 —w 2.4 Q) _
P w2y Dis Seae g B 4 A DiCuae g B

+ (El,qD;{/)gSw,q(a'a 61_1,3) + (EO,qu,q(a/nB) - C@a),q(a"ﬁ) =0

Proof. In Lemma 2.2, it can be observed that

i [w — k]! _ o
(_1)]2( TL]!LID;%CGW(Q’ q kﬁ), if k is even,
Ca)—k,q(a"ﬁ) = (3.7)
-1 %Dwsw JAa,g*B), if kis odd.
Considering Eq (3.7) in Eq (3.4), we obtain the result of Theorem 3.6. O

Theorem 3.7. For e, (t) # —1, the QSE polynomial is one of the solutions of the following w-th order
difference equation:

1 1 . w-
o DS, ) o Dl s @)+ o DI Gy
oot DD C, (@, ) + D)5, () + 2 (s Cog(@.B) = Sug(@.f)) = 0

[2],!

Proof. 1If e,(6) # —1 in the generating function of QSE polynomials, the following derivation is
obtained:

(o) gw
2zswq<a ,3) wZ (Z [ ] $Cukg(@, B) + 50 g(a, ﬁ)] Nt (3.8)
After comparing the series on both sides in Eq (3.8), we can write:
A [w
2Sugl@p) = [ k] $Corig(@,B) + 5Cuy(@. B (3.9)
k=0 L™ 1q
If we substitute (i) of Lemma 2.4 into the righthand side of Eq (3.9), we can formulate
Z 1P Coa0) + €000 ) = 2S gl B) = 0. (3.10)
k=0 “4°

By expanding the finite series on the left-hand side of Eq (3.10), we obtain the desired result. O

Theorem 3.8. The g-difference equation

1
WD(M)C@M @, B) +

+ .. 4

D(w 1)C@w q(a/ ﬁ) + D(w 2)C@wq(a’ﬁ)

- 1],! -2],!

D@c@wq(a B) + D, g B) +2 (ccewqw B) = Cug(@.)) =0

[2],!

has €, ,(a, B) as the solution.

AIMS Mathematics Volume 9, Issue 6, 16753-16772.
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Proof. Similar to the procedure used for finding Eq (3.9) in Theorem 3.7, the relationship between
C(Ew,q(alaﬁ) and Cw,q(a/7ﬁ) is:

O [w
2Wug@P = [ k] CCorka(@.B) + €yl ). (3.11)
k=0 L™ g
Substituting (ii) of Lemma 2.4 into the righthand side of Eq (3.9), we obtain:
Z T 2acCoa(@B) + Cuy(@ ) = 2Cuy(@) = 0. (3.12)
k=0 q-
Using Eq (3.12), we can finish the proof of Theorem 3.8. O
Corollary 3.9. For ¢ — 1 in Theorems 3.7 and 3.8, the following holds:
) 1 a” 1 de! 1 de=?
(1) —,d—wsc‘fu}(a B+ w_1D! msgw(a@ﬂ) + w_2) WS@Q)(CZ,,B) +e
1 d d
71 72 Eol@:B) + 75 Cula. ) + 2 (s€u(@. f) = Su(@.B)) =
1 av 1 de! 1 do?
1i Ty w 1 CE(U ” o 5 (gw ” e
() e Cul@B) + o Gl )+ oS ) +
1 & d
+ 55 —7—=cCu(@.B) + ——cCu(a@.B) + 2 (cCu(a,B) - Cu(a,B) =0
2lda da

Theorem 3.10. Under the following conditions, the g-difference equation for g has s€,, ,(@,B) as the
solution.
(1) If w is an even number, then

-Df _ -Df oL (DT »
[w]g! Dy Cualerg™F) + - 11, 'Di’ﬁ YcCuq@ P+ WD;VB 75 Cugla. 4 B)
1
to o fgs%q(a 07B) = D€y, g7'B) + 2(5 € g (@, ) = S wg(@. ) = 0
N

(i1) If w is an odd number, then

w+l w=1 w-1

(_1)T (u)) (Q’ q ,8)+ ( 1) 2 D(w 1) @wq(a’ql—wﬁ)+ (_1)T D(w 2) (qu(a,’qZ—wlB)

[w],! Dy pcCoq —1],! 4* [w—2],! %
1 _ _
to o D)5 Cog(@,q7B) = D pcCo (@, g7 B) + 2s Cog(@.B) = S (@, B)) =
q!
Proof. By transforming Lemma 2.5, we can express:
(it o, 3q D)5 G, g, qB),  if kis even,
s Comrgla, B) = (3.13)
+1 LW .
(-DF %D@Cc&w,g(a, g *B), if k is odd.
The calculated result after applying Eq (3.13) to Eq (3.8) yields Theorem 3.10. O

AIMS Mathematics Volume 9, Issue 6, 16753-16772.



16763

Corollary 3.11. Consider ¢ — 1 in Theorem 3.10. Then, we can formulate:
(1) If w is an even number, then

w=2

(-1)7 a“ (-1 gv! (=)= dv

le‘ﬁs Cu(a,B) + ( ~ 1) dp- ——cC(a,p) + (@ —2)! B —sCu(a.B) + -
1 &
"0’ €, (a, ﬁ)—@c@w(a B+ 2(s €@, B) = Su(@. ) =0

(i1) If w is an odd number, then

(-D*% 4 (- av! (-7 4
= dﬁwc@wmﬁ) T OB+ e )+
1 & d
" 2aE Cu(a,B) - IBC@ o(@,B) + 2(s €y, B) = Su(@,B)) =

Theorem 3.12. The g-difference equation for 8 has €, ,(a,B) as the solution assuming the following
conditions:
(1) If w is an even number, then

HF 3
fw—2p Pas Cod@d "B+

1
= G P Soal@ B+ s o q ) + 2cuq@.) - Cuyfar) =0

(i1) If w is an odd number, then

(-D)? () (-1 )7

ot PapcCoa@a B + £ =D Vs G, 0(a.q'B) +
q-°

D7 . : D7 o o . DT v
o Dis Coalan B + —]D{ VcCugl@ g B) + 5 Dy P Cugla. g ) +
q: q:
1 _ _
~ o ,D(”c%q(a 072B) + D)5 Co @, 47'B) + 2(cCo (@, f) — Cog(@.B)) =
Proof. Using Lemma 2.5, €, ,(a, B) is expressed as:
- k]!
(-1 %D;’%c@w,q(a, q*B). ifk: even,
q!
C@w—k,q(a’aﬁ) = (314)
-D% %D(’%@M(a, g*B), if k: odd.
q!
Applying Eq (3.14) to Eq (3.11) yields Theorem 3.12. m|

Theorem 3.13. The g-difference equation below with the Euler polynomials €, ,(@) has €, ,(a, ) as
a solution.

Cog(D) ) qC0-14(1) g C4(1) D)
ol ———D)s €, 4(.B) + PR 2. s Cugla, )

+ qw 1@ q(l)D aS@w q(a/ ﬁ) + (]w(«o q(l)S wq(a/ IB) 2((1’3 wq(a/ qﬁ) +ﬁC(€w q(a' (Iﬁ) S@w+1,q(a’ﬁ)) =0

D(w 1)S gw q(a’9ﬁ) +--
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Proof. The g-difference formula for the product of functions can be verified as follows:

D, f(a)g(a)h(a) = glga)h(qa)D, f(a) + f(a)h(qa)Dyg(a) + f(a)g(a)D h(a). (3.15)

To find the g-difference equation, we can obtain Eq (3.16) by differentiating 5 €,, ,(, 5) with respect
to r:

) 0 1 0

6 6° 6“
Dis ) sCud @B = ;s@w,m,ﬁ)[m—]q! = 2 5Cuna(@p)e

w=0 w=0 q-

(3.16)

In addition, if we use Eq (3.15) to differentiate the generating function of €, ,(a,8) with respect
to 6, the following holds:

¢,(6)

W (3.17)

eq(Qa)SINq(Qﬁ)) =- e,(q0a)SIN,(q0B)

2
eq(qf) + 1
e,(0a)SIN,(q6B) +

D 2
“\ e 0) + 1
2a 2B
+ — ——¢,(60a)COS,(¢0B).
)0 + 1 o (@) + 12000C05ah)
After replacing Euler polynomials €, ,(«) and QSE polynomials €, ,(a, 8) in Eq (3.17), we obtain:

D eq(Qa/)SINq(Gﬁ)) (3.18)

2
“\ e 0) + 1

1 (o] w
=-3 [Z [‘;’] G Crg(D)s Cieg (@, ) + @5 Gy (@0, GB) + BeCog(@, GB)
w=0 \ k=0 q

w

[w],!

Plugging Eq (3.16) into the left-hand side of Eq (3.18), we have

w

Z [(Z] qw_k@k,q(l)s @w—k,q(a/’ﬁ) = 20’5 @w,q(a” qIB) + 2ﬁC(€w,q(a’9 (Iﬁ) - 2S @w+1,q(a/’ﬁ)- (319)
q

k=0
By using Lemma 2.4 (1), Eq (3.19) can lead to Eq (3.20):

= qw_k(gk,q(l) (k)
Z TD%QS (Ew—k,q(ang) - 26VS @w,q(a’ q:B) - 2:8C(gw,q(a’ Qﬁ) + 2S (Ew+l,q(a’:8) =0. (320)
k=0 a-

Equation (3.20) represents the desired result. O

Corollary 3.14. By setting ¢ — 1 in Theorem 3.13, the following condition is satisfied :

€.,(1) a¢ €pi(1) @ €,a(l) d°? ) d’

w! d s a)( ﬁ) ( 1)'d T w18 a)( :8) ( 2)‘d T ow2S a)( ﬁ) 2| ale a)(a/ :8)

+ &) c@w(a B) + €o(D)sCu(a, p) = 2asCu(@, B) + BcCu(@. B) = sCpii(@.B) = 0

Theorem 3.15. The g-difference equation below, which involves the Euler polynomials €, (), features
cC, 4(a,p) as a solution:

wq( ) (w) q w— lq( ) q 26]( ) (2)
D (G —_— €y
[ ]q aC q( ﬁ) [(,L) 1]q [2](1 aC q( ﬁ)

+ ¢ €1 (D) cCy (@, B) + ¢ Co (D€ g(@. B) — 2(acCy4(at, gB) — Bs o g(@. gB) — €1 y(@. ) = 0

D(w I)C@wq(a’,B) +--t
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Proof. Following a similar calculation process as used for Eq (3.19) with €, ,(a, ), the result is as
follows.

Z |:(;:] qw_k@k,q(l)(f@w—k,q(a/’ﬁ) - 2aC@w,q(a/’ qIB) + zﬁS Qz(u,q(a" qIB)

k=0 L™ 1q
+26C,p1 (. ) = 0. (3.21)
By applying Lemma 2.7 (i1) to Eq (3.21), we find the result of Theorem 3.15. O

Theorem 3.16. The following g-difference equations, which vary based on the conditions of w, are:
(1) If w is an even number, then

(=D)3E,,,(1) D (=D2gC,14(1) D@D

[w],! D,psCuqla,qg"p) + w11, D€yl q ™ “B) + -
O3, ,4(1
e AL [2]2’?( )D@)s@wqm 07B) — 4“7 €1 (DD )€y (0, g7 B) + 4“Co (D5 €y (. B)
!

= 2as €y g(a, gB) + BcCuq(@, gB) = sCuuig(@.B)) = 0

(i1) If w is an odd number, then

w+l

(=D > € (1)

~1)% g6, (1
DqﬁC@w,q(a” q_ IB) + ( ) 1 Lq( ) (-

Dqﬁ S @w,q(a7 ql_wﬁ) +

[wl,! PE
w—Z@ 1
S e VAL [2]27( )D(”s@wq(a 07B) = 47 €1 (D€ (@, g7'B) + 4 Co (15 €@, B)
!

= 25 €y g, gB) + BcCu g, gB) — 5Coig(@, B)) = 0
The above equations have €, ,(a, ) as their solution.
Proof. Application of Eq (3.13) to Eq (3.18) yields the desired result. O
Corollary 3.17. Based on Theorem 3.16, the following holds:

(1) If w is an even number, then

(=D3E, (1) (=D3E,.(1) @ E(1) &

ol dp sCula, B) + w_ D! dﬁw_lc@w(a,ﬁ) o= 2—!dﬁ2S@w(a B)

d
+ (‘51(1)@c%(0,ﬁ) +Co(Ds €@, B) - 2(as €@, B) + BcCu(a, f) = sCuii(a, p)) =

(i1) If w is an odd number, then

w+l

(=D E,(1) a¢ (=D € (1) a7 E(1) &

w! dﬁ C(gu)( ﬁ) ( _1)' dﬁw 1S(Ew( 7ﬁ)+"'_—d182S w( :8)

+ € (1) ’Bc@w(a B+ Co(DsCula, B) = 2as Cula, B) + BcCul@. ) — sCuri(@, ) = 0

Theorem 3.18. €, ,(,p) is a solution of the g-difference equations below that vary depending on the
conditions of w.
(1) If w is an even number, then

(=DFE, (1)
[w],!

(=) g€, 4(1)

D(“’) €, -
o)

Dy s Cugla.q' ) + -
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w—2
g€y, (1) . . ) .
2] vq D;%;C@w’q(“’q B)+4q 1(‘31,q(1)D;2s@w,q(a,q 'B) + ¢“Cy,(1)cC,, ,(a,B)
!

- 2(Q/C(Ew,q(a'9 qﬁ) +ﬁ5 @w,q(a’ Qﬁ) - C@aﬁl,q(a”ﬁ)) =0

(i1) If w is an odd number, then

(1T €, (1) (=17 g6,y 1 (1) D
[w],!

[w—1],!
w—2@ 1
4 [2]2,;1( )D(Z)C@wq(a/ 07B) + ¢ €1 (DD, o, B + G,y (DeC, (@, B)
!

- z(a/C(Ew,q((L qﬁ) +ﬁS @w,q(a’ Qﬁ) - C@aﬁl,q(a”ﬁ)) =0

D5 €, (@, q™“B) + (@ q' P + -

Proof. We obtain the required result after applying Eq (3.14) to Eq (3.21). O
Theorem 3.19. The g-difference equation

[@w,q((l @ q)qa) + Z‘]::O [(;:] q_k@k,q((l @ Q)qa’)) a - (Ew,q(l)

q
[w],!

2
[@z,q«l & )40) + Tiy [ k] G € (1@ q>qa)) @ = G,(1)
q

+ o 9°Digas Cugle )
!

+(a((1 = g€, (18 g)ga) + Eoy (1@ 9)ga)) = €14(1)) g“DL)s oy, B)
+ (20€0 4 ((1® 9)@) = oy (1)) 4”5 Corg (@, B) = 2cCor1 4(@, B) = Bs €y, gB)) =

qu(q(f)ch (Ew,q(a"ﬁ) +oe

features s €, ,(a, B) as a solution.

Proof. Using e (q0a)E,(—qgba) = 1 and considering the definition of (1 & @)y for Eq (3.17), we can
derive the following:

eq(0

:%iZ[ ] ( (cem,q((leaq)qaﬂirz

w=0 m=0

D, (%eq(ea)smq(@ﬁ))

l qm_k(gk,q((l ® Q)qa)] - (Em,q(l))
q

X" Comy( @B +ﬁz cC., (3.22)

After plugging Eq (3.16) into the left-hand of Eq (3.22) and comparing the coefficients of both
sides, we can formulate the following:

w

25Cumig(@) = ) L‘;] [a (@m,q«l o)+ ) |7
q k=0

m=0

X qu 65w—m,q(a"ﬁ) + 2ﬁC®w,q(a’ Qﬁ) (323)

] G (1 q>qa)J - @m,qa)]
q

AIMS Mathematics Volume 9, Issue 6, 16753-16772.



16767

m)

If we use the relation between Dﬁm sCuq(a,B) and s€,_, (a,B) in Eq (3.23), then we obtain:

. (a (@m,q((l ® 9,0 + Zity m

g Gl @ q)qcr)) — € y( 1)] q“
2S @w+1,q(a/7ﬁ) = Z

q

m=0 [m],!
X D5 €, q(er, B) + 2Bc €y, gP). (3.24)
Equation (3.24) produces exactly the result we are looking for. O

Theorem 3.20. The g-difference equation

((Ew,q((l S CI)qa) + Z‘];):O [(;C)] q_k@k,q((l S q)qa)] a— (Ew,q(l)

q
[w],!

2
(@z,q«l ®9),0) + X [ k]

qu(q(ng@w,q(a'nB) + o

TG (1@ q>qa>] @ — G, (1)
o ¢°DiacCoq(@.B)
!

+(a(( =g €1, (1 & g)ga) + oy ((1® g)ya)) = €14(1)) ¢“ D) cCog(a. B)
+ (2060, ((1© 9)@) = € (1)) §”cCog(@. B) = 2cCorr 4(a B) + s €y, gB)) = O

has €, ,(a, B) as a solution.
Proof. As the proof can be established similarly to that of Theorem 3.19, it is omitted. O

Theorem 3.21. The g-difference equation, which varies based on the condition of the highest-order
term, has s €, ,(a,B) as its solution.
(1) If w is an even number, then

[@w,q((l ® q)q@) + Yo [(;:] g € (1@ q)qa)J a— €y q(l)

q
[w],!

(-1)2g“D{)s €, g(a, B)

-1
[@w—l,q((l 57 q)qa') + ZZJ;Ol [w k ] q_k@k,q((l ) Q)qa’)] a — @w—l,q(l)
’ PR (=D2q° D" cCo (e p)

2
[(‘Ez,q((l ® q)y@) + Yy [ k] g€ (1@ q)qa)) a — Cyq(D)

o — Fz] ' qu(qZ,()zS @w,q(a,ﬁ)
q

—(((1 = g™HE14 (1 ® g)ge) + Gog (1 @ @gr)) @ = €14(1)) ¢“ DY) cCo (@, B)
+ (2060, (1 © 9)@) = Cog(1)) 4”5 Gy (@, B) = 2(5 €ov1 4@, B) = BcCo g, gB)) = O

(i1) If w is an odd number, then

(@w,q((l D Q)qa) + Z/?:O [(;{)] q_k(gk,q((l ©® q)qa)] a — @w,q(l)
q

w+l

(=1)"T ¢*Dy2 €, g(a, B)

[w]g!
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-1
(@w—l,q((l S Q)qa’) + ZZ):_OI [w k l q_k@k,q((l ® Q)qa)]a’ - @w—l,q(l)
q

w-1
+ -1)7 ¢“D“ V€, (a,
11,1 (=1) 7 ¢"Dyy "sCuqla.B)

2
[@z,q((l ® ¢)g@) + Yig [ k] g € (1@ q)qa)] a— & q(1)

P fz] ‘ 4“D2sE,, (., B)
|

—(((1 = g€ (1 @ @) + Coy (1 ® g)ga)) @ = €1 (1) D) Co (. B)
+ (2060, (1@ 9)ge) = €0 (1)) 4”5 €y (@. B) = 2s €1 4. B) = BeCo (@, gB)) = 0

Proof. After substituting Eq (3.13) in Eq (3.23), we obtain the result of Theorem 3.21. O

4. Properties of approximate roots of QSE polynomials

In this section, we focus on the QSE polynomial, which is the solution to the g-difference equation
obtained earlier. Using Wolfram Mathematica version 11.2, we fix the value of g within a QSE
polynomial and show the forms of specific polynomials and the structures of their approximate roots.
Additionally, we understand the structure of the roots of the QSE polynomial in 3-D and consider
conjectures related to it. These characteristics depend on the value of g.

The polynomials that emerge, as defined by the QSE polynomial, are as follows:

S(EO,q(a”ﬁ) = 0’
B
sCq(a,B) = T+q
af
G =—
S 2,q(a,’ﬁ) 1+q+q2’
B@* -1+ ¢»)p’
(5 =
S 3,q(a'aﬁ) (1 + q)(l + q2)
B o0+ ¢aep’
G = -
S 4,q(aaﬁ) 1+q+q2+q3+q4 l+q+q2
sCs (@, B) = B =@+ ¢ +q +q" + ¢’ + ¢ + ¢* + "))
E/ASa - ’

l+g+@P+@+q*+¢@

To understand the structure and characteristics of the approximate roots of the QSE polynomial, we
conducted several experiments by using specific values for the ¢ and S variables.
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(a) (b) ()
Figure 1. Approximate roots of s €5 .999(, 10) for =30 < Re(a) < 30; —=30 < Im(a) < 30.

In Figure 1, § = 10 is fixed, and ¢ = 0.999 is given. Figure 1(a) shows the stacking pattern of
the approximate roots of the QSE polynomial for 0 < w < 50. In (a), the approximate roots increase
almost linearly along the line Im(a) = 0, with a noticeable deviation near Re(a) = 0. Figure 1(b)
presents a perspective of Figure 1(a) with a focus on the axes of Re(a) and w. Figure 1(b) indicates
that as the value of w increases, the locations of the approximate roots expand to the left and right.
Figure 1(c), viewed from the left side of (a), displays the approximate roots congregated near the line
Im(a@) = 0. Figure 1(c) indicates that the positions of the approximated roots change near Im(a) = 0.

(a) (b)
Figure 2. Approximate roots of §€syss5(a, 10) under the following conditions: -2 <
Re(a) < 2;-2 < Im(a) < 2.

Figure 2 is obtained by changing the range and value of ¢ based on this idea. After setting ¢ = 0.555
and considering the range, —2 < Re(@) < 2 and -2 < Im(e) < 2 for the QSE polynomials , we obtain
the numerical results shown in Figure 2. Figure 2(a) shows that the approximated roots form a pattern
resembling a circle at w = 50, and it also verifies that these approximated roots are consistently aligned
at Im(a) = 0. Figure 2(b) shows a top-down view of the arrangement in Figure 2(a). The red dots
denote w = 50 and the blue dots indicate when the value of »n is small.

Figure 3 shows approximated roots resembling a circle based on Figure 2. In Figure 2, the
approximate roots that deviate significantly from the circular pattern have been omitted. Hence, we
can only present the approximated roots resembling a circle - see, Figure 3. In Figure 3(a), (b), and
(c), the value of w changed, and the blue line represents the circle closest to the approximated roots.
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The blue dot in the middle represents the center.

(a) (b) ()
Figure 3. Approximate circles of approximate roots of s, sss(e, 10) under the following
conditions: (a) w = 55; (b) w = 60; (¢) w = 65.

Figure 3 examines the discrepancy between the center of the approximated circle and the
approximate roots. The observed error margins are detailed in Table 1 below.

Table 1. Approximate circles associated with the approximate roots of §€,, ¢ 555(c, 10).

w The center (a, 5) The radius The error range
55 (0.0207717,-3.50216 x 10~'%)  0.686902 0.0054277
60 (0.0240098, -1.57198 x 10™'1)  0.684888 0.00529865
65 (0.0271422,3.93748 x 107'%)  0.681139 0.00288519

From Figures 1, 2, and 3 and Table 1, we can infer the following:

Conjecture 4.1. As the value of w increases, the approximated roots of €, 5s5(c, 10) appear as an
approximated circle, excluding the real roots.

5. Conclusion

This study has identified several higher-order difference equations in the form of g-Bernoulli
differential equations related to QSE polynomials. Differential equations expressed with @ as a
variable appear in the form of various numbers as coefficients, and differential equations expressed
with 8 as a variable show characteristics including the periodicity of g-trigonometric functions.
Furthermore, the configuration and characteristics of the approximate roots of the QSE polynomial,
which solve the previously mentioned difference equation, have been validated. If we select a
high-order polynomial among the QSE polynomials and check the dynamic system of the roots,
except for a few roots, the remaining roots maintain their circular form. We think this characteristic is
an interesting feature that appears in polynomials containing g-numbers. Additionally, the table
included in the paper strongly supports this idea and is a useful data for research related to the
dynamic systems of roots.
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