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Abstract: This work investigates the generalized nonlinear Schrödinger equation (NLSE), which
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non-linearity and nonlinear chromatic dispersion. To demonstrate the significance and motivation for
this work, a review of the prior research is presented in the literature. Three integration strategies are
applied during the study process in order to produce a variety of novel solutions. These techniques
include the modified exp-function approach, the general projective Riccati method (GPRM), and
the new generalized method. The extracted solutions include bright solitons, singular solitons, dark
solitons, and trigonometric solutions.
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1. Introduction

The field of telecommunications engineering has benefited greatly from optical soliton dynamics
in recent decades [1–3]. There are two types of telecommunications engineering: Wireless
communications, which transmit data over long distances using radio waves rather than wires, and
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wired communications, which use subterranean communications cables. Fiber optics elucidates
nonlinear responses of incident light characteristics, including phase and polarization [4]. Numerous
optical phenomena are produced by these nonlinear interactions. To enhance the performance of
telecommunications engineering, many novel ideas have been proposed. Propagation dynamics of
solitons is one of them. These consist of the nonlinear refractive index and chromatic dispersion (CD)
of the optical fiber. The nonlinear Schrödinger model is widely applied to mimic many physical
phenomena in different fields such as plasma physics, condensed matter, nonlinear optics, fluid
dynamics, solid-state physics, biochemistry, and many more [5–9]. The soliton theory is essential to
many models, including those in fiber optics and other fields. These models such as the
Gerdjikov–Ivanov equation [10], Radhakrishnan—Kundu-–Lakshmanan equation [11],
Chen–Lee–Liu equation [12, 13], complex Ginzburg–Landau model [14, 15], Gilson–Pickering
equation [16, 17] and Lakshmanan–Porsezian–Daniel model [18]. One of the basic models for
nonlinear waves is NLSE, which describes nonlinear phenomena in optical fibers and is also used to
describe spatial solitons [19]. It is necessary to solve nonlinear partial differential equations
(NLPDEs) analytically in order to understand these nonlinear phenomena [20–22]. Many academics
are interested in the extraction of solitons in NLPDEs. There are efficient techniques that have been
put forth to get exact solutions to NLPDEs including extended hyperbolic function technique [23], the
Sardar sub-equation method [24], the extended Tanh–Coth scheme [25], the Jacobi elliptic function
method [26] and many more.

This work examines generalized NLSE with nonlinear chromatic dispersion and quintuple power
law non-linearity. This model is as follows: [27]:

iψt + α(|ψ|pψ)xx +

(
k1|ψ|

2m + k2|ψ|
2m+n + k3|ψ|

2m+2n + k4|ψ|
2m+n+r + k5|ψ|

2m+2n+r + (|ψ|r)xx

)
ψ = 0, (1.1)

where ψx,t represents the wave profile. α is the coefficient of the nonlinear CD. k1, k2, k3, k4, and k5

are the coefficients of nonlinear refractive index. p ≥ 0 and r,m, and n are positive constants. When
p = 0, it becomes the case of linear chromatic dispersion in the exceptional case. The possible values
of the parameters remain unknown, though. Benjamin–Feir stability analysis could be used to aid
with this issue. This project is distinct and should be handled later. This work focuses on soliton
solutions with non-negative parameters. Optical solitons have become a popular topic in fibre optics
during the past decade due to their potential to block pulse transmission over intercontinental distance
transmission [28, 29]. Pre-existing and current publications serve as models for studying the genesis
and existence of optical solitons. In order to obtain stationary soliton solutions, the proposed model
was examined using the G′/G expansion approach [30]. In addition, the modified extended mapping
approach is implemented to derive dark and singular solitons [27].

Three integration strategies are used in this study to find novel and different solutions for Eq (1.1).
These techniques including the modified exp-function method, the general projective Riccati method
(GPRM), and new generalized method. With the aid of these techniques, different solutions can be
offered, including trigonometric solutions, singular solitons, dark solitons, and bright solitons.

This paper’s structure will be as follows. Section 2 provides a brief introduction to the proposed
techniques. Analytical solutions for Eq (1.1) are then provided in Section 3 using the proposed
techniques. Section 4 presents both 2D and 3D graphs to show the properties of the propagating
waves. In the last section, the manuscript is concluded.
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2. Mathematical methods

This section contains concise summaries of the modified exp-function approach [31], GPRM [32]
and new generalized method [4]

Let us consider NLPDE as follows:

F(ψ, ψt, ψx, ψxx, ...) = 0, (2.1)

where F is polynomial in ψ(x, t).
Suppose ψ(x, t) = ψ(ξ), ξ = k(x − c t). Then, Eq (2.1) is transformed to a nonlinear ordinary

differential equation (NLODE) as follows:

Q(ψ, ψ′, ψ′′, ψ′′′, ...) = 0. (2.2)

2.1. The modified exp-function method

Step 1. The solution to the generated NLODE is considered as follows:

ψ(ξ) =
N∑

j=−N

a j(exp(−ϕ(ξ))) j, (2.3)

where a j are constants to be determined and ϕ meets the following auxiliary equation

ϕ′(ξ) = −
√
λ1 + λ2(exp(−ϕ(ξ)))2, λ1, λ2 ∈ R. (2.4)

Step 2. Applying the balance rule in Eq (2.2), N can be raised.
Step 3. A set of nonlinear equations is raised by putting (2.3) and (2.4) into (2.2), then gathering and
equating all the terms of (exp(−ϕ(ξ))) j to zero. The extracted system can be handled by Mathematica
or Maple software tools to obtain all unknowns.
Step 4. Finally, we obtain the new exact solutions for NLPDE by combining Eq (2.3) with the general
solutions of Eq (2.4).
Step 5. To obtain more exact solutions, the steps from (1) to (4) will be repeated again by using the
following auxiliary equation:

ϕ′(ξ) = −λ1 exp(ϕ(ξ)) − λ2 exp(−ϕ(ξ)), λ1, λ2 ∈ R. (2.5)

The general solutions of Eq (2.4) are:

Ψ(ξ) = −ln
(
−

√
λ1

λ2
csch[

√
λ1ξ]

)
, λ1 > 0, λ2 > 0, (2.6)

Ψ(ξ) = −ln
(√
−λ1

λ2
sec[

√
−λ1ξ]

)
, λ1 < 0, λ2 > 0, (2.7)

Ψ(ξ) = −ln
(√

λ1

−λ2
sech[

√
λ1ξ]

)
, λ1 > 0, λ2 < 0, (2.8)
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Ψ(ξ) = −ln
(√
−λ1

λ2
csc[

√
−λ1ξ]

)
, λ1 < 0, λ2 > 0, (2.9)

while the general solutions of Eq (2.5) are

Ψ(ξ) = −ln
(√

λ1

λ2
tan[

√
λ1λ2ξ]

)
, λ1 λ2 > 0, (2.10)

Ψ(ξ) = −ln
(
−

√
λ1

λ2
cot[

√
λ1λ2ξ]

)
, λ1 λ2 > 0, (2.11)

Ψ(ξ) = −ln
(√

λ1

−λ2
tanh[

√
−λ1λ2ξ]

)
, λ1 λ2 < 0, (2.12)

Ψ(ξ) = −ln
(√

λ1

−λ2
coth[

√
−λ1λ2ξ]

)
, λ1 λ2 < 0. (2.13)

2.2. GPRM method

Step 1. Assuming that Eq (2.2) has a solution of the form

ψ(ξ) = s0 +

N∑
i=1

ϕi−1(ξ)
(
siϕ(ξ) + βiφ(ξ)

)
, (2.14)

where the functions ϕ(ξ) and φ(ξ) fulfill the next equation:

ϕ′(ξ) = ϵϕ(ξ)φ(ξ),
φ′(ξ) = σ + ϵφ2(ξ) − δϕ(ξ), (2.15)

where

φ2(ξ) = −ϵ
(
σ − 2δϕ(ξ) +

δ2 + τ

σ
ϕ2(ξ)

)
. (2.16)

The following are the general solutions to Eq (2.15):
Set (1): ϵ = τ = −1:

ϕ(ξ) =
σ sech

[√
σξ

]
1 + δ sech

[√
σξ

] , φ(ξ) =

√
σ tanh

[√
σξ

]
1 + δ sech

[√
σξ

] , (2.17)

Set (2): ϵ = −1, τ = 1:

ϕ(ξ) =
σ csch

[√
σξ

]
1 + δ csch

[√
σξ

] , φ(ξ) =

√
σ coth

[√
σξ

]
1 + δ csch

[√
σξ

] , (2.18)

Set (3): ϵ = 1, τ = −1:

ϕ(ξ) =
σ sec

[√
σξ

]
1 + δ sec

[√
σξ

] , φ(ξ) =

√
σ tan

[√
σξ

]
1 + δ sec

[√
σξ

] , (2.19)
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Set (4): ϵ = τ = 1:

ϕ(ξ) =
σ csc

[√
σξ

]
1 + δ csc

[√
σξ

] , φ(ξ) = −

√
σ cot

[√
σξ

]
1 + δ csc

[√
σξ

] . (2.20)

Step 2. Along with (2.15) and (2.16), (2.14) is substituted into (2.2). A polynomial of φ(ξ) and ϕ(ξ)
is thus obtained. A collection of nonlinear equations is generated via equating terms of the identical
power to zero. The extracted system can be handled by Mathematica or Maple software tools to assess
all unknowns. Consequently, we obtain exact solutions for Eq (2.1).

2.3. The new generalized method

Step 1. The solution of the obtained NLODE is considered as follows:

ψ(ξ) = α0 +

N∑
i=1

αi + βiϕ
′(ξ)i

ϕ(ξ)i , (2.21)

and ϕ(ξ) fulfills the next equation:

ϕ′(ξ) =
√
−σ + ϕ(ξ)2, (2.22)

and

ϕ(n)(ξ) = ϕ(ξ), n ≥ 2 and n is even,
ϕ(n)(ξ) = ϕ′(ξ), n ≥ 2 and n is odd. (2.23)

Equation (2.22) has the following solution:

Φ(ξ) = aeξ +
σ

4aeξ
, (2.24)

where σ and a are constants.
Step 2. Substituting (2.21) into (2.2) along with (2.22) and its derivatives (2.23). This substitution
yields a polynomial of the form 1

Φ(ξ)

(
Φ′(ξ)
Φ(ξ)

)
. Once all of the terms in this polynomial are combined

and their values are set to zero, an overdetermined system of algebraic equations is produced. All of
the unknowns in this system can be found by solving it with Mathematica. Consequently, we have
analytical solutions for Eq (2.1).

3. Mathematical analysis

Our goal is to achieve analytic solutions in the following form for Eq (1.1):

ψ(x, t) = V(kx)ei(wt+θ), (3.1)

where θ represents the phase constant and w is the wave number. k is a constant. Inserting Eq (3.1)
into Eq (1.1) yields

αk2(p + 1)V p+1V ′′ + αk2 p(p + 1)V pV ′2 + k4V2m+n+r+2 + k5V2m+2n+r+2 + k3V2m+2n+2 + k2V2m+n+2

+k1V2m+2 + k2rVr+1V ′′ + k2(r − 1)rVrV ′2 − wV2 = 0. (3.2)
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Taking p = 2m + r and using the transformation

V = Q
1
n , (3.3)

Eq (3.2) becomes

n2Q2
(
−w + k1Q

2m
n + k2Q

2m+n
n + k3Q

2m+2n
n + k4Q

2m+n+r
n + k5Q

2m+2n+r
n

)
+k2r(r − 1)Q

r
n Q′2 + αk2(r + 2m)(r + 2m + 1)Q′2Q

2m+r
n + k2rQ

r
n
(
nQQ′′ + (1 − n)Q′2

)
αk2(2m + r + 1)Q

2m+r
n

(
nQQ′′ + (1 − n)Q′2

)
= 0. (3.4)

Setting n = r = 2m, Eq (3.4) becomes

2αmk2(1 + 4m)QQ′′ + αk2(1 + 2m)(1 + 4m)Q′2 + 4k5m2Q4 + 4m2(k3 + k4)Q3 + 4k2m2Q2

+4k1m2Q + 4k2m2Q′′ − 4m2w = 0. (3.5)

Balancing QQ′′ with Q4 in Eq (3.5) results in N = 1.

3.1. Application of the modified exp-function scheme

By applying the modified exponential method, the following form is the solution to Eq (3.5)

Q(x) = a0 + a1exp(−ϕ(x)) + a−1exp(ϕ(x)). (3.6)

Applying the steps discussed in Section 2.1, we get the next results:

a0 =
−αk3 − αk4 − 24αk3m2 − 24αk4m2 + 8k5m2 − 10αk3m − 10αk4m

4αk5
(
20m2 + 9m + 1

) , a−1 = 0,

w =
a0k2

(
a2

0λ2

(
αa0

(
8m2 + 6m + 1

)
− 8m2

)
+ a2

1λ1

(
αa0

(
8m2 + 6m + 1

)
− 4m2

))
4a2

1m2
,

λ2 = −
4a2

1k5m2

αk2 (
24m2 + 10m + 1

) , λ1 =
2a2

1k1m2 − 2a2
0k2λ2

(
αa0(3m + 1)(4m + 1) − 6m2

)
a2

1k2 (
αa0(3m + 1)(4m + 1) − 2m2) .

Afterwards, we have

ψ(x, t) =
{

a0 −

√
−

4a2
0k5

(
αa0

(
12m2 + 7m + 1

)
− 6m2) + αk1

(
24m2 + 10m + 1

)
2k5

(
αa0

(
12m2 + 7m + 1

)
− 2m2) ×

csch

√2x

√√
m2

(
4a2

0k5
(
αa0

(
12m2 + 7m + 1

)
− 6m2) + αk1

(
24m2 + 10m + 1

))
α
(
24m2 + 10m + 1

) (
αa0

(
12m2 + 7m + 1

)
− 2m2)


}1/n

ei(wt+θ),

(3.7)

ψ(x, t) =
{

a0 +

√
4a2

0k5
(
αa0

(
12m2 + 7m + 1

)
− 6m2) + αk1

(
24m2 + 10m + 1

)
2k5

(
αa0

(
12m2 + 7m + 1

)
− 2m2) ×
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sech

√2x

√√
m2

(
4a2

0k5
(
αa0

(
12m2 + 7m + 1

)
− 6m2) + αk1

(
24m2 + 10m + 1

))
α
(
24m2 + 10m + 1

) (
αa0

(
12m2 + 7m + 1

)
− 2m2)


}1/n

ei(wt+θ),

(3.8)

ψ(x, t) =
{

a0 +

√
4a2

0k5
(
αa0

(
12m2 + 7m + 1

)
− 6m2) + αk1

(
24m2 + 10m + 1

)
2k5

(
αa0

(
12m2 + 7m + 1

)
− 2m2) ×

csc

√2x

√√
−

m2
(
4a2

0k5
(
αa0

(
12m2 + 7m + 1

)
− 6m2) + αk1

(
24m2 + 10m + 1

))
α
(
24m2 + 10m + 1

) (
αa0

(
12m2 + 7m + 1

)
− 2m2)


}1/n

ei(wt+θ),

(3.9)

ψ(x, t) =
{

a0 +

√
4a2

0k5
(
αa0

(
12m2 + 7m + 1

)
− 6m2) + αk1

(
24m2 + 10m + 1

)
2k5

(
αa0

(
12m2 + 7m + 1

)
− 2m2) ×

sec

√2x

√√
−

m2
(
4a2

0k5
(
αa0

(
12m2 + 7m + 1

)
− 6m2) + αk1

(
24m2 + 10m + 1

))
α
(
24m2 + 10m + 1

) (
αa0

(
12m2 + 7m + 1

)
− 2m2)


}1/n

ei(wt+θ).

(3.10)

A singular solitary is provided by Eq (3.7), while a bright solitary is provided by Eq (3.8).
Equations (3.9) and (3.10) represent singular periodic solutions.

Substituting by the auxiliary equation of (2.5) instead of Eq (2.4), we obtain the next results for
Eq (1.1).

Result (1):

a0 = a−1 = 0, λ1 = −
k1

2k2λ2
, a1 =

√
2kλ2

√
−k3 − k4

, w =
αa2

1k2λ2
1

(
8m2 + 6m + 1

)
4m2 ,

k5 = −
αk2λ2

2

(
24m2 + 10m + 1

)
4a2

1m2
, k2 = −

αk2λ1λ2(4m + 1)2

2m2 .

The following solutions are then provided

ψ(x, t) =
{ √k1 tanh

(√
k1
2 x

)
√
−k3 − k4

}1/n

ei(wt+θ), k1 > 0, k3 + k4 < 0, (3.11)

ψ(x, t) =
{ √k1 coth

(√
k1
2 x

)
√
−k3 − k4

}1/n

ei(wt+θ), k1 > 0, k3 + k4 < 0, (3.12)

ψ(x, t) =
{ √−k1 tan

(√
−

k1
2 x

)
√
−k3 − k4

}1/n

ei(wt+θ), k1 < 0, k3 + k4 < 0, (3.13)
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ψ(x, t) =
{
−

√
−k1 cot

(√
−

k1
2 x

)
√
−k3 − k4

}1/n

ei(wt+θ), k1 < 0, k3 + k4 < 0. (3.14)

The dark soliton is provided by Eq (3.11), whereas the singular soliton is provided by Eq (3.12).
Equations (3.13) and (3.14) represent singular periodic solutions.

Result (2):

a0 = 0, a−1 = −
a1λ1

λ2
, λ1 = −

k1

8k2λ2
, a1 =

√
2kλ2

√
−k3 − k4

, w =
4αa2

1k2λ2
1

(
8m2 + 6m + 1

)
m2 ,

k5 = −
αk2λ2

2

(
24m2 + 10m + 1

)
4a2

1m2
, k2 = −

2αk2λ1λ2(4m + 1)2

m2 .

Afterwards, we have

ψ(x, t) =
{ √k1 tanh

( √
k1 x

2
√

2

) (
coth2

( √
k1 x

2
√

2

)
+ 1

)
2
√
−k3 − k4

}1/n

ei(wt+θ), k1 > 0, k3 + k4 < 0, (3.15)

ψ(x, t) =
{ √
−k1 csc

( √
−k1 x
√

2

)
√
−k3 − k4

}1/n

ei(wt+θ), k1 < 0, k3 + k4 < 0. (3.16)

A singular solitary is provided by Eq (3.15) while a singular periodic solution is provided by
Eq (3.16).

3.2. Application of GPRM

By applying GPRM, solution of Eq (3.5) is represented as:

Q(x) = s0 + s1ϕ(x) + β1φ(x). (3.17)

Applying Step-2 of the proposed method, we get the following results:
Case (1). When τ = −1 and ϵ = −1

s0 = 0, w =
αβ6

1

(
δ2 − 1

)2
k2

(
8m2 + 6m + 1

)
16m2s4

1

, β1 =
k

√
2
√
− (k3 + k4)

, s1 =

√
α
√

1 − δ2k2(4m + 1)√
16k2k3m2 + 16k2k4m2

,

σ =
2k1

k2 , k5 = −
αk2

(
24m2 + 10m + 1

)
16β2

1m2
.

Afterwards, we have

ψ(x, t) =
{ √α√δ2 − 1k1(4m + 1)sech

(√
2
√

k1x
)
+ 2
√

k1
√

k2m tanh
(√

2
√

k1x
)

2
√

k2
√
−k3 − k4

(
δm sech

(√
2
√

k1x
)
+ m

) }1/n

ei(wt+θ),

k1 > 0, k3 + k4 < 0, k2 > 0, α(δ2 − 1) > 0.
(3.18)
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Case (2). When τ = 1 and ϵ = −1

s0 = 0, w =
αβ6

1

(
δ2 + 1

)2
k2

(
8m2 + 6m + 1

)
16m2s4

1

, s1 =

√
α
√
−δ2 − 1k2(4m + 1)√

16k2k3m2 + 16k2k4m2
, β1 =

k
√

2
√
−k3 − k4

,

σ =
2k1

k2 , k5 = −
αk2

(
24m2 + 10m + 1

)
16β2

1m2
.

Afterwards, we have

ψ(x, t) =
{ √α√δ2 + 1k1(4m + 1)csch

(√
2
√

k1x
)
+ 2
√

k1
√

k2m coth
(√

2
√

k1x
)

2
√

k2
√
−k3 − k4

(
δm csch

(√
2
√

k1x
)
+ m

) }1/n

ei(wt+θ),

k1 > 0, k3 + k4 < 0, k2 > 0, α > 0. (3.19)

Case (3). When τ = −1 and ϵ = 1

s0 = 0, w =
αβ6

1

(
δ2 − 1

)2
k2

(
8m2 + 6m + 1

)
16m2s4

1

, s1 =

√
α
√

1 − δ2k2(4m + 1)√
16k2k3m2 + 16k2k4m2

, β1 =
k

√
2
√
−k3 − k4

,

σ = −
2k1

k2 , k5 = −
αk2

(
24m2 + 10m + 1

)
16β2

1m2
.

Afterwards, we have

ψ(x, t) =
{ √

α
√
δ2 − 1k1(−4m − 1) + 2

√
−k1
√

k2m sin
(√

2
√
−k1x

)
2
√

k2
√
−k3 − k4m

(
δ + cos

(√
2
√
−k1x

)) }1/n

ei(wt+θ),

k1 < 0, k3 + k4 < 0, k2 > 0, α(δ2 − 1) > 0.
(3.20)

Case (4). When τ = 1 and ϵ = 1

s0 = 0, w =
αβ6

1

(
δ2 + 1

)2
k2

(
8m2 + 6m + 1

)
16m2s4

1

, s1 =

√
α
√
−δ2 − 1k2(4m + 1)√

16k2k3m2 + 16k2k4m2
, β1 =

k
√

2
√
−k3 − k4

,

σ = −
2k1

k2 , k5 = −
αk2

(
24m2 + 10m + 1

)
16β2

1m2
.

Afterwards, we have

ψ(x, t) =
{
−
√
α
√
δ2 + 1k1(4m + 1) − 2

√
−k1
√

k2m cos
(√

2
√
−k1x

)
2
√

k2
√
−k3 − k4m

(
δ + sin

(√
2
√
−k1x

)) }1/n

ei(wt+θ),

k1 < 0, k3 + k4 < 0, k2 > 0, α > 0.
(3.21)
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3.3. Application of the new generalized method

By applying the new generalized method, the following form is the solution to Eq (3.5)

Q(x) = α0 +
β1ϕ

′(x) + α1

ϕ(x)
, (3.22)

Applying Step-2 of the proposed method, We obtain the findings listed below:
Result (1):

α0 =
m2

(
2k2σ − α2

1k3 − α
2
1k4

)
αk2 (

20m2 + 9m + 1
)
σ
, β1 = 0, α1 =

√
αk
√

24m2 + 10m + 1
√
σ

2
√

k5m
,

w =
α0k2

(
α2

0σ
(
8m2 − αα0

(
8m2 + 6m + 1

))
+ α2

1

(
αα0

(
8m2 + 6m + 1

)
− 4m2

))
4α2

1m2
,

k2 =
k2

(
−24α0m2σ + 6αα2

0(4m + 1)2σ − αα2
1(4m + 1)2

)
4α2

1m2
,

k1 =
k2

(
−2αα3

0

(
12m2 + 7m + 1

)
σ + 12α2

0m2σ + αα2
1α0

(
12m2 + 7m + 1

)
− 2α2

1m2
)

2α2
1m2

.

Then, we have the following solutions

ψ(x, t) =
{

1
4

8a
√
αk
√

24m2 + 10m + 1
√
σ ex

√
k5

(
4a2me2x + mσ

) −
(k3 + k4) (6m + 1)

k5(5m + 1)
+

8m2

α + 20αm2 + 9αm

 }1/n

ei(wt+θ).

(3.23)

When σ = ±4a2, Eq (3.23) gives a bright soliton solution

ψ(x, t) =
{

1
4

(
2
√
αk
√

(4m + 1)(6m + 1) sech(x)
√

k5m
−

(k3 + k4) (6m + 1)
k5(5m + 1)

+
8m2

α + 20αm2 + 9αm

) }1/n

ei(wt+θ),

(3.24)

and a singular soliton solution

ψ(x, t) =
{

1
4

(
2
√
−αk
√

(4m + 1)(6m + 1)csch(x)
√

k5m
−

(k3 + k4) (6m + 1)
k5(5m + 1)

+
8m2

α + 20αm2 + 9αm

) }1/n

ei(wt+θ).

(3.25)

Result (2):

α0 =
m2

(
2k2 + β2

1k3 + β
2
1k4

)
αk2 (

20m2 + 9m + 1
) , α1 = 0, β1 =

√
−αk
√

24m2 + 10m + 1
2
√

k5m
,

w =
k2

(
β2

1 − α
2
0

) (
αβ2

1

(
8m2 + 6m + 1

)
+ 8α0m2 − αα2

0

(
8m2 + 6m + 1

))
4β2

1m2
,
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k2 =
k2

(
12α0m2 + αβ2

1(4m + 1)2 − 3αα2
0(4m + 1)2

)
2β2

1m2
,

k1 =
k2

(
−αα0β

2
1

(
12m2 + 7m + 1

)
+ αα3

0

(
12m2 + 7m + 1

)
− 6α2

0m2 + 2β2
1m2

)
β2

1m2
.

Afterwards, we have

ψ(x, t) =
{ √
−αk
√

24m2 + 10m + 1
(
aex − σe−x

4a

)
2
√

k5m
(
σe−x

4a + aex
) +

2m2

α
(
20m2 + 9m + 1

)}1/n

ei(wt+θ). (3.26)

When σ = ±4a2, Eq (3.26) gives a dark soliton solution

ψ(x, t) =
{

1
4

(
2
√
−αk
√

(4m + 1)(6m + 1) tanh(x)
√

k5m
−

(k3 + k4) (6m + 1)
k5(5m + 1)

+
8m2

α + 20αm2 + 9αm

) }1/n

ei(wt+θ),

(3.27)

and a singular soliton solution

ψ(x, t) =
{

1
4

(
2
√
−αk
√

(4m + 1)(6m + 1) coth(x)
√

k5m
−

(k3 + k4) (6m + 1)
k5(5m + 1)

+
8m2

α + 20αm2 + 9αm

) }1/n

ei(wt+θ).

(3.28)

4. Graphical illustrations

The nature of some extracted solutions is demonstrated by the presentation of graphic simulations.
A bright solitary solution of Eq (3.24) with m = n = 1, k = k3 = k4 = α = −2, k5 = −0.36 is shown in
Figure 1. A dark solitary solution of Eq (3.27) with n = m = 1, k = k3 = α = −2, k4 = 2, k5 = 0.56
is graphically illustrated in Figure 2. The extracted solutions demonstrate a certain balance between
dispersion and nonlinearity for the investigated model. This results in solitons that have the advantage
of being highly stable, as they can travel very long distances while still maintaining their velocity
and shape. Figure 3 depicts the graphical illustration of a singular solitary solution of Eq (3.28) with
n = m = 1, k = k3 = α = −2, k4 = 1.75, k5 = 2. This solution represents a rare phenomenon
in nonlinear physics, characterized by a point of singularity or divergence in intensity. It captures
the abrupt change at the point, offering insight into the interplay of nonlinearity and dispersion in
forming exotic solitary waves. Figure 4 depicts the graphical illustration of a singular periodic solution
of Eq (3.16) with k1 = k3 = k4 = −2. This solution displays a periodically repeating wave with a
point of singularity, showing valuable insights into the behavior of nonlinear systems with recurring
singularities.
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Figure 1. Graphical representation of Eq (3.24) using n = m = 1, k = k3 = k4 = α =

−2, k5 = −0.36.
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Figure 2. Graphical representation of Eq (3.27) using n = m = 1, k = k3 = α = −2, k4 =

2, k5 = 0.56.
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Figure 3. Graphical representation of Eq (3.28) using n = m = 1, k = k3 = α = −2, k4 =

1.75, k5 = 2.
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Figure 4. Graphical representation of Eq (3.16) using k1 = k3 = k4 = −2.

5. Conclusions

The generalized NLSE, which simulates wave transmission via optical fibers, was examined in this
work. This model incorporates a quintuple power-law of non-linearity and nonlinear chromatic
dispersion. Three integration techniques are implemented to conduct this study. These techniques are
the modified exp-function method, the general projective Riccati method, and the new generalized
method. Different solutions are derived for the studied model, including singular solitons, bright
solitons, dark solitons, and singular periodic solutions. These findings may be useful for optical
communication and for a deeper comprehension of many phenomena that arise in various physical
systems that are governed by the current model.
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