In this research, we leverage various $ q $-calculus identities to introduce the notion of $ q $-Hermite-Appell polynomials involving three variables, elucidating their formalism. We delve into numerous properties and unveil novel findings regarding these $ q $-Hermite-Appell polynomials, encompassing their generating function, series representation, summation equations, recurrence relations, $ q $-differential formula, and operational principles. Our investigation sheds light on the intricate nature of these polynomials, elucidating their behavior and facilitating deeper understanding within the realm of $ q $-calculus.
Citation: Mohra Zayed, Shahid Ahmad Wani, William Ramírez, Clemente Cesarano. Advancements in $ q $-Hermite-Appell polynomials: a three-dimensional exploration[J]. AIMS Mathematics, 2024, 9(10): 26799-26824. doi: 10.3934/math.20241303
In this research, we leverage various $ q $-calculus identities to introduce the notion of $ q $-Hermite-Appell polynomials involving three variables, elucidating their formalism. We delve into numerous properties and unveil novel findings regarding these $ q $-Hermite-Appell polynomials, encompassing their generating function, series representation, summation equations, recurrence relations, $ q $-differential formula, and operational principles. Our investigation sheds light on the intricate nature of these polynomials, elucidating their behavior and facilitating deeper understanding within the realm of $ q $-calculus.
[1] | G. E. Andrews, R. Askey, R. Roy, Special functions: encyclopedia mathematics and its applications, Cambridge: Cambridge University Press, Vol. 71, 1999. https://doi.org/10.1017/CBO9781107325937 |
[2] | D. Babusci, G. Dattoli, S. Licciardi, E. Sabia, Mathematical methods for physicists, World Scientific Publishing Co. Pte. Ltd., 2020. |
[3] | P. L. Chebyshev, Sur le développement des fonctions à une seule variable, Bull. Phys. Math. Acad. Sci. St.-Petersb., 1 (1859), 193–200. |
[4] | G. Gasper, M. Rahman, Basic hypergeometric series: encyclopedia of mathematics and its applications, Cambridge: Cambridge University Press, Vol. 96, 2004. https://doi.org/10.1017/CBO9780511526251 |
[5] | C. Hermite, Sur un nouveau développement en série des fonctions, C. R. Acad. Sci. Paris, 58 (1864), 93–100. |
[6] | W. Ramírez, C. Cesarano, Some new classes of degenerated generalized Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials, Carpathian Math. Publ., 14 (2022), 354–363. https://doi.org/10.15330/cmp.14.2.354-363 doi: 10.15330/cmp.14.2.354-363 |
[7] | G. Dattoli, C. Chiccoli, S. Lorenzutta, G. Maino, A. Torre, Theory of generalized Hermite polynomials, Comput. Math. Appl., 28 (1994), 71–83. https://doi.org/10.1016/0898-1221(94)00128-6 doi: 10.1016/0898-1221(94)00128-6 |
[8] | G. Dattoli, C. Chiccoli, S. Lorenzutta, G. Maino, A. Torre, Generalized Bessel functions and generalized Hermite polynomials, J. Math. Anal. Appl., 178 (1993), 509–516. https://doi.org/10.1006/jmaa.1993.1321 doi: 10.1006/jmaa.1993.1321 |
[9] | S. Khan, G. Yasmin, R. Khan, N. A. M. Hassan, Hermite-based Appell polynomials: properties and applications, J. Math. Anal. Appl., 351 (2009), 756–764. https://doi.org/10.1016/j.jmaa.2008.11.002 doi: 10.1016/j.jmaa.2008.11.002 |
[10] | F. H. Jackson, On $q$-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193–203. |
[11] | M. Fadel, N. Raza, W. S. Du, Characterizing $q$-Bessel functions of the first kind with their new summation and integral representations, Mathematics, 11 (2023), 3831. https://doi.org/10.3390/math11183831 doi: 10.3390/math11183831 |
[12] | M. Fadel, A. Muhyi, On a family of $q$-modified-Laguerre-Appell polynomials, Arab J. Basic Appl. Sci., 31 (2024), 165–176. https://doi.org/10.1080/25765299.2024.2314282 doi: 10.1080/25765299.2024.2314282 |
[13] | V. G. Kac, C. Pokman, Quantum calculus, New York: Springer, Vol. 113, 2002. https://doi.org/10.1007/978-1-4613-0071-7 |
[14] | F. H. Jackson, Ⅺ.–On $q$-functions and a certain difference operator. Earth Environ, Trans. R. Soc. Edinburgh, 46 (1909), 253–281. https://doi.org/10.1017/S0080456800002751 doi: 10.1017/S0080456800002751 |
[15] | M. E. Keleshteri, N. I. Mahmudov, A $q$-Umbral approach to $q$-Appell polynomials, arXiv, 2015. https://doi.org/10.48550/arXiv.1505.05067 |
[16] | N. Raza, M. Fadel, K. S. Nisar, M. Zakarya, On 2-variable $q$-Hermite polynomials, AIMS Math., 6 (2021), 8705–8727. https://doi.org/10.3934/math.2021506 doi: 10.3934/math.2021506 |
[17] | P. Appell, Sur une classe de polyn$\hat{o}$mes, Ann. Sci. $\bar{E}$cole. Norm. Sup., 9 (1880), 119–144. |
[18] | A. Sharma, A. M. Chak, The basic analogue of a class of polynomials, Riv. Mat. Univ. Par., 5 (1954), 325–337. |
[19] | W. A. Al-Salam, $q$-Appell polynomials, Ann. Mat. Pura Appl., 77 (1967), 31–45. https://doi.org/10.1007/BF02416939 doi: 10.1007/BF02416939 |
[20] | M. Fadel, N. Raza, W. S. Du, On $q$-Hermite polynomials with three variables: recurrence relations, $q$-differential equations, summation and operational formulas, Symmetry, 16 (2024), 385. https://doi.org/10.3390/sym16040385 doi: 10.3390/sym16040385 |
[21] | N. Raza, M. Fadel, W. S. Du, New summation and integral representations for 2-variable $(p, q)$-Hermite polynomials, Axioms, 13 (2024), 196. https://doi.org/10.3390/axioms13030196 doi: 10.3390/axioms13030196 |
[22] | J. Y. Kang, W. A. Khan, A new class of $q$-Hermite-based Apostol type Frobenius Genocchi polynomials, Commun. Korean Math. Soc., 35 (2020), 759–771. https://doi.org/10.4134/CKMS.c190436 doi: 10.4134/CKMS.c190436 |
[23] | G. Dattoli, Generalized polynomials, operational identities and their applications, J. Comput. Appl. Math., 118 (2000), 111–123. https://doi.org/10.1016/S0377-0427(00)00283-1 doi: 10.1016/S0377-0427(00)00283-1 |
[24] | S. Khan, T. Nahid, Certain results associated with hybrid relatives of the $q$-Sheffer sequences, Bol. Soc. Paran. Mat., 40 (2022), 1–15. https://doi.org/10.5269/bspm.45149 doi: 10.5269/bspm.45149 |
[25] | M. E. Keleshteri, N. I. Mahmudov, A study on $q$-Appell polynomials from determinantal point of view, Appl. Math. Comput., 260 (2015), 351–369. https://doi.org/10.1016/j.amc.2015.03.017 doi: 10.1016/j.amc.2015.03.017 |
[26] | T. Ernst, $q$-Bernoulli and $q$-Euler polynomials, An umbral approach, Int. J. Differ. Equ., 1 (2006), 31–80. |
[27] | W. A. Al-Salam, $q$-Bernoulli numbers and polynomials, Mat. Nachr., 17 (1958), 239–260. https://doi.org/10.1002/mana.19580170311 doi: 10.1002/mana.19580170311 |
[28] | N. I. Mahmudov, On a class of $q$-Bernoulli and $q$-Euler polynomials, Adv. Differ. Equ., 2013 (2013), 108. https://doi.org/10.1186/1687-1847-2013-108 doi: 10.1186/1687-1847-2013-108 |