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1. Introduction

In recent times, fractional calculus (FC) has become an indispensable instrument in numerous
scientific domains, serving as a basis for developing numerous innovative and cutting-edge models.
Fractional derivative operators are significant because they can increase model accuracy even in
situations where crucial real parameters are unknown with high precision. The scientific
literature [1–3] covers fractional differential operators of several types, such as Caputo-Fabrizio,
Caputo, Riemann-Liouville, and Atangana-Baleanu. We extend fractional constitutive models, which
have proven effective in characterizing viscoelastic materials, to study the mechanics of
electroosmosis slip flows in viscoelastic fluids that are forced by both pressure gradients and
electroosmosis. This work is important for optimizing the design of micro-fluidic devices, and
advances our knowledge of flow behaviors in microchannels for viscoelastic fluids [4, 5]. Drawing
inspiration from the Glover-Dumm equation (GDE), a practical mathematical model widely utilized
for simulating water table profiles between parallel drainpipes in the context of unsteady flow
conditions, the GDE is derived through the analytical solution of the Boussinesq equation (BE).
Notably, incorporating fractional derivatives, characterized by their non-local properties, mitigates
scale effects on parameters. Consequently, this facilitates a more accurate simulation of
hydro-geological processes [6, 7]. Traditional advection-diffusion equations may not be able to
describe the transport process adequately, and one of the possible ways to model anomalous transport
is to consider fractional dispersion equations, which are more general and can overcome some of the
limitations of traditional advection-diffusion equations. Indeed, there has been growing interest in
using fractional reaction-diffusion equations to describe the complex behavior of transport processes
in the presence of anomalous transport of reactive pollutants [8, 9]. Therefore, it is essential to
propose and construct fractional reaction-diffusion equations that capture the essential characteristics
of the governing system well.

Finding analytical solutions to fractional partial differential equations (FPDEs) is a challenging task,
which has led to the invention of a myriad of mathematical techniques to circumvent it. The inherent
ability of analytical solutions to reveal the exact behavior of the modeled system is often superior
to numerical methods, which has attracted the attention of many researchers. Thus, the search for
analytical solutions in the domain of FPDEs has been an essential and continuously evolving domain
[10–15]. Many different mathematical schemes have been brought to bear in the scientific literature
to compute the solutions of FPDEs [16–22]. Generally, nonlinear partial differential equations (PDEs)
are central to model many problems in physics, engineering, biology, and finance. They can be used
to model a vast range of complex phenomena, such as turbulent flows, nonlinear waves in plasmas,
the dynamics of the heart, traffic flow, population dynamics, and the pricing of financial derivatives
[23–25]. The realm of observer design methods for nonlinear generalized systems with nonlinear
algebraic constraints have found practical applications in various fields [26, 27]. The development of
an observer design method tailored to address the complexities posed by nonlinear algebraic constraints
within generalized systems was investigated in [28,29]. Many valuable approaches were used to model
and analyze complex dynamical engineering and physical issues [30–33]. These methods [30–33]
have effectively assessed numerous previously challenging problems to study and model. Previous
studies [34–36] have demonstrated the potential of the methods used to enhance the understanding and
control of nonlinear systems with some nonlinear algebraic constraints through rigorous analysis and
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simulation. This has paved the way for progress in the search for new strategies for accurately modeling
and simulating the problems researchers address. Unlike their linear counterparts, FPDEs capture
the complex interactions and nontrivial dynamics of real-world systems, leading to rich mathematical
theories associated with them. Thus, solving these types of nonlinear differential equations is a crucial
step to understanding the underlying mechanisms and producing forecasts that linear models frequently
miss. Recent years have seen remarkable progress in this direction, thanks to advances in theory and
computational methods [37–41].

Moreover, from the viewpoint of the Riccati-Bernoulli sub-ODE method, an efficient algebraic
manipulation into various physical phenomena related to reaction-diffusion flows, such as flame front
oscillations, dynamic behaviors, oscillations in homogeneous medium in the flow of a fluid through
the vertical walls, etc., can be done. In particular, applying the Riccati-Bernoulli sub-ODE method to
PDEs transforms those equations into algebraic equations that are easy to solve. Using this technique,
many analytical solutions describing the complex dynamics of different physical models can be
derived [42–44]. Therefore, the basic physical processes leading to these complex dynamics can be
further understood. The most attractive feature of this method is that it generates many solitary wave
solutions. The Bäcklund transformation [45] has made this possible, which produces an infinite
sequence of solutions. Additionally, the current study aims to use this analytical approach to clarify
the complex dynamics of the Kuramoto-Sivashinsky (KS) equation, which will significantly advance
our understanding of real-world physical problems, such as precisely describing spatiotemporal
chaos, forecasting turbulent transitions in fluid dynamics, plasma physics, and simulating complex
patterns in chemical reactions. Through this methodology, the research seeks to expand the
understanding of these difficulties, promote progress in analyzing complex phenomena, and improve
the predictive power of the KS equation in various scientific contexts.

In this investigation, we derive some exact solutions to the KS equation for fractional dynamics,
with particular attention to the case (n = 1)

Dα
t (F) + FnDβ

x(F) + pD2β
x (F) + qD3β

x (F) + rD4β
x (F) = 0, (1.1)

where α and β indicate the time and space fractional parameters, whereas 0 < α, β ≤ 1.
Here, F indicates the dependent variable/wave function, in which the equation incorporates two

independent variables: (x) and (t). Coefficients (p), (q), and (r) are defined as constants, whereas the
exponent (n) is an integer. Many studies have extensively examined Eq (1.1) with (n = 1) from
various perspectives. The equation’s attraction lies in its one-dimensional nonlinear nature,
incorporating dissipation, instability, and dispersion elements. Its significance stems from its utility in
addressing scientific and engineering challenges. Equation (1.1) was used to clarify the source of
persistent wave propagation in reaction-diffusion environments [46]. Another study examined
Eq (1.1) with (n = 1) to clarify the nonlinear development of disrupted flame fronts and gain an
understanding of the intricate dynamics of combustion processes [47]. The applicability of this
equation to the analysis of viscous incompressible fluid motion moving down an inclined plane
highlights its adaptability and offers important insights into the behavior of fluid dynamics in
appropriate environments [48–50]. Moreover, Eq (1.1) was used to model dissipative waves in plasma
physics, which helped us learn more about how waves behave in complex media [51]. Furthermore,
Michelson [52] examined elementary particles as solutions of the KS equation, offering a new
perspective on the fundamental physical laws that govern particle behavior in this nonlinear setting.
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The operator representing derivatives of order α follows the definition in [53]

Dα
θq(θ) = lim

m→0

q(m(θ)1−α − q(θ))
m

, 0 < α ≤ 1. (1.2)

This inquiry utilizes the following characteristics of this derivative:
Dα
θ θ

j = jθ j−α,

Dα
θ ( j1η(θ) ± j2m(θ)) = j1Dα

θ (η(θ)) ± j2Dα
θ (m(θ)),

Dα
θχ

[
ξτ(θ)

]
= χ′ξ(ξ(θ))D

α
θ ξ(θ).

(1.3)

2. Methodology

Consider the FPDE
P1

(
f ,Dα

t ( f ),Dβ
ζ1

( f ),D2β
ζ2

( f ), f Dβ
ζ1

( f ), . . .
)

= 0, (2.1)

where 0 < α, β,≤ 1, and the polynomial P1 is a function of f (ζ1, ζ2, ζ3, . . . , t). This polynomial
includes the fractional order derivatives as well as the nonlinear terms. The primary stages of this
method are then thoroughly covered. The wave transformations that follow are our suggestions for
looking into possible solutions for Eq (1.1):

F(x, t) = f (ψ), (2.2)

with

ψ(x, t) =

(
xβ

β

)
− ω

(
tα

α

)
, ω ∈ R, (2.3)

where ψ ≡ ψ (x, t) represents the phase function. Equation (2.3) is subjected to a modification resulting
in the emergence of a nonlinear ordinary differential equation (NODE), hence assuming a modified
mathematical expression

P2
(
f , f ′(ψ), f ′′(ψ), f f ′(ψ), . . .

)
= 0. (2.4)

Consider the following formal solution for Eq (2.2)

f (ψ) =

m∑
i=−m

biϑ(ψ)i. (2.5)

Under the restriction that both bm , 0 and b−m , 0 simultaneously, the bi constants must be
determined. Concurrently, the function is generated via the subsequent Bäcklund transformation

ϑ(ψ) =
−τY + Xφ(ψ)

X + Yφ(ψ)
, (2.6)

with the requirement that Y , 0, which we consider (τ), (X), and (Y) to be constants.
Moreover, let φ(ψ) be a function defined as follows:

dφ
dψ

= τ + φ(ψ)2, (2.7)
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The solutions to Eq (2.7) are usually recognized to be the following [54]:

(i) If τ < 0, then φ(ψ) = −
√
−τ tanh(

√
−τψ), or φ(ψ) = −

√
−τcoth(

√
−τψ). (2.8)

(ii) If τ > 0, then φ(ψ) =
√
τ tan(

√
τψ), or φ(ψ) = −

√
τcot(

√
τψ). (2.9)

(iii) If τ = 0, then φ(ψ) =
−1
ψ
. (2.10)

Under the framework of Eq (2.2), the positive integer (N) can be found by using homogeneous
balancing principles, which entail finding equilibrium between the highest-order derivatives and
highest-nonlinearity in Eq (2.5). The degree f (ψ) can be expressed more precisely as D[ f (ψ)] = N.
Therefore, this enables us to perform the following computation of the degree of linked expressions:

D
[
dk f
dψk

]
= N + k,

D
[

f J dk f
dψk

]s

= NJ + s(k + N). (2.11)

Combining Eq (2.4) with Eqs (2.5) and (2.7), grouping terms with the same powers of f (ψ), and
then equating them to zero are the steps in creating algebraic equations. Using the Maple software to
deduce the pertinent values for various parameters will result in an efficient resolution of this system.
Thus, this makes it easier to compute the soliton wave-propagating solutions to Eq (2.1) with accuracy
by computational analysis.

3. Execution of the problem

Using the approach described in Section 2, we precisely solve the fractional KS equation (1.1) for
solitary waves. In the framework of Eq (1.1), we especially study certain cases, namely when (n=1).
We simplify the equations by calculating the wave transformation described in Eq (2.3) to make the
final equation easier to calculate. Here, we provide the equation introduced after the transformative
step, resulting in the nonlinear ODE derived from the initial fractional PDE

r f ′′′′(ψ) + q f ′′′(ψ) + p f ′′(ψ) + f ′(ψ)( f − ω) = 0. (3.1)

We incorporate the replacement given in Eq (2.5) into Eqs (2.6), (2.7), and (3.1). Through the
systematic collection of coefficients associated with φi(ψ), we develop an algebraic system of equations
that is ultimately equal to zero. By utilizing Maple’s computational tool, we can solve the previously
given system of algebraic equations and obtain the following results:

• Case I:

b0 = b0, b1,2,3 = 0, b−1 = −

√
−30 b3

−3

b−3
, b−2 = −i 4

√
−30 b3

−3, b−3 = b−3, p = p,

q =
2 i 4

√
−30 b3

−3

b−3
, r = −

1
4

√
−30 b3

−3

b2
−3

, ω = −
1

15

11 i
(
−30 b3

−3

)3/4
− 15 b−3

2b0

b2
−3

,
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τ =
1

30

√
−30 b3

−3

b−3
, B = B. (3.2)

• Case II:

b0 = b0, b1 = 15/2, b−1 = −
225

4
b3
−1, b−2 =

225
4

√
30

b3
3/2 , b2 =

√
30

√
b3,

b3 = b3, b−3 = −
3375

8
b3
−2, p = p, q = 1/15

√
30

√
b3, r =

1
120

b3,

ω = −
7
√

30
√

b3 − b3b0

b3
, τ = 15/2 b3

−1, B = B. (3.3)

• Case III:

b0 = b0, b1 = 30, b−1,−2,−3 = 0, b2 =
√

30
√

b3, b3 = b3,

r =
1

120
b3, ω = −

22
√

30
√

b3 − b3b0

b3
,

p = p, q = 1/15
√

30
√

b3, τ = 30 b3
−1, B = B. (3.4)

According to case I, the solution set for the following values of (ψ) and (τ) are obtained

ψ =
xβ

β
+

1
15

(
11 i

(
−30 b3

−3

) 3
4
− 15 b2

−3b0

)
tα

b2
−3α

, (3.5)

τ =
1

30

√
−30 b3

−3

b−3
. (3.6)

Solution Space. 1: For τ < 0, Eq (1.1) brings about the resulting single-wave solutions:

F1(x, t) = b−3Θ
3
1Π
−3
1 − i 4

√
−30 b3

−3Θ
2
1Π
−2
1 −

√
−30 b3

−3Θ1Π
−1
1 b−1

−3 + b0, (3.7)

or

F2(x, t) = b−3Θ
3
2Π
−3
2 − i

4
√
−30 b−3

3Θ2
2Π
−2
2 −

√
−30 b−3

3Θ2b−1
−3Π

−1
2 + b0, (3.8)

with

Π1 =

− 1
30

√
−30 b3

−3

b−3
Y − X

√
−τ tanh

(√
−τψ

) ,
Π2 =

− 1
30

√
−30 b3

−3

b−3
Y − X

√
−τ coth

(√
−τψ

) ,
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Θ1 =
(
X − Y

√
−τ tanh

(√
−τψ

))
,

Θ2 =
(
X − Y

√
−τ coth

(√
−τψ

))
.

Solution Space. 2: For τ > 0, Eq (1.1) brings about the resulting single-wave solutions:

F3(x, t) = b−3Θ
3
3Π
−3
3 − i 4

√
−30 b3

−3Θ
2
3Π
−2
3 −

√
−30 b3

−3Θ3b−1
−3Π

−1
3 + b0, (3.9)

or
F4(x, t) = b−3Θ

3
4Π
−3
4 − i 4

√
−30 b3

−3Θ
2
4Π
−2
4 −

√
−30 b3

−3Θ4b−1
−3Π

−1
4 + b0, (3.10)

with

Π3 =

− 1
30

√
−30 b3

−3

b−3
Y + X

√
τ tan

(√
τψ

) ,
Π4 =

− 1
30

√
−30 b3

−3

b−3
Y − X

√
τ cot

(√
τψ

) ,
Θ3 =

(
X + Y

√
τ tan

(√
τψ

))
,

Θ4 =
(
X − Y

√
τ cot

(√
τψ

))
.

Solution Space. 3: For τ = 0, Eq (1.1) brings about the resulting single-wave solutions:

F5(x, t) = b−3Θ
3
5Π
−3
5 − i 4

√
−30 b3

−3Θ
2
5Π
−2
5 −

√
−30 b3

−3b−1
−3Θ5Π

−1
5 + b0, (3.11)

with

Π5 =

− 1
30

√
−30 b3

−3Y

b−3
−

X
ψ

 ,
Θ5 =

(
X −

Y
ψ

)
.

According to case II, the solution set for the following values of (ψ) and (τ) are obtained

ψ =
xβ

β
+

(
7
√

30
√

b3 − b3b0

)
tα

b3α
, (3.12)

τ =
15

2 b3
. (3.13)

Solution Space. 1: For τ < 0, Eq (1.1) brings about the resulting single-wave solutions:

F6(x, t) = −
3375

8
b3

−2

Θ3
6Π
−3
6 +

225
4

b
−3
2

3 Θ2
6Π
−2
6 −

225
4

b−1
3 Θ6Π

−1
6 + b0

+
15
2

Θ−1
6 Π6 +

√
30

√
b3Θ

−2
6 Π2

6 + b3Θ
−3
6 Π3

6,

(3.14)
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or

F7(x, t) = −
3375

8
b−2

3 Θ3
7Π
−3
7 +

225
4

√
30b

−3
2

3 Θ2
7Π
−2
7 −

225
4

b3
−1Θ7Π

−1
7 + b0

+
15
2

Θ−1
7 Π7 +

√
30

√
b3Θ

−2
7 Π2

7 + b3Θ
−3
7 Π3

7,

(3.15)

with

Π6 =

(
−

15
2

Y
b 3
− X
√
−τ tanh

(√
−τψ

))
,

Π7 =

(
−

15
2

Y
b 3
− X
√
−τ coth

(√
−τψ

))
,

Θ6 =
(
X − Y

√
−τ tanh

(√
−τψ

))
,

Θ7 =
(
X − Y

√
−τ coth

(√
−τψ

))
.

Solution Space. 2: For τ > 0, Eq (1.1) brings about the resulting single-wave solutions:

F8(x, t) = −
3375

8
b−2

3 Θ3
8Π
−3
8 +

225
4

√
30b3

−3/2Θ2
8Π
−2
8 −

225
4

b−1
3 Θ8Π

−1
8 + b0

+
15
2

Θ−1
8 Π8 +

√
30

√
b3Θ

−2
8 Π2

8 + b3Θ
−3
8 Π3

8,

(3.16)

or

F9(x, t) = −
3375

8
b−2

3 Θ3
9Π
−3
9 +

225
4

√
30b

−3
2

3 Θ2
9Π
−2
9 −

225
4

b−1
3 Θ9Π

−1
9 + b0

+
15
2

Θ−1
9 Π9 +

√
30

√
b3Θ

−2
9 Π2

9 + b3Θ
−3
9 Π3

9,

(3.17)

with

Π8 =

(
−

15
2

Y
b 3

+ X
√
τ tan

(√
τψ

))
,

Π9 =

(
−

15
2

Y
b 3
− X
√
τ cot

(√
τψ

))
,

Θ8 =
(
X + Y

√
τ tan

(√
τψ

))
,

Θ9 =
(
X − Y

√
τ cot

(√
τψ

))
.

Solution Space. 3: For τ = 0, Eq (1.1) brings about the resulting single-wave solutions:

F10(x, t) = −
3375

8
b3
−2Θ3

10Π
−3
10 +

225
4

√
30b

−3
2

3 Θ2
10Π

−2
10 −

225
4

b−1
3 Θ10Π

−1
10

+b0 +
15
2

Θ−1
10 Π10 +

√
30

√
b3Θ

−2
10 Π2

10 + b3Θ
−3
10 Π3

10,

(3.18)
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with

Π10 =

(
−

15
2

Y
b3
−

X
ψ

)
,

Θ10 =

(
X −

Y
ψ

)
.

According to case III, the solution set for the following values of (ψ) and (τ) are obtained:

ψ =
xβ

β
+

(
22
√

30
√

b3 − b3b0

)
tα

b3α
, (3.19)

τ = 30 b−1
3 . (3.20)

Solution Space. 1: For τ < 0, Eq (1.1) brings about the resulting single-wave solutions:

F11(x, t) = b0 + 30 Θ−1
11 Π11 +

√
30

√
b3Θ

−2
11 Π2

11 + b3Θ
−3
11 Π3

11, (3.21)

or
F12(x, t) = b0 + 30 Θ−1

12 Π12 +
√

30
√

b3Θ
−2
12 Π2

12 + b3Θ
−3
12 Π3

12, (3.22)

with

Π11 =

(
−30

Y
b3
− X
√
−τ tanh

(√
−τψ

))
,

Π12 =

(
−30

Y
b3
− X
√
−τ coth

(√
−τψ

))
,

Θ11 =
(
X − Y

√
−τ tanh

(√
−τψ

))
,

Θ12 =
(
X − Y

√
−τ coth

(√
−τψ

))
.

Solution Space. 2: For τ > 0, Eq (1.1) brings about the resulting single-wave solutions:

F13(x, t) = b0 + 30 Θ−1
13 Π13 +

√
30

√
b3Θ

−2
13 Π2

13 + b3Θ
−3
13 Π3

13, (3.23)

or
F14(x, t) = b0 + 30 Θ−1

14 Π14 +
√

30
√

b3Θ
−2
14 Π2

14 + b3Θ
−3
14 Π3

14, (3.24)

with

Π13 =

(
−30

Y
b3

+ X
√
τ tan

(√
τψ

))
,

Π14 =

(
−30

Y
b3
− X
√
τ cot

(√
τψ

))
,

Θ13 =
(
X + Y

√
τ tan

(√
τψ

))
,

AIMS Mathematics Volume 9, Issue 5, 12357–12374.



12366

Θ14 =
(
X − Y

√
τ cot

(√
τψ

))
.

Solution Space. 3: For τ = 0, Eq (1.1) bring about the resulting single-wave solutions:

F15(x, t) = b0 + 30 Θ−1
15 Π15 +

√
30

√
b3Θ

−2
15 Π2

15 + b3Θ
−3
15 Π3

15, (3.25)

with

Π15 =

(
−30

Y
b3
−

X
ψ

)
,

Θ15 =

(
X −

Y
ψ

)
.

4. Results and discussion

The Riccati-Bernoulli sub-ODE method is an effective tool in finding exact analytical solutions
for dynamical systems characterized by flame front oscillations, fluid flow down a vertical wall, or a
spatially uniform oscillating chemical reaction in a homogeneous medium. This method is known for
being easily applied to various physical systems. It can create a large family of periodic and solitary
traveling wave solutions, each with its unique property, without using the usual discretization and
linearization methods that are commonly used to solve problems.

In addition to providing exact solutions for systems displaying the physical phenomena described
above, the obtained results allow for a deeper understanding of the complex dynamics underlying
these processes. The versatility of our approach is critical to capturing highly intricate behaviors,
hence many solutions with different parameters; any resulting analytical solutions are standard, thus
securing a crucial assessment of accuracy, augmenting the reliability of the stability analysis of the
relevant solutions manifold in the establishment of the dependability of computational models. A
striking feature of our method is that it can engender solitons in conjunction with self-reinforcing
solitary waves as it circumvents energy dissipation. Soliton dynamics becomes indispensable when
phenomena such as flame front oscillations or fluid descent are explained, where waves propagate
unperturbed, thereby unifying propagations before and after interactions in the soliton. The genesis of
solitons from a delicate balance between linear and nonlinear processes affords a new vantage point
from which to study the dynamics of complex physical systems.

The applied method generates three families of single-wave solutions. For, τ = 0, these solutions
show rational qualities, and for τ < 0, they show hyperbolic traits, whereas for τ > 0, they show
periodic characteristics. Figures 1–5 show visual representations of the wave behaviors corresponding
to some obtained solutions, offering a thorough understanding of their dynamic features. The graphical
representations are a valuable tool for clarifying and understanding the complex dynamics present in
these single-wave solutions. In these figures, the general shape of the waveforms described by the
derived solutions becomes clear, in addition to the effect of the fractional parameters on the behavior
of these waves. Figure 1 clearly shows that the complex solution represents the shock wave profile.
In Figure 1 (a), the real part of solution (15) is considered, whereas the imaginary part of the solution
(3.7) is introduced in Figure 1(b) in the (x, t)−plane. Figures 2 (a) and 3(b) show the impact of
time fractional parameter α on the shock wave profile for the real and imaginary parts, respectively.
Additionally, the solution (3.11) is investigated, as demonstrated in Figure 4. Moreover, the impact of
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the time-fractional parameter α on the solution profile is examined as illustrated in Figures 4 (c) and
4(d) for the real and imaginary parts, respectively. It becomes clear here that the effect of the time-
fractional parameter on the real part is opposite to the imaginary part. Also, solution (3.16) is analyzed
numerically, as illustrated in Figure 5. In this figure, we examine the effect of both time and space
fractional parameters on the real part of the first solution. Furthermore, solution (3.24) is numerically
investigated, as evident in Figures 6(a) and 6(b) for the real and imaginary parts, respectively.

Figure 1. Solution (3.7) is plotted in the (x, t)-plane: (a) The real part of solution (3.7), and
(b) the imaginary part of solution (3.7). Here, (α, β, b0, b−3, X,Y) = (1, 1, 0.1, 0.1, 0.01, 0.1).
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Figure 2. The impact of time fractional parameter α. Solution (3.7) is plotted against t for
x = 1: (a) The real part of solution (3.7) and (b) The imaginary part of solution (3.7). Here,
(α, β, b0, b−3, X,Y) = (1, 1, 0.1, 0.1, 0.01, 0.1).
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Figure 3. The impact of space fractional parameter β. Solution (3.7) is plotted against t for
x = 1: (a) The real part of solution (3.7), and (b) the imaginary part of solution (3.7). Here,
(α, β, b0, b−3, X,Y) = (1, 1, 0.1, 0.1, 0.01, 0.1).
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Figure 4. Numerical examination of solution (3.11): (a) The real part of solution (3.9) in
the (x, t)-plane for (α, β) = (1, 1), (b) the imaginary part of solution (3.9) in the (x, t)-plane
for (α, β) = (1, 1), (c) the real part of solution (3.9) against the time fractional parameter α,
and (d) the imaginary part of solution (3.9) against the time fractional parameter α. Here,
(b0, b−3, X,Y) = (0.1, 0.1, 1, 0.01).
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Figure 5. The impact of time and space fractional parameters (α, β) on the profile of solution
(3.16). Solution (3.16) is plotted against x for t = 1: (a) The real part of against α, and (b)
the imaginary part against β. Here, (b0, b3, X,Y) = (0.1, 5, 0.7, 0.01).

Figure 6. Solution (3.24) is plotted in the (x, t)-plane: (a) The real part of solution
(3.24), and (b) the imaginary part of solution (3.24). Here, (α, β, b0, b3, X,Y) =

(1, 1, 0.01, 0.01, 0.1, 0.09).

5. Conclusions

In this investigation, the Bäcklund transformation was employed with the Riccati-Bernoulli
sub-ODE technique to derive some analytical solutions for the fractional Kuramoto-Sivashinsky
model. The approach outlined in this work is efficient for solving and analyzing both time and space
fractional partial differential equations (PDEs), showcasing simplicity and efficiency. Our approach,
known for its simplicity and low computational requirements, can be easily expanded to tackle
various typical fractional-order PDEs encountered in science and engineering. The approach
presented shows potential for future applications in practical research, particularly in tackling
large-scale, highly nonlinear fractional-order PDE systems. Three families of traveling wave solutions
for the current problem have been derived in this context. Based on the related solution parameter (τ),
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we found that for τ = 0, these solutions show rational qualities and for τ < 0, they show hyperbolic
traits whereas for τ > 0, they show periodic characteristics. Some derived solutions have been
numerically examined, and the impact of both time and space fractional parameters on the profiles of
these solutions has been investigated.

Our results provide significant insights into intricate processes, such as the vibrations of flame
boundaries, the descent of fluid on a vertical plane, and the consistent vibrations of chemical reactions
in a uniform environment. These discoveries enhance our comprehension of chemical kinetics, fluid
dynamics, and combustion behavior, offering crucial knowledge for examining dynamic systems in
various fields like engineering, biology, physics, chemistry, and economics. Hence, our proposed
approach proves crucial in thoroughly grasping and articulating fractional-order evaluations within
significant physical models.

Future work: It is also expected that the current approach will succeed in analyzing and solving
many nonlinear evolution equations related to many nonlinear phenomena that arise and propagate in
various plasma systems. Therefore, this approach can be applied to derive analytical solutions to some
different time and space fractional wave equations, such as the family of fractional KdV-type equations
of third, fifth, and seventh-order dispersion [55–57], and the fractional nonlinear Schrödinger-type
(NLS-type) equations [58–60], which are used to describe solitons, shocks, cnoidal waves, and rogue
waves that arise and propagate in plasma physics.
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