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1. Basic concepts and introduction

For n, g € R with g # 1, the quantum number (g-number) defined by Jackson is

n

l-g
——

[n]q =

We note a relation as lim,_,[n], = n. Also, we call [k], the g-integer for k € Z; see [1-3].

With the advent of quantum numbers, new research in many areas of mathematics such as
series, differential equations, and calculus has exploded; see [4-7]. For example, different types
of trigonometric functions and hyperbolic functions defined by Duran et al. [8] bring generalized
properties of different types of trigonometric functions and hyperbolic functions. In [4], Bangerezako
combined g-number in an optimal control problem, making the g-Euler Lagrange equation, g-optimal
control, and the g-Hamilton system g-Hamilton Pontriaguine system. These studies have resulted in
several researches combined with quantum numbers in the application field.


https://www.aimspress.com/journal/Math
https://dx.doi.org/ 10.3934/math.20241436

29646

Let n, j be non-negative integers with j < n. Then, the g-Gaussian binomial coefficients is

ll’l] _ [n]q‘

j q [n_.]]q'[.]]q'

We note [0],! = 1, [n],! = [nly[n — 1],---[2],[1],. The g-Gaussian binomial coefficients that are
appeared in the g-Taylor formula of x" with x = 1 become the ordinary binomials coefficients when

q — 1. We can check some properties of these coefficients in Sections 5 and 6 of [3].
The following two quantum derivatives

def(©) _ flgo) - flo)

do (g— Do

are called the g-derivative D, and h-derivative D, of the function f(p), respectively. We note
limg1 Dyf(0) = limy o Dif(0) = “L2 if f(o) is differentiable, see [3].

Since 2010, mathematicians have tried to introduce a new concept involving the properties of
two kinds of quantum numbers. Benaoum [9] found (g, /)-Newton’s binomial formula and its
properties. Also, Cermak and Nechvatal studied a (g, h)-version of the fractional calculus in [10]. In
2019, the generalization of the quantum Taylor formula and quantum binomial is made by Silindir
and Yantir [11]. We are well aware that one of the ways available for solving linear differential
equations with specific integral equations is Laplace transformation. In [12], we can find the (g, h)-
Laplace transformation, which is made by Rahmat and is a generalized type for classical Laplace
transformation.

A two-parameter time scale T, was introduced as follows:

dnf@) _ fleth) - flo)

qu (0) = dro n

s th(Q) =

h
T,n:=1{q"0+[nl,h | 0€ER, n€Z, hyge R, g+ 1}U {m},
Definition 1.1. [10,11] Let f : T,; — R be any function. Thus, the delta (g, h)-derivative of f D, ;(f)
is defined by

h) —
Dufie) = TETDLO.

From the above definition, we can see several properties as follows:

(1) Forp € Ty, D,y f(0) = 0if and only if f(p) is a constant;
(i1) Dynf(e) = Dyng(o) for all o € T, if and only if f(o) = g(o) + ¢ with some constant c;
(iii) for o € Ty, Dynf(0) = ¢y if and only if f(0) = c¢10 + ¢», where ¢; and ¢, are constant.

In Definition 1.1, we can see that D, ,(f), the delta (g, h)-derivative of f, reduces to D,(f), the
g-derivative of f for h — 0 and reduces to D,(f), the h-derivative of f for ¢ — 1. In addition, we can
find the product rule and quotient rule for the delta (g, h)-derivative.

Let f, g be arbitrary functions.

(1) Product rule

Dy w(f)gW)) = glqy + WDynf W) + fW)DyngW) = f(q + WDy ugW) + 8W)Dyuf ).
(i1) Quotient rule

D (f (w)) _ 8WIDef W) — FIDeugW) _ (¥ + MDyuf W) — (g + WDysg)
"\ sw) gW)g(qy + h) gW)g(qy + h) '
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Definition 1.2. [9, 11] The generalized quantum binomial (0 — xo), is defined by

. 1, ifn=0,
(0= o)y = [T (Q — (g %o + i - l]qh))’ ifn>0,

where xy € R.
Definition 1.3. [11] The generalized quantum exponential function exp,, ,(@o) is defined as

2 a'(o - O)Z,h
exp, (o) = Z T,
i=0 g
where « is an arbitrary non-zero constant.

We remark that exp, ,(0) = 1. The generalized quantum exponential function exp, ,(ao) reduces to
the quantum exponential function e,(0) as @ = 1 with & — 0, see [3]. Similarly, exp, ,(@0) becomes
the h-exponential function e; ,(0) = (1 + h)% asa = 1 with g — 1, see [3].

From now on, we briefly check the Genocchi polynomials. Classic orthogonal polynomials such as
Chebyshev’s and Laguerre’s polynomials give us many possibilities. The Genocchi polynomials are
polynomials that are helpful because they have fewer terms and coeflicients than other polynomials in
the process of approximating function.

Definition 1.4. [13] The quantum Genocchi numbers G, , and polynomials G, ,(0) are defined as

w

N Vg 21 S ) 21
28 = eyt 29O hn = oo

From Definition 1.4, we can see that G, , and G,, ,(0) go to Genocchi numbers G,, and polynomials
G.(0) as ¢ — 1, respectively.

Definition 1.5. [/4] The degenerate Genocchi numbers G.,(h) and polynomials G,(o0 : h) are
defined as

= 9 209 = 9 2
;)Qw(h)a = m, wZ:OQw(Q : h)m = meh(ﬁ@-

If &~ — 0 in Definition 1.5, then we find that G, (h) and G, (0 : h) become Genocchi numbers and
polynomials, respectively.

Based on the classical Genocchi numbers and polynomials, Isah and Phang [15] studied the
Genocchi wavelet-like operational matrix of fractional order derivative and observed some numerical
examples. In [16], we can see that wavelets are mathematical tools that can be used to extract
information from audio signals and images as well as other various types of data. Also, Genocchi
wavelets (GWs) can be said to be very useful among these wavelets. The approximation of the
solution by using polynomials is used to solve the fractional differential equations (FDEs) and variable-
orders differential equations. This technique reduces the differential equations to a system of algebraic
equations. The operational matrix of Caputo fractional derivative and integration have been developed
for some types of polynomials, such as Chebyshev, Legendre, and Genocchi polynomials; see [17].
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The application of Genocchi numbers and polynomials as above motivated us to do new research;
see [18]. When the degenerate polynomials defined by L. Calitz are combined with quantum numbers,
many mathematicians wondered how Genocchi polynomials are defined and what properties are
associated with them.

An important objective of this paper is to construct a new type of Genocchi polynomials containing
the properties of quantum Genocchi and degenerate Genocchi polynomials and to find the difference
equations related to them. This paper is structured as follows: In Section 2, we construct a new
degenerate quantum Genocchi (DQG) polynomials and obtain several types of difference equations
for these polynomials by using (g, h)-derivative. Section 3 shows expanded difference equations using
classical Genocchi, quantum Genocchi, and degenerate Genocchi polynomials. Section 4 presents the
structures of the approximate roots of DQG polynomials that are solutions of the difference equations
obtained in the previous section. Also, through numerical experiments, we can guess the characteristics
of DQG polynomials.

2. Difference equations for DQG polynomials

We construct a new type of the DQG polynomials using the degenerate quantum exponential
function in this section. We find several relations, a basic g-difference equation, and a basic symmetric
property of the g-difference equation for DQG polynomials.

The degenerate quantum exponential function e, (o : ) is defined by

0(4)

L 2.1)

eqn(0 1 9) = Z (©)gn

w=0

where (0),, = 00 — h)(@ — [2],h) - -~ (0 — [w — 1],h).
From the degenerate quantum exponential function e, (0 : ), we note

w

0 19‘ [Se] w
() Forg— 1, eo:®) =) (o——, (i)Forh—0, e )= o“—,
w=0 [w]q ’ w=0 [w]q ’

where ¢e,(o : ) is the h-exponential function (or degenerate exponential function) and e, (J0) is the
quantum exponential function (or g-exponential function).
From Eq (2.1), we define a new type of Genocchi polynomials.

Definition 2.1. The DQG polynomials G, ,(o : h) are defined by

0 9o 20
G, th = ).
; 4@ )[w]q! ean(1:9) + péan@ D)

Replacing o = 0 for Definition 2.1, we note

[ee)

- Vg (Vg 29
E G,,0:h)——:= E G,.(h = ,
~ ol )[w]q! ~ ol )[w]q! eqn(l:9)+1

where G, ,(h) is the DQG numbers. Given the appropriate conditions for Definition 2.1, we can find
several relations of various Genocchi polynomials as follows.
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Case 1. We find the quantum Genocchi numbers G,, , and polynomials G, ,(0) when & — 0 in G, ,(h)
and G, 4(o : h) as follows:

= 1 29 = 9% 29
;)gw,q ol = e T wzzogmm ol = o) 71900

Case 2. We can see the degenerate Genocchi numbers G, (k) and polynomials G, (o : #) when g — 1
in G, 4(h) and G, 4(0 : h) as follows:

29 - Vit 29
Zgw( ) | m ;ng(g . h)a = meh(ﬁg),

where G ,(h) = G,(0 : h).
Case 3. We have the Genocchi numbers G, and polynomials G, (0) as ¢ — 1 with A — 0 in G 4(h)
and G, ,(o : h) as follows:

Ye.l- 2 Yo -2
w=0 ’ ’

e+ 1’

Based on the various cases above, we can represent the diagram for the polynomial as follows:

S Guale: Wi = it ) Y0 Gul0 ) = 2 e,(B0)
DQG polynomials degenerate Genocchi polynomials
ih—>0 ih—>0
Yo-0Guq@p = wrrea@0) o Ym0 Gul0) 5 = F=e’o
quantum Genocchi polynomials Genocchi polynomials

Theorem 2.2. Let h € N with |q| < 1. Then, we obtain

w

Gw,q@:h):Z[ ](9) “Gug(h).
q

k=0

Proof. To find a relation of DQG numbers G, ,(h) and polynomials G, 4(o0 : h), we use the generating
function of DQG polynomials as

29
G, h X
Z ao: ) ol e 1@ ?)
P < (Ve
=) GoiW—— ) @7 2.2
;) q [w],! MZ:;) Qq,h[w]q! (2.2)
o) w ﬁ‘”
= Z(Z[ ] © qu<h)] 3
w=0 \ k=0 q wlgn!
We derive the required result applying the coefficient comparison method in the above equation. O
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Corollary 2.3. We have the following relations from Theorem 2.2:

(i) Setting g — 1, we have

w

Gulo: ) =) (‘,j)(g),“:‘kgk(h).
k=0

(ii) Putting h — 0, we have

w

WOEDY [‘,ﬁ] "Gy
q

k=0

Theorem 2.4. Let h be a non-negative integer with h # 0 and |q| < 1. Then, we obtain

[w — k]!
Goigo: h) = Tqu‘ig w0q0 1 h).
q-

Proof. Applying (g, h)-derivative in Eq (2.1) e, 4(0 : ), we find

= go T12 (g0 +h =i = 114h) = T2 (0 — [i = 11,h)

DWe, (0 : ) =
ahan& aZf [w],! (g—Do+h

& w

w ﬁ .
- ﬂ; (@)q,h[w—]q! = Jean(o : D),

D2 egnlo: ) = 9D \ean(o - 9) = Peqgulo : ),
D) egnlo : 9) = 9D ean(o - 9) = Pegulo : ),

By using mathematical induction, we investigate
D egnlo: 9) = 0D, Vegulo : 9) = Degnlo : 9.

Using Eq (2.3) in the generating function of the DQG polynomials G, ,(o0 : h), we find

Db Z G

From Eq (2.4), we obtain a relation of D;’f,)le,q(Q :h)and G, 4(0 : h) as

w

=Z =k + 11,Gyig(0 1)

DYiGugle: 1) = [wl[w =11, [0 =k+1],Goiylo: )

[w],!
_ —[w‘i ch]q!cw_k,q(g ).

Hence, we find the desired result at once.

L W],

(2.3)

(2.4)

Corollary 2.5. We have the following relations given the appropriate conditions for Theorem 2.4.

AIMS Mathematics Volume 9, Issue 11, 29645-29661.



29651

(i) For ¢ — 1, we obtain
k
Gosto: =" plG,0:h.

(ii) For h — 0, we obtain

[w - k]!
[w],!

Theorem 2.6. A solution of the following difference equation

gw—k,q(g) D(k)gw q(Q)

( );)h (w) )(:1;1 (w-1) ZZZ D@2
[w]q‘D ’th,q(Q ch) + me’h Gw,q(Q ch)+ m ah G, q(Q 2 h)
( ) h w
Fot 2]" D) G0 2 )+ (1,001 Gug(0 = h) + 2G40 : h) = 2(0)s), = 0
is the DQG polynomials.

Proof. Here, we find the basic type of difference equation, which is related to DQG polynomials.
Suppose e, (1 : ) # —1 in the generating function of the DQG polynomials. Then, we find

Zqu(Q D (eqh(l 9) + 1) = 20e,(0 : V). (2.5)

The right-hand side of Eq (2.5) changes to

) o ’19
20e,4(0 1 ) =2 ;)[w]q(g)q,hl[w—]q!,

while the left-hand side becomes

UJ

qu(g n—— (egu(1: 9)+1)
— [w],!

b w

)
Z[Z[ ](thkaq(Q 1)+ Guyo: h)][ o
X

Hence, we derive the following equation.

m

> [’}j] (U, 4Gnta( 2 1)+ Gl s ) = 20ml, (o) 2.6)
q

k=0
Using Theorem 2.4 in Eq (2.6), we have

w

Z

k=0

1Gog(0  h) + Guglo : h) = 2[w],(0)%" = 0.

The above equation allows us to complete the proof. O
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For example, we can consider the first-order Bernoulli equation as D,y + p(x)y — g(x)y™ = 0.
When m = 0 in the Bernoulli equation above and considering Theorem 2.6, the following first-order
(g, h)-difference equation can be expressed in Bernoulli equation form, and its solution is a DQG
polynomials,

Dy Gy ) + 2G40 2 h) = 2(0),, = 0.

Corollary 2.7. From Theorem 2.6, we have:
(i) As g — 1, one holds

Dy . (S0 —— . (S0 :
FDh gw(Qh)+(a)_1)'Dh Qw(Qh)"‘(w_l)'Dh gw(gh)
1 2
et %D;f)gw(g L h) + (1),D,’Gu(0 : h) +2Gu(0 : h) - 2w(0);, = 0.
(ii) As h — 0, one holds
1 (w) (w-1) (w-2) A
[w]q!Dq Guql0) + o 1]q!Dq Guqlo) + . 2]q!Dq Guqlo) +
1
+ [2_]q!DEIZ)gw,q(Q) + Dél)gw,q(g) + Zgwq(g) - 2[(1)]qu =0.

Theorem 2.8. For|q| < 1 with a,b # 0, we derive a basic symmetry relation for difference equation as

b°Gy 4(ay : b'h)
[w],!
b*a“2Gy(ay : b h) _
Tt [2"] ‘ fosz,q(bQ ca 'h)
;!
+ba” ' Gy y(ay b_lh)D;{l)sz,q(bQ ca”'h) + a“Goglay : b )Gy g(bo = a”'h)
_a“Gy by :a'h) a“"'bGy-14(by : a”'h)
= [w]q! [w - l]q!
a*b* G, (by : a'h) _
bt [2"] ‘ D(qz,])iGw,q(aQ - b~ 'h)
;!
+ab* ™' Gy g(by : a”' WD) G g(a0 : b7 h) + b Gog(by : a'h)Guglag : b™'h).

b‘“‘laGw_Lq(ay :b7'h)
[w—1],!

Di)G (b a”'h) +

D\ VG (bo - a'h)

D\)G (a0 : b™'h) + D! VG g(ag : b7 )

Proof. From Eq (2.1), we find a relation

(o9

)
eqn(abo = 9) = Z a®(bo)(bo — a”'h)(bo — [2],a'h) - - (bo — [w — 1],a” ' h) ol
g

w

w=0

= ey q-15(bo : al}).
Considering e, ;(abo : ) = e, ,1,(bo : ai}), we suppose form A as follows:

4abﬂzeq,h(abg : Degp(aby : 1)
(eqarn(1 = at) + 1) (eqpmin(1 : ) + 1)

AIMS Mathematics Volume 9, Issue 11, 29645-29661.
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From form A, we can derive

2ad 2bY

A= bo : ¥
eqan(1: ad) + p anlabe )e,,,bflh(l “b) + 1

2a0 2b9
-ip(bo : a? -1 : b
eqa"h(l s ad) + leq’“ nbe - a )eq,b-lh(l b + 1eq,b n(ay )

eqgn(aby : 1)

(o9

o L PN i P
= Z a“Goylbo : a lh)WZb Goglay: b lh)[w]q!

w

Z(Z[ ]bk kGrglay : b )Gypg(bo : a‘lh)][ﬂ] 3
!

0 \ k=0

and
2b9 2a
A = - . bﬁ
¢qr (a0 )eq,aqh(l Cad) + 10

wotn(L b9 + 1
w— ﬂw
_Z(Z[ ] a“b* ™G y(by : a'N)Gyypq(ao : b 1h)] oLl

w=0 \ k=0 q

-1,(by : alt)

Comparing the coeflicients of both sides in Eqs (2.7) and (2.8), we obtain

Ms

[ ] b a“ Gy y(ay : b W)Gyrg(bo : a”'h)
q

k=0

S [w . _ _
= Z [k] a'b ka,q(by Ta lh)Gu,_k,q(aQ :b7h).
k=0 L Ig
Using Theorem 2.4 in G, 4(bo : a'h) and G, ,(ao : b™'h), we can note

[ — K, i
it DineGualbea”h)

[w - k],! _
o] 'q D(qk;lQqu(aQ :b7'h).
q!

Gw—k,q(bg’ a_l h)
Gw—k,q(aga b- ! h) =

Replacing Eq (2.9) with Eq (2.10), we have

& bra Gy y(ay : b7 h)

g

D;k;Q wq(bo : a”'h)

w akbw—ka, (by . a—lh) )
i Z Uz] ! D(qk;lg wqlao : b 1h).
k=0 q-

From Eq (2.11), we complete the proof of Theorem 2.8.

Corollary 2.9. From Theorem 2.8, we hold that:

2.7)

(2.8)

(2.9)

(2.10)

(2.11)
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(i) For g — 1, it satisfies the following
w . —lh w—1 o . —lh
b*Gu(ay : b )D(”)Qw(bg ahy + b aG.,-1(ay : b h)
w! (w—1)!
2 w=2 R
+”.+ba QZZ(?yb h)D(Z)Qw(bQ a—lh)
+ba*"'Gi(ay : b7 WD, )G (bo 1 a” h) + aGolay : b WG u(bo s a”'h)
a® : lh a“” 1 o : ]’l
Gu(by : a )D(w)gw(ag = h) bG,-1(by : a " h)
w! (w-=1)!
a*b“"2G,(by : a”'h)
2!
+ab”'Gi(by : a”' WD)} Gag : b7 h) + b*Go(by : a”' G (ag : b7 h).
(ii) For h — 0, it satisfies the following

b® gwq( )’) (w) b~ lagw 1q(CIY)
—_— w.a(b
[w],! oGuq(bO) * [w— 1],!

b2 w—2
Ml)(z)gw q(bQ) + ba®” lgl q(ay)Dq ng q(bQ) + awgo q(ay)gw q(bg)

[2],!
_ a gwq( y) a“” 1 gw lq( )’)
- [w-1],!

(w)
wl,! 2Gwqlao) +
D(Z)gw q( Q) +ab*” ]g (b)’)D(l)Qw q(aQ) + waOq(by)gw q(ag)

Dy VG(bo ' h)

Dy""G.(ag : b™'h)

D;)Golag : b™'h)

D;Z_l)gw,q(bg) +--

D VG q(ag) + -

N a’b* G 4(by)
[2],!

3. Several relations of DQG polynomials and other polynomials

In Section 3, we investigate several difference equations combining Genocchi polynomials and
quantum Genocchi polynomials using Theorem 2.4. Using G, (h), we obtain another symmetric
property for the difference equation, which is related to the degenerate quantum Genocchi polynomials
G,(o: h).

Theorem 3.1. DQG polynomials are a solution for the following difference equation:

gw(l)+gw gw—l(l)+gw 1

@ ' (w-1) . ce
oL DGy 0 : h) + PR D, Guglo:h) +
1)+
+E2WGpoG o)+ (Gi(1) + G)DYGu (o s 1)

[2],!
+(Go(1) + Go) Gu g0 - h) = 2[w];Gu-14(0: h) =0
where G,, is the Genocchi numbers and G,(0) is the Genocchi polynomials.

Proof. Using G, 4(0 : h) from Definition 2.1, Genocchi numbers G,, and polynomials G,,(0), we have

= 9 20
D Guglo: — = eqn(0 )
: . o) +1°%
= [wlgt el ) G.1)
120 , 20 2
= — e + ).
219(e19+ 1“ Ty 1)eq,h(1 gy 1@ )
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From Eq (3.1), we find

YT

w=0 w=

& w

If we compare the coefficients of both sides in Eq (3.2), then we find

w

> [‘k"] (Gu(1) + 60 Gurrgle : 1) = 2w, Gorr (0 ) = 0
q

k=0

Replacing D( 1Goqlo o h)instead of G, 4(0 : h) in Eq (3.3), we obtain

O Gi(D) + Gi

L DY\Guglo : 1) = 2[w]l,Gu14(0 - h) = 0.
!

k=0
Through Eq (3.4), we find the desired result.

Corollary 3.2. From Theorem 3.1, we have the following relations:
(i) For g — 1, it satisfies the following

Q‘“Lfg‘“d‘”gw( 4 Gt Dt Gont g o1y 4
w! (- 1) ¢

1
4 9 ; 92 DG 0 W)+ (Gi(1) + QOD%W@ )

+(Go(1) + Go) Gu(0 : h) = 2wG w10+ h) =

(ii) For h — 0, it satisfies the following

Qw(l) +Go (w) Go1(1) + Gt (w 1
[w]q' ga)q( ) [w_ 1]q! gwq(@)+
+ 2O D060 + G1(1) + G060
X

+(Go(D) + Go) Gug(0) = 2[w]¢Gu-14(0) =0

Theorem 3.3. For |q| < 1 and w € N, a solution of the following difference equation

Gog(D)+Gog () . Go-141)+Gu-14 (w 1 _
e P DGy g0 h) + =11, D5 "Goglo:h) +
%D@qu(g 1) +(G1(1) + G1)D)Goylo s h)

+(Gog(D) + Gog) Guglo : 1) = 2[w]yGup-14(0 = h) = 0,

is represented by the DQG polynomials.

)
Z(Z[ ] G(1) + Gi) G- kq(Q h) [w]q!.

(3.2)

(3.3)

(3.4)

AIMS Mathematics Volume 9, Issue 11, 29645-29661.
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Proof. The generating function of the DQG polynomials G, ,(o : /) can be expressed as:

2

Ga) ( = ’1( ﬁ)
N (eq(ﬁ) +1 e+ e,() +1) e n(1:9)+ leq’h(g + ).

Following a procedure similar to the process used for the proof of Theorem 3.1 in Eq (3.5), we finish
the proof of Theorem 3.3. O

Corollary 3.4. As h — 0 in Theorem 3.3, one holds

Qw,q(l) + Qw,q () Qw lq(l) + gw L4 ~(w-1)
[w]q! Dq gw,q(g) [w _ 1](1‘ D gw q(Q) +-
1
- WD%W@ +(G14(1) + 619D Gy )
|

+(Gog(1) + Gog) Gung(©) = 2wy Gur14(0) = 0

Theorem 3.5. For |q| < 1 with o, # 0, we derive

B°G,(B'h) ) . B Gy 4B~ h) (-1 -1
—D Gw : h . D G, : h
[w]q- q(ﬁQ @ h+ [w— 1]q! q:h ,q(ﬁQ @ h)
ﬁzCY“)_sz, (B_lh) ~
T SN DG, Bo: 'h)
4!

+ B Gy, (B 1h)D(1)qu(,BQ L@ h) + a“Go (BG4 (Bo s a'h)

wGw,q(a’ lh) () . w_lﬁGw—l,q(a«/_] h) 1) .
a2ﬁw—2G2,q(a_1 )

Ar ParGualae BN
!

+ aﬁw-lGl,q(a—‘h)D;{;le,q(ag :B7'R) + BGo (@ )Gy, (a0 : B7R).

Proof. To obtain another symmetric difference equation that is related to DQG polynomials, we
suppose form B as follows:

4aB e, w(afo : 9)
(eqan(1 : a®) +1) (s (1 : B +1)

B =

From form B, we have

B= 2a) 289
“\egan(1:a®) +1) e gip(1: B+ 1

eqn(afo : 9)

and

289 2
( s ) ¢ e, n(afo : 7).
q,a

“\egpin(1:B9) + 1) epan(l:ad) + 1
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From the same way as proving Theorem 2.8, we find as follows:

Z m B Gy WGurg(Bo s a”'h)
q

k=0

A [w _ _ _
D [ k] @B G g™ Guiglag : f7D).
k=0 L™ g
Using Theorem 2.4 in Eq (3.6), we obtain

w ﬂk aw—k Gk,q (ﬁ_ 1 h)

Df;f;le,q(BQ ca'h)

= [k],!
w akﬂ“"kG ’ (a,—lh) ~

= Z [k]ki D(q]f,)iGw,q(aQ : B 'h).
k=0 q-

From Eq (3.7), we complete the proof of Theorem 3.5.

Corollary 3.6. Considering « = 1 in Theorem 3.5, we have

B GugB) _ B G gBR) iy '
[w—]q!Dq,th,q(ﬁQ th) + [ 1]q! Dq,h Gw,q(,BQ ch)+ -
BG2,(B'h) _
+ SR DG B ) + B 8 WD)GuBe < )
!

+ Go (B )G, ,(Bo : h)

Gu,(h) _ BGu-14h) (- _
B [w‘j ! D(q,;wa,q(Q B+ [w _11’1] ! D(q,h VG 0: 87 h)+ -
q* q°
ﬁw—ZG ’ (h) - . B
[z]zvq foz,l)lesq(Q BT+ BTG (DG g0 B
g!

+ leGO,q(h)Gw,q(Q : ﬁ_l h)

4. Structures and movement of approximate roots of DQG polynomials

(3.6)

(3.7)

In this section, we look for approximate roots of DQG polynomials. Using Mathematica, the range
of approximate roots was calculated to 16 decimal places. Based on the approximate roots of these

polynomials, we can estimate several properties of DQG polynomials.

We recall that the DQG polynomials become quantum Genocchi polynomials as 4 — 0 and become

degenerate Genocchi polynomials forg — 1. Let 0 < n < 50.

Then, Figure 1 shows approximate roots of DQG polynomials under conditions (a) ¢ = 0.9 and
h =0, (b) g = 0.001 and A = 10. In Figure 1, as the value of n is smaller, approximate roots are
expressed as blue dots, and approximate roots appear as red dots when n = 50. Figure 1(a) is similar
to quantum Genocchi polynomials because of the condition of 4, and Figure 2(b) shows positions of

approximate roots of DQG polynomials.
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/7/7 /
J{///// \‘\ * ‘\\\\\
SHNAA |
-~ . - 1 N
< ;i;, 7"- o | \‘}1 s
0 "' ;::.-"it-; ! ié’) 40\ * \ \ "'2
“ L "\:\\\\1\*":.5.3’? 2 Nkt
/v s 1] e
(@g=09,h=0 (b) g = 0.001, 2 = 10

Figure 1. Structure of approximate roots of DQG polynomials with (a) g = 0.9;h = 0, (b)
q =0.001; 7 = 10.

Several DQG polynomials G, 4(0 : h) are provided below:

Gogylo: h) =0,
Gy 0:h)=1,
1
Gy 0:h) = 5(1 +q)(=1+ 20),
1
Gs (0 h) = Z(1 + g+ =2h—q+2(1 +2h + g)o — 40°),

1
Guglo: ) =gl +q+ 7+ ) (-1 - 20— 40> + 80> + ¢*(-1 + 20))
1
+gl+g+ < +q) (4h2(1 +q)(=1+20) +q2 - 40" + ¢*(2 - 492)
1
+ 2+ q+q + ) (4h(1+20 - 29(-1 + )0~ 40° + 4°(=1 +20))).

Figure 2 shows an interesting phenomenon related to Figure 1(b). Figure 2(a) shows the distribution
of approximate roots when 4 = 0, Figure 2(b) shows the distribution of approximate roots when & = 5,
and Figure 2(c) shows the distribution of approximate roots when 27 = 10 under 0 < n < 50 and
q = 0.9. The x-axis represents the imaginary axis, and the y-axis represents the value of n. In Figure 2,
we realize that as the value of /4 increases, the number of approximate roots decreases. In other words,
comparing Figures 2(a—c), we can see that the number of approximate roots in Figure 2(c) is reduced.

ANttty o\ | \ |/ ] ) A \ \ |/ / /

[ — 0 L .
-10 -5 0 5 10 -10 0 10

(@)g=09,h=0 1) g=09,h=5 (© ¢=09,h=10
Figure 2. Positions of the approximate roots of G, ,(0 : #) with0 < w <50, (a) ¢ = 0.9;h =
0,)g=09h=5,(c)g=0.9;h=10.
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Based on Figure 2, we can find the values of approximate roots as shown in Table 1 by dividing the
real and imaginary roots. Table 1 shows the number of real roots among approximate roots of DQG
polynomials.

Table 1. Numbers of approximate real zeros of G, 09(0 : h).

h 0 5 10
n
1 0 0 0
2 1 1 1
3 2 2 2
4 3 3 3
5 4 4 4
10 5 9 9
20 2 11 15
30 5 23 25
40 5 33 33
50 5 43 44

Table 1 shows the number of real roots among approximate roots that change according to the value
of h. At this time, the value of ¢ is fixed at 0.9. In Table 1, we can see that the number of real roots
increases as the values of 4 and n increase. From Figures 1 and 2, and Table 1, the following guesses
can be obtained.

Conjecture 4.1. In the DQG polynomials G, o9(0 : h), the number of real approximation roots
increases as w increases for h = 10 and g = 0.9.

5. Conclusions

We defined DQG polynomials and found various forms of related differential equations. Based on
these differential equations, we were able to verify the differential equations of various polynomials
and also confirmed their symmetric properties. Furthermore, we showed the structure of approximate
roots of DQS polynomials that have differential equations as solutions, and also estimated about the
approximate roots. The results presented in this paper will be helpful in understanding quantum
numbers and degenerate polynomials, and will serve as a foundation for constructing new polynomials.
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