Research article Special Issues

Construction optical solitons of generalized nonlinear Schrödinger equation with quintuple power-law nonlinearity using Exp-function, projective Riccati, and new generalized methods

  • Received: 24 December 2024 Revised: 26 January 2025 Accepted: 12 February 2025 Published: 21 February 2025
  • MSC : 35C05, 35C07, 35C08, 47J35

  • This work investigates the generalized nonlinear Schrödinger equation (NLSE), which imitates the wave transmission along optical fibers. This model incorporates a quintuple power-law of non-linearity and nonlinear chromatic dispersion. To demonstrate the significance and motivation for this work, a review of the prior research is presented in the literature. Three integration strategies are applied during the study process in order to produce a variety of novel solutions. These techniques include the modified exp-function approach, the general projective Riccati method (GPRM), and the new generalized method. The extracted solutions include bright solitons, singular solitons, dark solitons, and trigonometric solutions.

    Citation: Islam Samir, Hamdy M. Ahmed, Wafaa Rabie, W. Abbas, Ola Mostafa. Construction optical solitons of generalized nonlinear Schrödinger equation with quintuple power-law nonlinearity using Exp-function, projective Riccati, and new generalized methods[J]. AIMS Mathematics, 2025, 10(2): 3392-3407. doi: 10.3934/math.2025157

    Related Papers:

  • This work investigates the generalized nonlinear Schrödinger equation (NLSE), which imitates the wave transmission along optical fibers. This model incorporates a quintuple power-law of non-linearity and nonlinear chromatic dispersion. To demonstrate the significance and motivation for this work, a review of the prior research is presented in the literature. Three integration strategies are applied during the study process in order to produce a variety of novel solutions. These techniques include the modified exp-function approach, the general projective Riccati method (GPRM), and the new generalized method. The extracted solutions include bright solitons, singular solitons, dark solitons, and trigonometric solutions.



    加载中


    [1] Y. Sun, Z. Hu, H. Triki, M. Mirzazadeh, W. Liu, A. Biswas, et al., Analytical study of three-soliton interactions with different phases in nonlinear optics, Nonlinear Dyn., 111 (2023), 18391–18400. https://doi.org/10.1007/s11071-023-08786-z doi: 10.1007/s11071-023-08786-z
    [2] Y. Zhong, K. Yu, Y. Sun, H. Triki, Q. Zhou, Stability of solitons in Bose–Einstein condensates with cubic–quintic–septic nonlinearity and non-PT-symmetric complex potentials, Eur. Phys. J. Plus, 139 (2024), 119. https://doi.org/10.1140/epjp/s13360-024-04930-9 doi: 10.1140/epjp/s13360-024-04930-9
    [3] Q. Li, W. Zou, Normalized ground states for Sobolev critical nonlinear Schrödinger equation in the $L^2$-supercritical case, DCDS, 44 (2024), 205–227. https://doi.org/10.3934/dcds.2023101 doi: 10.3934/dcds.2023101
    [4] S. Malik, S. Kumar, Pure-cubic optical soliton perturbation with full nonlinearity by a new generalized approach, Optik, 258 (2022), 168865. https://doi.org/10.1016/j.ijleo.2022.168865 doi: 10.1016/j.ijleo.2022.168865
    [5] Q. Li, J. Nie, W. Wang, J. Zhou, Normalized solutions for Sobolev critical fractional Schrödinger equation, Adv. Nonlinear Anal., 13 (2024), 20240027. https://doi.org/10.1515/anona-2024-0027 doi: 10.1515/anona-2024-0027
    [6] W. Zhang, J. Zhang, V. Rădulescu, Semiclassical states for the pseudo-relativistic Schrödinger equation with competing potentials, Commun. Math. Sci., 23 (2025), 465–507.
    [7] S. Shen, Z. J. Yang, Z. G. Pang, Y. R. Ge, The complex-valued astigmatic cosine-Gaussian soliton solution of the nonlocal nonlinear Schrödinger equation and its transmission characteristics, Appl. Math. Lett., 125 (2022), 107755. https://doi.org/10.1016/j.aml.2021.107755 doi: 10.1016/j.aml.2021.107755
    [8] M. A. E. Abdelrahman, A. Alharbi, M. B. Almatrafi, Fundamental solutions for the generalised third-order nonlinear Schrödinger equation, Int. J. Appl. Comput. Math., 6 (2020), 160. https://doi.org/10.1007/s40819-020-00906-2 doi: 10.1007/s40819-020-00906-2
    [9] W. B. Rabie, H. M. Ahmed, Construction cubic-quartic solitons in optical metamaterials for the perturbed twin-core couplers with Kudryashov's sextic power law using extended F-expansion method, Chaos Soliton Fract., 160 (2022), 112289. https://doi.org/10.1016/j.chaos.2022.112289 doi: 10.1016/j.chaos.2022.112289
    [10] I. Onder, A. Secer, M. Ozisik, M. Bayram, Investigation of optical soliton solutions for the perturbed Gerdjikov-Ivanov equation with full-nonlinearity, Heliyon, 9 (2023), e13519. https://doi.org/10.1016/j.heliyon.2023.e13519 doi: 10.1016/j.heliyon.2023.e13519
    [11] I. Samir, H. M. Ahmed, S. Alkhatib, E. M. Mohamed, Construction of wave solutions for stochastic Radhakrishnan–Kundu–Lakshmanan equation using modified extended direct algebraic technique, Results Phys., 55 (2023), 107191. https://doi.org/10.1016/j.rinp.2023.107191 doi: 10.1016/j.rinp.2023.107191
    [12] R. Kumar, R. Kumar, A. Bansal, A. Biswas, Y. Yildirim, S. P. Moshokoa, et al., Optical solitons and group invariants for Chen-Lee-Liu equation with time-dependent chromatic dispersion and nonlinearity by Lie symmetry, Ukr. J. Phys. Opt., 2023.
    [13] M. M. Khatun, M. A. Akbar, New optical soliton solutions to the space-time fractional perturbed Chen-Lee-Liu equation, Results Phys., 46 (2023), 106306. https://doi.org/10.1016/j.rinp.2023.106306 doi: 10.1016/j.rinp.2023.106306
    [14] M. Sadaf, G. Akram, S. Arshed, K. Farooq, A study of fractional complex Ginzburg–Landau model with three kinds of fractional operators, Chaos Soliton. Fract., 166 (2023), 112976. https://doi.org/10.1016/j.chaos.2022.112976 doi: 10.1016/j.chaos.2022.112976
    [15] K. J. Wang, J. Si, Diverse optical solitons to the complex Ginzburg–Landau equation with Kerr law nonlinearity in the nonlinear optical fiber, Eur. Phys. J. Plus, 138 (2023), 187. https://doi.org/10.1140/epjp/s13360-023-03804-w doi: 10.1140/epjp/s13360-023-03804-w
    [16] W. Chen, J. Manafian, K. H. Mahmoud, A. S. Alsubaie, A. Aldurayhim, A. Alkader, Cutting-edge analytical and numerical approaches to the Gilson–Pickering equation with plenty of soliton solutions, Mathematics, 11 (2023), 3454. https://doi.org/10.3390/math11163454 doi: 10.3390/math11163454
    [17] A. Yokuş, H. Durur, K. A. Abro, D. Kaya, Role of Gilson–Pickering equation for the different types of soliton solutions: a nonlinear analysis, Eur. Phys. J. Plus, 135 (2020), 657. https://doi.org/10.1140/epjp/s13360-020-00646-8 doi: 10.1140/epjp/s13360-020-00646-8
    [18] N. A. Kudryashov, The Lakshmanan–Porsezian–Daniel model with arbitrary refractive index and its solution, Optik, 241 (2021), 167043. https://doi.org/10.1016/j.ijleo.2021.167043 doi: 10.1016/j.ijleo.2021.167043
    [19] G. Liang, H. Zhang, L. Fang, Q. Shou, W. Hu, Q. Guo, Influence of transverse cross-phases on propagations of optical beams in linear and nonlinear regimes, Laser Photonics Rev., 14 (2020), 2000141. https://doi.org/10.1002/lpor.202000141 doi: 10.1002/lpor.202000141
    [20] I. Samir, H. M. Ahmed, A. Darwish, H. H. Hussein, Dynamical behaviors of solitons for NLSE with Kudryashov's sextic power-law of nonlinear refractive index using improved modified extended tanh-function method, Ain Shams Eng. J., 15 (2024), 102267. https://doi.org/10.1016/j.asej.2023.102267 doi: 10.1016/j.asej.2023.102267
    [21] O. El-shamy, R. El-barkoki, H. M. Ahmed, W. Abbas, I. Samir, Exploration of new solitons in optical medium with higher-order dispersive and nonlinear effects via improved modified extended tanh function method, Alex. Eng. J., 68 (2023), 611–618. https://doi.org/10.1016/j.aej.2023.01.053 doi: 10.1016/j.aej.2023.01.053
    [22] I. Samir, A. Abd-Elmonem, H. M. Ahmed, General solitons for eighth-order dispersive nonlinear Schrödinger equation with ninth-power law nonlinearity using improved modified extended tanh method, Opt. Quant. Electron., 55 (2023), 470. https://doi.org/10.1007/s11082-023-04753-5 doi: 10.1007/s11082-023-04753-5
    [23] Y. Shang, The extended hyperbolic function method and exact solutions of the long–short wave resonance equations, Chaos Soliton. Fract., 36 (2008), 762–771. https://doi.org/10.1016/j.chaos.2006.07.007 doi: 10.1016/j.chaos.2006.07.007
    [24] L. Akinyemi, Two improved techniques for the perturbed nonlinear Biswas–Milovic equation and its optical solitons, Optik, 243 (2021), 167477. https://doi.org/10.1016/j.ijleo.2021.167477 doi: 10.1016/j.ijleo.2021.167477
    [25] N. Savaissou, B. Gambo, H. Rezazadeh, A. Bekir, S. Y. Doka, Exact optical solitons to the perturbed nonlinear Schrödinger equation with dual-power law of nonlinearity, Opt. Quant. Electron., 52 (2020), 318. https://doi.org/10.1007/s11082-020-02412-7 doi: 10.1007/s11082-020-02412-7
    [26] E. A. Az-Zo'bi, W. A. Alzoubi, L. Akinyemi, M. Şenol, B. S. Masaedeh, A variety of wave amplitudes for the conformable fractional (2+1)-dimensional Ito equation, Mod. Phys. Lett. B, 35 (2021), 2150254. https://doi.org/10.1142/S0217984921502547 doi: 10.1142/S0217984921502547
    [27] W. B. Rabie, H. M. Ahmed, I. Samir, M. Alnahhass, Optical solitons and stability analysis for NLSE with nonlocal nonlinearity, nonlinear chromatic dispersion and Kudryashov's generalized quintuple-power nonlinearity, Results Phys., 59 (2024), 107589. https://doi.org/10.1016/j.rinp.2024.107589 doi: 10.1016/j.rinp.2024.107589
    [28] A. Biswas, M. Ekici, A. Sonmezoglu, Stationary optical solitons with Kudryashov's quintuple power–law of refractive index having nonlinear chromatic dispersion, Phys. Lett. A, 426 (2022), 127885. https://doi.org/10.1016/j.physleta.2021.127885 doi: 10.1016/j.physleta.2021.127885
    [29] M. Ekici, Stationary optical solitons with complex Ginzburg–Landau equation having nonlinear chromatic dispersion and Kudryashov's refractive index structures, Phys. Lett. A, 440 (2022), 128146. https://doi.org/10.1016/j.physleta.2022.128146 doi: 10.1016/j.physleta.2022.128146
    [30] A. Sonmezoglu, Stationary optical solitons having Kudryashov's quintuple power law nonlinearity by extended $G'/G$–expansion, Optik, 253 (2022), 168521. https://doi.org/10.1016/j.ijleo.2021.168521 doi: 10.1016/j.ijleo.2021.168521
    [31] M. G. Hafez, M. A. Akbar, An exponential expansion method and its application to the strain wave equation in microstructured solids, Ain Shams Eng. J., 6 (2015), 683–690. https://doi.org/10.1016/j.asej.2014.11.011 doi: 10.1016/j.asej.2014.11.011
    [32] G. Akram, M. Sadaf, S. Arshed, F. Sameen, Bright, dark, kink, singular and periodic soliton solutions of Lakshmanan–Porsezian–Daniel model by generalized projective Riccati equations method, Optik, 241 (2021), 167051. https://doi.org/10.1016/j.ijleo.2021.167051 doi: 10.1016/j.ijleo.2021.167051
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(224) PDF downloads(38) Cited by(0)

Article outline

Figures and Tables

Figures(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog