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Abstract: In this paper, the stochastic fourth order nonlinear Schrodinger equation with quantic
nonlinearity and affected by multiplicative noise is considered. This model is used to mimic the wave
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1. Introduction

Nonlinear partial differential equations (NLPDESs) can be used to mimic many nonlinear phenomena
that arise in a various scientific fields, including geology,fluid dynamics, biology, chemical physics,
Optics, plasma physics and solid state physics [1-9]. Many researchers have recently become
interested in studying the dynamics of these models [10-13]. One of the basic models of nonlinear
waves is the nonlinear Schrodinger equation (NLSE) [14,15]. It is used in a variety of fields, including
electromechanical systems [16], laser beams [17], and the theory of crystals [18] and solids [19].

General random disturbances Spontaneous emissions and Thermal fluctuations can be modeled
using stochastic Schrodinger models. Many authors investigated the uniqueness and existence of
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stochastic NLSEs with multiplicative or additive noise. The case of additive noise is investigated
in [20, 21] while the case of multiplicative noise if reported in [22,23]. Both types of noises are
investigated in [24, 25]. In addition, Numerical methods are used to study the stochastic NLSE
in [26,27].

In this context, the stochastic Fourth order NLSE with quantic nonlinearity and affected by
multiplicative noise. This stochastic model has not been studied before. This model reads as:

i(H, + o H, + a3H,,) + ayH  + ayH o + Bi|HI*H + Bo|HI'H + cHB, = 0, (1.1)

where H, represents the linear temporal evolution. H, represents the inter-modal dispersion. H,,, and
H,.., represent the third order and fourth order dispersion. H,, represents the group velocity dispersion.
B1 and S, represent the coefficients of self phase modulation effect and quantic nonlinearity. B; is the
stochastic term which represents the white noise. B(f) and follow the next conditions:

(i) For > 0, B(¢) has continuous trajectories.

(i1) For s < ¢, B(t) — B(s) has independent increments.

(ii1) B(¢) — B(s) has a normal distribution with variance = ¢ — s and mean= 0.

This model is used to describe the wave propagation through optical fibers. This model includes the
dispersion and nonlinearity effects. Dispersion is also known as wave broadening or wave spreading.
Some of the optical power in a propagated wave is delayed at the fiber’s output end, which results
in dispersion [28]. Dispersion shows how optical power that enters the fiber simultaneously leaves
at various moments. Because of dispersion, the optical wave width grows continually across the
fiber. The output signal varies from the input signal when dispersion reaches the data rate’s maximum
value [29]. In addition, The intensity dependence of the medium’s refractive index causes nonlinear
effects in optical fiber. Optical soliton is a special type of solutions that can propagate to very large
distance retaining its shape and speed. This optical wave is generated due to dedicated balance which
occurs between the dispersion and nonlinear effects [30,31]. In addition, adding the noise effect to the
investigated model is very necessary to show the robust of the extracted solutions against the noise.
Research into all these different influences is making a huge contribution to the development of the
telecommunications industry [29].

The nonlinear stochastic Chiral Schrodinger equation (CNLSE) in two dimensions was investigated
in literature [32] to extract periodic envelopes, explosive, dissipative, symmetric solitons, and blow up
waves. It was confirmed that the noise factor is dominant on all the wave conversion, growing and
damping of envelopes and shocks. In ref [33], the stochastic NLSE with group velocity dispersion and
self modulation nonlinear effect was studied by applying the unified solver approach to extract rational,
dissipative, explosive, envelope, periodic, and localized soliton solutions.

In this current work, the improved modified extended tanh function scheme is utilized to provide
optical solitons for the stochastic NLSE in (1.1). In addition, this method provide other solutions such
as trigonometric, hyperbolic and exponential type solutions. The proposed method is briefly introduced
in Section 2. Then, the stochastic solutions are extracted for the investigated model in Section 3. The
effect of the multiplicative noise on the obtained solutions is discussed in Section 4. Finally, the work
is concluded.

2. Revisitation of the technique
This section introduces the improved modified extended tanh scheme [34].
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Considering the following NLPDE:
G(H’ Ht» H)w Hxxa Hxl"--'-) = 09 (21)

where G is polynomial in H(x, t) and its partial derivatives

Step 1: The following mathematical transformation is applied
H(x,t) = F(¢), éE=x—-At. (2.2)
Therefore, Eq (2.1) is converted to the following ODE:

F(F,F',F’,F",.)=0. (2.3)

Step 2: The solutions for Eq (2.3) is supposed in the form:

N
F© =ay+ ) aA' () +bA7(©), (2.4)
r=1
where A(¢) holds:
A = do + dAE) + BAXE) + dANE) + dAYE). (2.5)

By changing the values of the constants dy, d;, d», d; and d4, one can obtain different general solutions
for Eq (2.5).

Step 3: N that raised in Eq (2.4) can be evaluated by applying the balancing rule on Eq (2.3).

Step 4: Substituting by Eq (2.4) with (2.5) into (2.3), a polynomial in A(¢) is provided. Collecting the
terms which have the same power together and equating them to zero, one get a system of nonlinear
equations that can be solved using packages of Mathematica to determine A, a; and by.

3. Results

In this section, the improved modified extended tanh method is applied to provide stochastic
solutions for the proposed model in the following form:

H(x, 1) = F(&)e™kottoBO) &= x_ Q. 3.1)
Substituting by (3.1) into (1.1) provides
FO (a3 = 4ask) + F' () + 4aak’ = 3a3k* = 200k - 2) =0, (3.2)
and
BoF® + asF® + BIF® + F (0 + 6a4k®) + F =34k’ — aok® + ark + 07 = w) = 0, (3.3)

where Eq (3.2) represents the imaginary part while Eq (3.3) is the real part.
Equating the coefficients of (3.2) to zero gives

a3 = 4a/4k,
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A= ay - 8ask’ — 2ark. (3.4)
Balancing F® with F>, we get N = 1. Then, the solution of Eq (3.3) can be represented as follow:
b
F(¢é) =ap+ a)A€) + — 3.5
(&) = ao + a1A6) @) (3.5)

By employing Step 4 which discussed in the last section, we can obtain the next results for (1.1) :

Casel.dozd1:d3:0

Result (1)
= VNTTBER) | gy (~10dK2 + 92 = 3K2) - 2 + w
1 VB2
ap=0,b6,=0,dy=—, a; = ,
2\/6\10’4 k
W?ﬁl +ay + 6k
dy = -
10@4

Then, we obtain the following stochastic bright soliton and singular periodic solutions for (1.1).

NN 46k
s f‘/w;ﬁl + @z +6ak? \/_ o - .
H(x,t) = V6 sech X Wi—kx=0 T B@)
5 Vas V=P V10
(3.6)
‘/g\/‘ﬁﬁl 2
\Frﬂl \/—\/%+a/2+6(l4k
+ @y + 6ask? -
H(x,t) = %J N * o sec a4 (x — A1) % ei(wt—kx—azth(z))_
SVaiNp VIO
(3.7)

Case2.d, =d; =0

Result (1)
\f

a \V-p \FB L+ @y + 6ayk® &
aOZO,b1:O,d4:—,d2=— ,d():—,
2V6 10a4 4dy
B V6 vz V=B (K = do) + afpy (—10dak? + 645 = 3k*) + B2 (w — 02)
oo Bak ’
Then, we obtain the following stochastic dark soliton and singular periodic solutions for (1.1).
VoNTTB 4 1 6ask?
43 f\Fﬁw‘OJ + 6ask? \/ \/an - (x — A1) , )
H(X, l‘) = — tanh 4 X et(wt—kx—a' t+0'B(t)),
2 5va: VP 25
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(3.8)

tan X e

- YONTTBL 4 1604k

3 _@+a2+6a4k2 J_ ‘/5 2 4 (.x_/ll) .

H(x,t) = 24| = A a4 i(wi—kx—02t+B(1))
’ 2 5asN-PB> 245

(3.9)
Result (2)
6B1b2d3d, (dy — K) + 2Babid2 (10d:k? - 642 + 3k*) + 3d3 (w — o)

ap=0,a, =0, a =

3dk ’
4 = ‘/_\/04072 —ay V=B, — V6 aaB — 6ay =B,k i d;
4= d) = 0= —

\/—2,82 10&’4 V—P52 ’ 4d4

Then, we obtain the following stochastic singular soliton and singular periodic solutions for (1.1).

_ —a2 V-Pr— V6 yaupi —6as Pk (x— A1)
Mo \ﬁ \/ —a2 VBs = VoV — b B b
R SV@: "

% ei(wtkafa'zHa'B(t))’ (3.10)

J_Q'ZW frﬁl 6(74\/%](( /lt)

H(x l)_i/g\/__azx/___ \/6\/0/_4 1_6a4\/__182kzcot A
’ 2 5 VayBs 245
> ei(wtkafa'zHa'B(t))' (3.11)
Result (3)
6a18161(2d2+k>)  a2Bab? (—20d2k* - %6d2+3k4) 2
Od 611_612 o __ dp + d2 6(W_O-)
YT oap T 6k ’
il VTR 6 VTBR) bR | d
by = - , dy = , dy = —.
10a; \aups Vv 6 vaa 4ds

Then, we obtain the following stochastic singular soliton and singular periodic solutions for (1.1).

\/7&+6a K2 _ \@/3] _x
\/_\/ﬂ” (2 : )tanh[ TV T ke ”0]

alﬁz 210
H(x, 1) =

23/44/5
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_ VB _ e _gp2ix — ap)
_ vas V-p2 "4 i(wt—kx—o*t+0 B(1))
++/—a; coth xe ’ G12
210

\/—72(024—60413) V6B, +92 41 6k2(x=1
%\/—%ﬁ”m tan | YT

aipz 210
H(x,t) =
(x,1) a5
@%51% + 2 4 6k (x — A1)
+Vaj cot } x gk e o) (3.13)
2V10
Case3.dy=d; =0
Result (1)
aods 2a2a2B,k°  2a0mk (Sa3y+3B1) gl + 2By + 0t —w
bl 0 d2 =, ) = > - — ,
aj d3 3d3 k
2apa, (—50352613 + 6aga 1Bk’ — 3ﬁ1d3) p V2apa, -5, J &
a» = s = = —.
2 3d2 ’ V3 tT 44,

Then, we obtain the following stochastic dark soliton for (1.1).

H(x,t) =<a tanh ‘ (x ) 1 +apt x k=0t BE) (3.14)
23/4\/_
Cased.d;=d, =0
Result (1)
V6 yaapi (k-ds)
1 VP — D o (10K + 92 - 3K) — 0 4w
a():(),al:()’doz——’alz ’
2 V6 vay k
0B~ VBV — b VB
2 , di .
10(1’4 \/ﬁ_g

Then, we obtain the following stochastic singular soliton and singular periodic solutions for Eq (1.1).

@3 B2+ V6 =af —6a4 VB2 k2
4 (0%} V,Bz + \/6\/—(1’4 1 — 6ay \/,sz2 \/ — @ \/ﬁl - (x — A1)
H(x, 1) = V6 csch
S/—asp V10
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. 2
ol Wi—ka=or tﬂrB(t))’ (3.15)

\/ —a2 VBa— V6 y=auBi—6a4 VB2k? (- A1)

e |- — V6= -6 K2 ”
H(x,t) = ‘/6\/ @2 Bz = V6 VZaipy - 6as VB csc s VP2
S5V-aup V10
el Wi—kx=01+0B(0) (3.16)
Result (2)
aod, 20303k 2aobik (Saif +31)  aly +adf+ 0 —w
a=0,dy=—, a; = - >
b & 3d, k
_ 2apby (6aoh Bok* — SagBady — 3id) L Nab VB
“= 32 T 3as | 4dy

Then, we obtain the next stochastic exponential solution for (1.1).

2b .
Hxuf) = ap|1 - ! x eiWi—ke-c?t+aB®) (3.17)

by —2ay eé\/_ (x o

CaseS.d, =d, =0

Result (1)
B e I e
avevw T vm ST e Vo
~11aifs + a3 (S Vo v=az VB> = 361) — 0% +w ot YOk
a; = —OUUK — —— (—.

k V=P

Then, we obtain the next stochastic Weierstrass elliptic solution for (1.1).

V6 /=5, (Ga4k2 —(yz)

bl B2
H(x, 1) = +
Vi) V30
(=22) \ - VT
9 6 5374 e 382,83
% ei(wt—kx—(rztﬂrB(t))’ (3.18)

where g2 = —4d1/d3 and 83 = —4d0/d3.
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4. Influence of the noise on the extracted solutions

In this section, we investigate the effect of the multiplicative noise on the derived solutions. 2D
and 3D simulations using different values for o are presented using Matlab packages. In Figure 1,
3D graphical illustrations of Eq (3.6) are introduced with a4y = —0.13, @, = 2, B, = 0.055, B =
-2,k =-2, 4 =-0.095, w = 1. In Figure 2, 2D graphical illustrations of Eq (3.6) is presented
using different noise intensities. In Figure 3, 3D graphical illustrations of Eq (3.8) are provided with
ay =049, a, = -2, 5, = -2, 51 = -2, k =-2, 1 = -0.63, w = 1. In Figure 4, 2D graphical
illustrations of Eq (3.8) is presented using different noise intensities. It is observed that as the noise
intensity increases, the extracted wave begins to degrade. From Figures 14, we also observed that the
higher level wave is more robust to noise than the lower level wave. One can notice that the propagated
wave of Eq (3.6) is fully distorted when o = 5 as shown in Figures 1 and 2 while the propagated wave
of Eq (3.8) is fully distorted when o = 2 as shown in Figures 3 and 4. The signal level of the obtained
solutions can be controlled to be robust against the noise by adjusting coefficients of the fourth order
dispersion, group velocity dispersion, self phase modulation and the quantic nonlinearity.

¢ =0

¢ =0

Uit o
T
T

i Iyl

Solution "Re(H)"
Solution “Im{H)"

Space "x"

Solution "Re(H)"
Solution "Im(H)"

Space "x"

Solution "Re(H)"
Solution "Im(H)"

Space "x" Time "t"

Figure 1. 3D graphs of solution H(x,t) of Eq (3.6).
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Figure 4. 2D graphs of solution H(x, t) of Eq (3.8).

5. Conclusions

In this work, The improved modified extended tanh function method is implemented successfully
to investigate stochastic forth order NLSE with quantic nonlinearity and affected by multiplicative
noise. Many exact optical solutions are extracted in terms of hyperbolic, trigonometric, exponential
and Weierstrass elliptic solutions. This stochastic model with fourth-order dispersion and quantic
nonlinearity has not been studied before. Therefore, all of these extracted solutions are new. These
solutions are crucial in understanding some complex physical phenomena. The extracted solutions
will be useful in future studies like coastal water motions, industrial studies, quasi particle theory,
optical fiber and space plasma applications. Matlab packages are used to simulate the effect of the
multiplicative noise on the derived solutions.
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