Research article Special Issues

Solitary wave solutions to Gardner equation using improved tan(Ω(Υ)2)-expansion method

  • In this study, the improved tan(Ω(Υ)2)-expansion method is used to construct a variety of precise soliton and other solitary wave solutions of the Gardner equation. Gardner equation is extensively utilized in plasma physics, quantum field theory, solid-state physics and fluid dynamics. It is the simplest model for the description of water waves with dual power law nonlinearity. Hyperbolic, exponential, rational and trigonometric traveling wave solutions are obtained. The retrieved solutions include kink solitons, bright solitons, dark-bright solitons and periodic wave solutions. The efficacy of this method is determined by the comparison of the newly obtained results with already reported results.

    Citation: Ghazala Akram, Maasoomah Sadaf, Mirfa Dawood, Muhammad Abbas, Dumitru Baleanu. Solitary wave solutions to Gardner equation using improved tan(Ω(Υ)2)-expansion method[J]. AIMS Mathematics, 2023, 8(2): 4390-4406. doi: 10.3934/math.2023219

    Related Papers:

    [1] Ghazala Akram, Saima Arshed, Maasoomah Sadaf, Hajra Mariyam, Muhammad Nauman Aslam, Riaz Ahmad, Ilyas Khan, Jawaher Alzahrani . Abundant solitary wave solutions of Gardner's equation using three effective integration techniques. AIMS Mathematics, 2023, 8(4): 8171-8184. doi: 10.3934/math.2023413
    [2] Harivan R. Nabi, Hajar F. Ismael, Nehad Ali Shah, Wajaree Weera . W-shaped soliton solutions to the modified Zakharov-Kuznetsov equation of ion-acoustic waves in (3+1)-dimensions arise in a magnetized plasma. AIMS Mathematics, 2023, 8(2): 4467-4486. doi: 10.3934/math.2023222
    [3] Jalil Manafian, Onur Alp Ilhan, Sizar Abid Mohammed . Forming localized waves of the nonlinearity of the DNA dynamics arising in oscillator-chain of Peyrard-Bishop model. AIMS Mathematics, 2020, 5(3): 2461-2483. doi: 10.3934/math.2020163
    [4] Junjie Li, Gurpreet Singh, Onur Alp İlhan, Jalil Manafian, Yusif S. Gasimov . Modulational instability, multiple Exp-function method, SIVP, solitary and cross-kink solutions for the generalized KP equation. AIMS Mathematics, 2021, 6(7): 7555-7584. doi: 10.3934/math.2021441
    [5] Guowei Zhang, Jianming Qi, Qinghao Zhu . On the study of solutions of Bogoyavlenskii equation via improved $ G'/G^2 $ method and simplified $ \tan(\phi(\xi)/2) $ method. AIMS Mathematics, 2022, 7(11): 19649-19663. doi: 10.3934/math.20221078
    [6] Ayyaz Ali, Zafar Ullah, Irfan Waheed, Moin-ud-Din Junjua, Muhammad Mohsen Saleem, Gulnaz Atta, Maimoona Karim, Ather Qayyum . New exact solitary wave solutions for fractional model. AIMS Mathematics, 2022, 7(10): 18587-18602. doi: 10.3934/math.20221022
    [7] Yunmei Zhao, Yinghui He, Huizhang Yang . The two variable (φ/φ, 1/φ)-expansion method for solving the time-fractional partial differential equations. AIMS Mathematics, 2020, 5(5): 4121-4135. doi: 10.3934/math.2020264
    [8] Chun Huang, Zhao Li . Soliton solutions of conformable time-fractional perturbed Radhakrishnan-Kundu-Lakshmanan equation. AIMS Mathematics, 2022, 7(8): 14460-14473. doi: 10.3934/math.2022797
    [9] Imran Siddique, Khush Bukht Mehdi, Sayed M Eldin, Asim Zafar . Diverse optical solitons solutions of the fractional complex Ginzburg-Landau equation via two altered methods. AIMS Mathematics, 2023, 8(5): 11480-11497. doi: 10.3934/math.2023581
    [10] Hammad Alotaibi . Solitary waves of the generalized Zakharov equations via integration algorithms. AIMS Mathematics, 2024, 9(5): 12650-12677. doi: 10.3934/math.2024619
  • In this study, the improved tan(Ω(Υ)2)-expansion method is used to construct a variety of precise soliton and other solitary wave solutions of the Gardner equation. Gardner equation is extensively utilized in plasma physics, quantum field theory, solid-state physics and fluid dynamics. It is the simplest model for the description of water waves with dual power law nonlinearity. Hyperbolic, exponential, rational and trigonometric traveling wave solutions are obtained. The retrieved solutions include kink solitons, bright solitons, dark-bright solitons and periodic wave solutions. The efficacy of this method is determined by the comparison of the newly obtained results with already reported results.



    Differential equations are very useful in many fields of science, including applied sciences and mathematical physics. Partial differential equations (PDEs) are widely employed in engineering to understand the behavior of physical systems through mathematical models. Many efficient approaches for identifying the solutions of nonlinear PDEs have been developed in recent years, such as: Hirotäs bilinear method [1], exp(Φ(ξ))-expansion method [2,3], generalized exponential rational function method [4], auxiliary equation method [5], first integral method [6], homotopy analysis method [7,8], tanh-method [9], transformed rational function method [10], residual power series method [11,12], extended direct algebraic method [13] and many other powerful mathematical techniques. Nonlinear PDEs are studied extensively because they help to understand the propagation of waves in many areas of mathematical physics, fluid mechanics and electromagnetic theory [14,15]. In addition, soliton solutions also have an effective contribution in fields of engineering and nonlinear optics [2,16,18,19,20,21].

    The traveling wave solutions of nonlinear PDEs equation are essential to explore and interpret various real life physical phenomena. The significance of the traveling wave solutions of nonlinear evolution equations has motivated many researches to investigate exact traveling wave solutions using effective and reliable mathematical techniques. The traveling wave solutions include solitary and other kinds of wave solutions. In particular, solitons are of great significance due to their useful applications in various areas of science and engineering [22,23].

    This study aims to investigate soliton and other traveling wave solutions of Gardner equation, which is an integrable nonlinear partial differential. The Gardner equation was originally proposed by Clifford Gardner in 1968 [24]. This equation is frequently referred to as combined Korteweg-de Vries-modified Korteweg-de Vries (KdV-mKdV) equation since it can be generalized to Korteweg-de Vries (KdV) equation. Gardner's equation has a wide range of applications in research, including quantum field theory and hydrodynamics [25,26,27].

    In this work, solitary wave solutions of Gardner equation (GE) are retrieved by utilizing the improved tan(Ω(Υ)2)-expansion method. This technique is a recently developed direct technique which provides a variety of traveling wave solutions for a wide class of nonlinear evolution equations [28,29,30,31].

    A soliton is an autonomous wave that diffuses while maintaining its shape and velocity. The nonlinear integrable KdV equation can be written, as

    rt+lrrx+mrxxx=0, (1.1)

    where r(x,t) in Eq (1.1) is the appropriate field variable and l, m are real constants, also x is representing the spatial variable and t is indicating the temporal variable. The solitary waves are generated due to nonlinear term rrx and the linear dispersion rxxx. The Gardener equation with constant coefficients [32,33] is considered in the form

    rt6(r+δ2r2)rx+rxxx=0, (1.2)

    where δ is a nonzero constant. Eq (1.2) is also called the combined KdV-mKdV equation. A higher order nonlinear term was added to the Eq (1.1) to generate the Gardner equation. Like KdV equation, Equation(1.2) is also an integrable equation.

    Step 2.1. The nonlinear partial differential equation (NLPDE) for r(x,t) is considered in the form

    Ω(r,rt,rx,rtt,rxt,rxx,)=0. (2.1)

    By the aid of transformation Υ=κ(xϖt), Eq (2.1) can be converted into an ordinary differential equation, as

    Γ(r,r,ϖr,r,ϖ2r)=0, (2.2)

    where ϖ is to be evaluated later and Υ is a wave variable.

    Step 2.2. The solitary wave solution of Eq (2.2) is supposed, as

    R(Υ)=P(Φ)=pj=0Gj[q+tan(Ω(Υ)2)]j+pj=1Hj[q+tan(Ω(Υ)2)]j, (2.3)

    where Gj(0jp) and Hj(1jp) are constants to be determined later. Also, Gp0,Hp0 and Ω=Ω(Υ) satisfy the ordinary differential equation (ODE),

    Ω(Υ)=q0sin(Ω(Υ))+q1cos(Ω(Υ))+q2. (2.4)

    Following are the special wave solutions for Eq (2.4).

    Family 2.1. For q20+q21q22<0 and q1q20,

    Ω(Υ)=2arctan[q0q1q2q22q21q20q1q2tan(q22q21q202(Υ+K))].

    Family 2.2. For q20+q21q22>0 and q1q20,

    Ω(Υ)=2arctan[q0q1q2q21+q20q22q1q2tanh(q21+q20q222(Υ+K))].

    Family 2.3. For q20+q21q22>0, q10 and q2=0,

    Ω(Υ)=2arctan[q0q1q21+q20q1tanh(q21+q202(Υ+K))].

    Family 2.4. For q20+q21q22<0, q20 and q1=0,

    Ω(Υ)=2arctan[q0q2+q22q20q2tan(q22q202(Υ+K))].

    Family 2.5. For q20+q21q22>0, q1q20 and q0=0,

    Ω(Υ)=2arctan[q1+q2q1q2tanh(q21q222(Υ+K))].

    Family 2.6. For q0=0 and q2=0,

    Ω(Υ)=arctan[e2q1(Υ+K)1e2q1(Υ+K)+1,2eq1(Υ+K)e2q1(Υ+K)+1].

    Family 2.7. For q1=0 and q2=0,

    Ω(Υ)=arctan[2eq0(Υ+K)e2q0(Υ+K)+1,e2q0(Υ+K)1e2q0(Υ+K)+1].

    Family 2.8. For q20+q21=q22,

    Ω(Υ)=2arctan[(q1+q2)(q0(Υ+K)+2)q20(Υ+K)].

    Family 2.9. For q0=q1=q2=il0,

    Ω(Υ)=2arctan[eil0(Υ+K)1].

    Family 2.10. For q0=q2=il0 and q1=il0,

    Ω(Υ)=2arctan[eil0(Υ+K)1+eil0(Υ+K)].

    Family 2.11. For q2=q0,

    Ω(Υ)=2arctan[(q0+q1)eq1(Υ+K)1(q0q1)eq1(Υ+K)1].

    Family 2.12. For q0=q2,

    Ω(Υ)=2arctan[(q1+q2)eq1(Υ+K)+1(q1q2)eq1(Υ+K)1].

    Family 2.13. For q2=q0,

    Ω(Υ)=2arctan[eq1(Υ+K)+q1q0eq1(Υ+K)q1q0].

    Family 2.14. For q1=q2,

    Ω(Υ)=2arctan[q0eq0(Υ+K)q2eq0(Υ+K)].

    Family 2.15. For q1=0, q0=q2,

    Ω(Υ)=2arctan[q2(Υ+K)+2q2(Υ+K)].

    Family 2.16. For q0=0 and q1=q2,

    Ω(Υ)=2arctan[q2(Υ+K)].

    Family 2.17. For q0=0, q1=q2,

    Ω(Υ)=2arctan[1q2(Υ+K)].

    Family 2.18. For q0=0 and q1=0,

    Ω(Υ)=q2Υ+K,

    where q0,q1, q2 and G0,Gj,Hj(j=1,2,....p) are to be evaluated. Homogeneous balance principle is used to find the value of p by considering highest order derivatives and highest non-linear terms occurring in Eq (2.2). If p is not an integer, then suitable transformation is implemented.

    Step 2.3. Once the value of p is obtained, Eq (2.3) is substituted into Eq (2.2). By gathering the coefficients of tan(Ω(Υ)2)j, cot(Ω(Υ)2)j (j=0,1,2,...) and setting each coefficient equal to zero, a set of algebraic equations for G0,Gj,Hj(j=1,2,...p), q0,q1,q2 and q can be obtained.

    Step 2.4. The set of over determined equations are solved and the values of G0,G1,H1,...,Gp,Hp,ϖ and q are substituted in Eq (2.3).

    Consider the integrable nonlinear Gardner equation given by Eq (1.2). Substituting the wave transformation,

    r(x,t)=R(Υ),Υ=κ(xϖt), (3.1)

    into Eq (1.2) yields an ordinary differential equation, as

    ϖR+3R2+2δ2R3κ2R=0. (3.2)

    Implementing the homogeneous balance principle the value of positive integer is obtained, as p=1. The trial solution becomes

    R(Υ)=G0+G1[q+tan(Ω(Υ)2)]+H1[q+tan(Ω(Υ)2)]1. (3.3)

    Substituting Eq (3.3) and Eq (2.4) into Eq (3.2), the following set of algebraic equations can be derived for q0,q1,q2,κ,ϖ, G0,G1 and H1 by collecting the terms with the same order of tan(Ω(Υ)2) and setting every coefficient of all the polynomials equal to zero.

    (tan(Ω(Υ)2))0=4δ2H13κ2H1q122κ2H1q1q2κ2H1q22,(tan(Ω(Υ)2))1=12δ2G0H123κ2H1q0l13κ2H1q0q2+6H12,(tan(Ω(Υ)2))2=12δ2G02H1+12δ2G1H122κ2H1q02+κ2H1q12κ2H1q22+2ϖH1+12G0H1,(tan(Ω(Υ)2))3=4δ2G03+24δ2G0G1H1κ2G1q0q1κ2G1q0q2+κ2H1q0q1κ2H1q0q2+2ϖG0+6G02+12G1H1,(tan(Ω(Υ)2))4=12δ2G02G1+12δ2G12H12κ2G1q02+κ2G1q12κ2G1q22+2ϖG1+12G0G1,(tan(Ω(Υ)2))5=12δ2G0G12+3κ2G1q0l13κ2G1q0q2+6G12,(tan(Ω(Υ)2))6=4δ2G13κ2G1q12+2κ2G1q1q2κ2G1q22.

    Following are the solutions obtained by solving the system of algebraic equation.

    Set 3.1. κ=κ,ϖ=1δ2,G0=12δ2,G1=±142q1κδ4δ2κ2q121δ2,H1=±142q1κδ+4δ2κ2q121δ2,q0=0,q1=q1,q2=124δ2κ2q121δκ,

    R(Υ)=G0+G1[tan(Ω(Υ)2)]+H1[tan(Ω(Υ)2)]1, (3.4)

    where q0, q1, q2 are arbitrary constants.

    Using Eq (3.4) and Families 2.2, 2.5 and 2.18 respectively, yields the following solutions:

    R1(Υ)=12δ2±142q1κδ4δ2κ2q121δ2[q0q1q2+q21+q20q22q1q2tanh(q21+q20q222(Υ+K))]±142q1κδ+4δ2κ2q121δ2[q0q1q2+q21+q20q22q1q2tanh(q21+q20q222(Υ+K))]1, (3.5)
    R2(Υ)=12δ2±142q1κδ4δ2κ2q121δ2[q1+q2q1q2tanh(q21q222(Υ+K))]±142q1κδ+4δ2κ2q121δ2[q1+q2q1q2tanh(q21q222(Υ+K))]1, (3.6)
    R3(Υ)=12δ2±142q1κδ4δ2κ2q121δ2[tan(12arctan[Υq2+K])]±142q1κδ+4δ2κ2q121δ2[tan(12arctan[Υq2+K])]1. (3.7)

    Set 3.2. κ=κ,ϖ=1δ2,G0=121+1+(q12+q22)δ2κ2δ2,G1=0,H1=12κ(q1+q2)δ, q0=1+(q12+q22)δ2κ2κδ,q1=q1,q2=q2,

    R(Υ)=G0+H1[tan(Ω(Υ)2)]1, (3.8)

    where q0, q1, q2 are arbitrary constants.

    The following solutions are determined by using Eq (3.8) and Families 2.2, 2.3, 2.6, 2.7 and 2.11–2.14, respectively.

    R4(Υ)=121+1+(q12+q22)δ2κ2δ212κ(q1+q2)δ[q0q1q2+q21+q20q22q1q2tanh(q21+q20q222(Υ+K))]1, (3.9)
    R5(Υ)=121+1+(q12+q22)δ2κ2δ212κ(q1+q2)δ[q0q1+q21+q20q1tanh(q21+q202(Υ+K))]1, (3.10)
    R6(Υ)=121+1+(q12+q22)δ2κ2δ212κ(q1+q2)δ[tan12(arctan[e2q1(Υ+K)1e2q1(Υ+K)+1,2eq1(Υ+K)e2q1(Υ+K)+1])]1, (3.11)
    R7(Υ)=121+1+(q12+q22)δ2κ2δ212κ(q1+q2)δ[tan(12arctan[2eq0(Υ+K)e2q0(Υ+K)+1,e2q0(Υ+K)1e2q0(Υ+K)+1])]1, (3.12)
    R8(Υ)=121+1+(q12+q22)δ2κ2δ212κ(q1+q2)δ[(q0+q1)eq1(Υ+K)1(q0q1)eq1(Υ+K)1]1, (3.13)
    R9(Υ)=121+1+(q12+q22)δ2κ2δ212κ(q1+q2)δ[(q1+q2)eq1(Υ+K)+1(q1q2)eq1(Υ+K)1]1, (3.14)
    R10(Υ)=121+1+(q12+q22)δ2κ2δ212κ(q1+q2)δ[eq1(Υ+K)+q1q0eq1(Υ+K)q1q0]1, (3.15)
    R11(Υ)=121+1+(q12+q22)δ2κ2δ212κ(q1+q2)δ[q0eq0(Υ+K)q2eq0(Υ+K)1]1. (3.16)

    Set 3.3. κ=κ,ϖ=1δ2,G0=121+1+(q12+q22)δ2κ2δ2,G1=12κ(q1q2)δ,H1=0, q0=1+(q12+q22)δ2κ2κδ,q1=q1,q2=q2,

    R(Υ)=G0+G1[tan(Ω(Υ)2)], (3.17)

    where q0, q1, q2 are arbitrary constants.

    Using Eq (3.17) and Families 2.2, 2.3, 2.6, 2.7, 2.11–2.14, respectively, yields the following solution:

    R12(Υ)=121+1+(q12+q22)δ2κ2δ212κ(q1q2)δ[q0q1q2+q21+q20q22q1q2tanh(q21+q20q222(Υ+K))], (3.18)
    R13(Υ)=121+1+(q12+q22)δ2κ2δ212κ(q1q2)δ[q0q1+q21+q20q1tanh(q21+q202(Υ+K))], (3.19)
    R14(Υ)=121+1+(q12+q22)δ2κ2δ212κ(q1q2)δ[tan12(arctan[e2q1(Υ+K)1e2q1(Υ+K)+1,2eq1(Υ+K)e2q1(Υ+K)+1])], (3.20)
    R15(Υ)=121+1+(q12+q22)δ2κ2δ212κ(q1q2)δ[tan(12arctan[2eq0(Υ+K)e2q0(Υ+K)+1,e2q0(Υ+K)1e2q0(Υ+K)+1])], (3.21)
    R16(Υ)=121+1+(q12+q22)δ2κ2δ212κ(q1q2)δ[(q0+q1)eq1(Υ+K)1(q0q1)eq1(Υ+K)1], (3.22)
    R17(Υ)=121+1+(q12+q22)δ2κ2δ212κ(q1q2)δ[(q1+q2)eq1(Υ+K)+1(q1q2)eq1(Υ+K)1], (3.23)
    R18(Υ)=121+1+(q12+q22)δ2κ2δ212κ(q1q2)δ[eq1(Υ+K)+q1q0eq1(Υ+K)q1q0], (3.24)
    R19(Υ)=121+1+(q12+q22)δ2κ2δ212κ(q1q2)δ[q0eq0(Υ+K)q2eq0(Υ+K)1]. (3.25)

    Set 3.4. κ=κ,ϖ=1+(q12q22)κ2δ2δ2,G0=1δ2,G1=12κ(q1q2)δ,H1=12κ(q1+q2)δ,q0=1κδ,q1=q1,q2=q2,

    R(Υ)=G0+G1[tan(Ω(Υ)2)]+H1[tan(Ω(Υ)2)]1, (3.26)

    where q0, q1, q2 are arbitrary constants.

    Using Eq (3.26) and Families 2.1–2.4, 2.8–2.10, 2.13–2.15, respectively, gives the following solutions:

    R20(Υ)=1δ212κ(q1q2)δ[q0q1q2q02q12+q22q1q2tan(q02q12+q222(Υ+K))]12κ(q1+q2)δ[q0q1q2q02q12+q22q1q2tan(q02q12+q222(Υ+K))]1, (3.27)
    R21(Υ)=1δ212κ(q1q2)δ[q0q1q2+q21+q20q22q1q2tanh(q21+q20q222(Υ+K))]12κ(q1+q2)δ[q0q1q2+q21+q20q22q1q2tanh(q21+q20q222(Υ+K))]1, (3.28)
    R22(Υ)=1δ212κ(q1q2)δ[q0q1+q21+q20q1tanh(q21+q202(Υ+K))]12κ(q1+q2)δ[q0q1+q21+q20q1tanh(q21+q202(Υ+K))]1, (3.29)
    R23(Υ)=1δ212κ(q1q2)δ[q0q2+q22q20q2tan(q22q202(Υ+K))]12κ(q1+q2)δ[q0q2+q22q20q2tan(q22q202(Υ+K))]1, (3.30)
    R24(Υ)=1δ212κ(q1q2)δ[(q1+q2)(q0(Υ+K)+2)q20(Υ+K)]12κ(q1+q2)δ[(q1+q2)(q0(Υ+K)+2)q20(Υ+K)]1, (3.31)
    R25(Υ)=1δ212κ(q1q2)δ[eϑq0(Υ+K)1]12κ(q1+q2)δ[eϑq0(Υ+K)1]1, (3.32)
    R26(Υ)=1δ212κ(q1q2)δ[eϑq0(Υ+K)1+eϑq0(Υ+K)]12κ(q1+q2)δ[eϑq0(Υ+K)1+eϑq0(Υ+K)]1, (3.33)
    R27(Υ)=1δ212κ(q1q2)δ[eq1(Υ+K)+q1q0eq1(Υ+K)q1q0]12κ(q1+q2)δ[eq1(Υ+K)+q1q0eq1(Υ+K)q1q0]1, (3.34)
    R28(Υ)=1δ212κ(q1q2)δ[q0eq0(Υ+K)q2eq0(Υ+K)1]12κ(q1+q2)δ[q0eq0(Υ+K)q2eq0(Υ+K)1]1, (3.35)
    R29(Υ)=1δ212κ(q1q2)δ[q2(Υ+K)+2q2(Υ+K)]12κ(q1+q2)δ[q2(Υ+K)+2q2(Υ+K)]1. (3.36)

    Set 3.5. κ=κ,ϖ=2(1+(q12q22)κ2δ2)(12+(q12q22)κ2δ2)δ2,G0=q12κ2q22κ2,G1=12κ(q1q2)δ,H1=12κ(q1+q2)δ,q0=1+(2q122q22)δ2κ2κδ,q1=q1,q2=q2,

    R(Υ)=G0+G1[tan(Ω(Υ)2)]+H1[tan(Ω(Υ)2)]1, (3.37)

    where q0, q1, q2 are arbitrary constants.

    Using Eq (3.37) and Families 2.1–2.3, 2.9, 2.10, 2.13 and 2.14, respectively, yields the following solutions:

    R30(Υ)=q12κ2q22κ212κ(q1q2)δ[q0q1q2q02q12+q22q1q2tan(q02q12+q222(Υ+K))]12κ(q1+q2)δ[q0q1q2q02q12+q22q1q2tan(q02q12+q222(Υ+K))]1, (3.38)
    R31(Υ)=q12κ2q22κ212κ(q1q2)δ[q0q1q2+q21+q20q22q1q2tanh(q21+q20q222(Υ+K))]12κ(q1+q2)δ[q0q1q2+q21+q20q22q1q2tanh(q21+q20q222(Υ+K))]1, (3.39)
    R32(Υ)=q12κ2q22κ212κ(q1q2)δ[q0q1+q21+q20q1tanh(q21+q202(Υ+K))]12κ(q1+q2)δ[q0q1+q21+q20q1tanh(q21+q202(Υ+K))]1, (3.40)
    R33(Υ)=q12κ2q22κ212κ(q1q2)δ[eϑq0(Υ+K)1]12κ(q1+q2)δ[eϑq0(Υ+K)1]1, (3.41)
    R34(Υ)=q12κ2q22κ212κ(q1q2)δ[eϑq0(Υ+K)1+eϑq0(Υ+K)]12κ(q1+q2)δ[eϑq0(Υ+K)1+eϑq0(Υ+K)]1, (3.42)
    R35(Υ)=q12κ2q22κ212κ(q1q2)δ[eq1(Υ+K)+q1q0eq1(Υ+K)q1q0]12κ(q1+q2)δ[eq1(Υ+K)+q1q0eq1(Υ+K)q1q0]1, (3.43)
    R36(Υ)=q12κ2q22κ212κ(q1q2)δ[q0eq0(Υ+K)q2eq0(Υ+K)1]12κ(q1+q2)δ[q0eq0(Υ+K)q2eq0(Υ+K)1]1, (3.44)

    where Υ=κ(xϖt).

    Some of the obtained soliton solutions are graphically represented in this section. Kink solitons, dark-bright solitons, bright solitons, singular solitons and periodic wave solutions are retrieved.

    The 3D-graph and contour plot for the solution R4(Υ) are shown in Figure 1. The solution R4(Υ) is derived from Family 2.2 of solution Set 2.2 as defined by Eq (3.9). The obtained graphs show a kink soliton solution. Kink soliton is a type of solitary wave that ascend or descend from one asymptotic state to another. The contour graph is also included along with surface graph to illustrate the wave structure corresponding to the obtained solution.

    Figure 1.  This figure demonstrates the 3D graph and corresponding contour of Eq (3.9) at κ=1, δ=1, q0=2.82, q1=3, q2=4, G0=0.914, G1=0, H1=1, K=0.5, ϖ=1.

    The graphical illustration of R23(Υ) is presented in Figure 2. The solution R23(Υ) is given by Equation (3.30) using the values of Set 2.4 for Family 2.4. The graphs in Figure 2 show a bright soliton. The surface graph shows a localized intensity peak above the continuous wave background which means that there is a temporary increase in the wave amplitude.

    Figure 2.  This figure demonstrates the 3D graph and corresponding contour of Eq (3.30) at κ=1, δ=2, q0=0.5, q1=0, q2=0.5, G0=0.25, G1=0.125, H1=0.125, K=1, ϖ=0, ϑ=1.

    Figure 3 shows the 3D plot and the corresponding contour plot of R20(Υ) given by Eq (3.27). The graph of R12(Υ) given by Eq (3.18) is illustrated in Figure 4. Figure 5 provides the graphical illustration of R30(Υ) given by Eq (3.38). Figure 6 shows the graph of a dark-bright soliton which is graphical illustration of the solution R3(Υ) expressed by Eq (3.7). Similarly, Figures 79 presents the graphical illustrations for the solutions presented by Eq (3.35), Eq (3.6) and Eq (3.32), respectively.

    Figure 3.  This figure demonstrates the 3D graph and corresponding contour of Eq (3.27) at κ=1, δ=1, q0=1, q1=1, q2=3, G0=1, G1=2, H1=1,K=1, ϖ=7.
    Figure 4.  This figure demonstrates the 3D graph and corresponding contour of Eq (3.18) at κ=1, δ=1, q0=2.828, q1=3, q2=4, G0=0.914, G1=3.5, H1=0, K=1, ϖ=1.
    Figure 5.  This figure demonstrates the 3D graph and corresponding contour of Eq (3.38) at κ=1, δ=3, q0=0.206, q1=0, q2=0.3, G0=0.09, G1=0.05, H1=0.05, K=1, ϖ=0.055, ϑ=1.
    Figure 6.  This figure demonstrates the 3D graph and corresponding contour of Eq (3.7) at κ=1, δ=1, q0=0, q1=0, q2=0.5I, G0=0.5, G1=0.25I, H1=0.25I, K=1, ϖ=1.
    Figure 7.  This figure demonstrates the 3D graph and corresponding contour of Eq (3.35) at κ=1,δ=3,q0=0.33,q1=3,q2=3,G0=0.11,G1=1,H1=0,K=1,ϖ=0.11,ϑ=1.
    Figure 8.  This figure demonstrates the 3D graph and corresponding contour of Eq (3.6) at κ=1, δ=1, q0=0, q1=2.5, q2=2.449, G0=0.5, G1=0.025,  H1=2.474, K=1, ϖ=1.
    Figure 9.  This figure demonstrates the 3D graph and corresponding contour of Eq (3.32) at κ=1,δ=1,q0=1,q1=1,q2=1,G0=1,G1=0,H1=1,K=1,ϖ=1,ϑ=1.

    It can be easily observed that improved tan(Ω(Υ)2) technique is a spectacular technique as compared to many other direct techniques as it gave abundant soliton solutions. Using this technique, kink, singular, bright and dark-bright soliton solutions have been retrieved in this paper. This method is clearly more powerful than many other methods, such as: the tanh-method [34], the GG expansion method [35] and the generalized exponential rational function method, the Jacobi elliptic solution method [36], because the improved tan(Ω(Υ)2) method retrieved many more new solutions than the previously mentioned techniques.

    In this study, the soliton and other solitary wave solutions of the constant-coefficient Gardner equation are investigated using tan(Ω(Υ)2)-expansion method. A variety of precise closed form traveling wave solutions have been constructed including bright solitons, dark-bright solitons, kink solitons and periodic wave solutions. Some of the obtained solutions are illustrated using graphical simulations for suitable choice of parameters. The wave profile corresponding to the obtained solutions is depicted through 3D-surface graphs and corresponding 2D-contour plots. Comparison of the obtained results with those available in the literature depict the efficacy and productivity of the improved tan(Ω(Υ)2) technique. Mathematical computations and simulations were obtained using Maple software. The reported results may be helpful in further explorations of the nonlinear physical problems governed by the Gardner equation in fluid dynamics, plasma physics and other fields. The improved tan(Ω(Υ)2) technique will be useful for the analytic study of a large class of nonlinear PDEs that are widely used in engineering, physics and other sciences.

    The authors declare no conflicts of interest.



    [1] H. P. Dai, W. Tan, Deformation characteristics of three-wave solutions and lump N-solitons to the (2+1)-dimensional generalized KdV equation, Eur. Phys. J. Plus, 135 (2020), 239.
    [2] G. Akram, N. Sajid, The investigation of exact solutions of Korteweg-de Vries equation with dual power law nonlinearity using the expa and exp(Φ(ξ)) methods, Internat. J. Comput. Math., 99 (2021). https://doi.org/10.1080/00207160.2021.1923014 doi: 10.1080/00207160.2021.1923014
    [3] N. Sajid, G. Akram, The application of the exp(Φ(ξ))-expansion method for finding the exact solutions of two integrable equations, Math. Probl. Eng., 2018 (2018), 5191736. https://doi.org/10.1155/2018/5191736 doi: 10.1155/2018/5191736
    [4] D. Kumar, S. Kumar, Solitary wave solutions of pZK equation using Lie point symmetries, Eur. Phys. J. Plus, 135 (2020), 162. http://doi.org/10.1140/epjp/s13360-020-00218-w doi: 10.1140/epjp/s13360-020-00218-w
    [5] J. Sabi'u, H. Rezazadeh, H. Tariq, A. Bekir, Optical solitons for the two forms of Biswas-Arshed equation, Modern Phys. Lett. B, 33 (2019), 1950308. https://doi.org/10.1142/S0217984919503081 doi: 10.1142/S0217984919503081
    [6] N. Faraz, M. Sadaf, G.Akram, I. Zainab, Y. Khan, Effects of fractional order time derivative on the solitary wave dynamics of the generalized ZK-Burgers equation, Results Phys., 25 (2021), 104217. https://doi.org/10.1016/j.rinp.2021.104217 doi: 10.1016/j.rinp.2021.104217
    [7] M. Sadaf, G. Akram, Effects of fractional order derivative on the solution of time-fractional Cahn-Hilliard equation arising in digital image inpainting, Indian J. Phys., 95 (2021), 891–899.
    [8] M. Sadaf, G. Akram, An improved daptation of homotopy analysis method, Math. Sci., 11 (2017), 55–62. https://doi.org/10.1007/s40096-016-0204-y doi: 10.1007/s40096-016-0204-y
    [9] H. Tariq, G. Akram, New traveling wave exact and approximate solutions for the nonlinear Cahn-Allen equation: evolution of a nonconserved quantity, Nonlinear Dyn., 88 (2017), 581–594.
    [10] E. Yaşar, Y. Yıldırım, A. R. Adem, Extended transformed rational function method to nonlinear evolution equations, Int. J. Nonlinear Sci. Numer. Simulation, 20 (2019), 691–701. https://doi.org/10.1515/ijnsns-2018-0286 doi: 10.1515/ijnsns-2018-0286
    [11] G. Akram, M. Sadaf, N. Anum, Solutions of time-fractional Kudryashov-Sinelshchikov equation arising in the pressure waves in the liquid with gas bubbles, Opt. Quantum Electronics, 49 (2017), 373.
    [12] H. Tariq, H. Günerhan, H. Rezazadeh, W. Adel, A numerical approach for the nonlinear temporal conformable fractional foam drainage equation, Asian Eur. J. Math., 14 (2020), 2150089. https://doi.org/10.1142/S1793557121500893 doi: 10.1142/S1793557121500893
    [13] H. Rezazadeh, H. Tariq, M. Eslami, M. Mirzazadeh, Q. Zhou, New exact solutions of nonlinear conformable time-fractional Phi-4 equation, Chinese J. Phys., 56 (2018), 2805–2816. https://doi.org/10.1016/j.cjph.2018.08.001 doi: 10.1016/j.cjph.2018.08.001
    [14] X. J. Yang, F. Gao, J. A. T. Machado, D. Baleanu, Exact travelling wave solutions for local fractional partial differential equations in mathematical physics, In: Nonlinear systems and complexity, 24 (2019).
    [15] N. T. Fadai, M. J. Simpson, New travelling wave solutions of the Porous-Fisher model with a moving boundary, J. Phys. A, 53 (2020), 095601. https://doi.org/10.1088/1751-8121/ab6d3c doi: 10.1088/1751-8121/ab6d3c
    [16] A. Biswas, C. Cleary, J. E. W. Jr, D. Milovic, Optical soliton perturbation with time-dependent coefficients in a log law media, Appl. Math. Comput., 217 (2010), 2891–2894. https://doi.org/10.1016/j.amc.2010.07.032 doi: 10.1016/j.amc.2010.07.032
    [17] A. J. M. Jawad, The sine-cosine function method for the exact solutions of nonlinear partial differential equations, Internat. J. Res. Rev. Appl. Sci., 13 (2012), 186–191.
    [18] W. T. Yu, Q. Zhou, M. Mirzazadeh, W. J. Liu, A. Biswas, Phase shift, amplification, oscillation and attenuation of solitons in nonlinear optics, J. Adv. Res., 15 (2019), 69–76. https://doi.org/10.1016/j.jare.2018.09.001 doi: 10.1016/j.jare.2018.09.001
    [19] K. Hosseini, M. Mirzazadeh, J. F. Gómez-Aguilar, Soliton solutions of the Sasa-Satsuma equation in the monomode optical fibers including the beta-derivatives, Optik, 224 (2020), 165425. https://doi.org/10.1016/j.ijleo.2020.165425 doi: 10.1016/j.ijleo.2020.165425
    [20] M. S. Osman, K. K. Ali, Optical soliton solutions of perturbing time-fractional nonlinear Schrödinger equations, Optik, 209 (2020), 164589. https://doi.org/10.1016/j.ijleo.2020.164589 doi: 10.1016/j.ijleo.2020.164589
    [21] A. I. Aliyu, F. Tchier, M. Inc, A. Yusuf, D. Baleanu, Dynamics of optical solitons, multipliers and conservation laws to the nonlinear Schrödinger equation in (2+1)-dimensions with non-Kerr law nonlinearity, J. Modern Opt., 66 (2019), 136–142. https://doi.org/10.1080/09500340.2018.1512676 doi: 10.1080/09500340.2018.1512676
    [22] A. R. Alharbi, M. B. Almatrafi, Exact solitary wave and numerical solutions for geophysical KdV equation, J. King Saud Univ. Sci., 34 (2022), 102087. https://doi.org/10.1016/j.jksus.2022.102087 doi: 10.1016/j.jksus.2022.102087
    [23] M. B. Almatrafi, A. R. Alharbi, A. R. Seadawy, Structure of analytical and numerical wave solutions for the Ito integro-differential equation arising in shallow water waves, J. King Saud Univ. Sci., 33 (2021), 101375. https://doi.org/10.1016/j.jksus.2021.101375 doi: 10.1016/j.jksus.2021.101375
    [24] G. Griffiths, W. E. Schiesser, Traveling wave analysis of partial differential equations: numerical and analytical methods with MATLAB and Maple, Academic Press, 2010. https://doi.org/10.1016/C2009-0-64536-0
    [25] Z. T. Fu, S. D. Liu, S. K. Liu, New kinds of solutions to Gardner equation, Chaos Solitons Fractals, 20 (2004), 301–309. https://doi.org/10.1016/S0960-0779(03)00383-7 doi: 10.1016/S0960-0779(03)00383-7
    [26] G. Q. Xu, Z. B. Li, Y. P. Liu, Exact solutions to a large class of nonlinear evolution equations, Chinese J. Phys., 41 (2003), 232–241.
    [27] Z. Y. Yan, Jacobi elliptic function solutions of nonlinear wave equations via the new sinh-Gordon equation expansion method, J. Phys. A, 36 (2003), 1961–1972. https://doi.org/10.1088/0305-4470/36/7/311 doi: 10.1088/0305-4470/36/7/311
    [28] J. Manafian, M. Lakestani, Application of tan (ϕ/2)-expansion method for solving the Biswas-Milovic equation for Kerr law nonlinearity, Optik, 127 (2016), 2040–2054. https://doi.org/10.1016/j.ijleo.2015.11.078 doi: 10.1016/j.ijleo.2015.11.078
    [29] J. Manafian, M. Foroutan, Application of tan (phi/2)-expansion method for the time-fractional Kuramoto-Sivashinsky equation, Opt. Quantum Electronics, 49 (2017), 272.
    [30] Y. S. Özkan, E. Yaşar, On the exact solutions of nonlinear evolution equations by the improved tan (phi/2)-expansion method, Pramana, 94 (2020), 37.
    [31] J. Manafian, M. Lakestani, A. Bekir, Study of the analytical treatment of the (2+1)-dimensional Zoomeron, the Duffing and the SRLW equations via a new analytical approach, Interna J. Appl. Comput. Math., 2 (2016), 243–268.
    [32] R. M. Miura, C. S. Gardner, M. D. Kruskal, Korteweg-de Vries equation and generalizations. Existence of conservation laws and constants of motion, J. Math. Phys., 9 (1968), 1204–1209. https://doi.org/10.1063/1.1664701 doi: 10.1063/1.1664701
    [33] R. M. Miura, A derivation of Gardner's equation, Methods Appl. Anal., 4 (1997), 134–140. https://doi.org/10.4310/MAA.1997.v4.n2.a3 doi: 10.4310/MAA.1997.v4.n2.a3
    [34] A. M. Wazwaz, New solitons and kink solutions for the Gardner equation, Commun. nonlinear sci. Numer. Simul., 12 (2007), 1395–1404. https://doi.org/10.1016/j.cnsns.2005.11.007 doi: 10.1016/j.cnsns.2005.11.007
    [35] X. W. Gao, J. Liu, Z. T. Li, New exact kink solutions, solitons and periodic form solutions for the Gardner equation, Adv. Appl. Math. Sci., 2010.
    [36] B. Ghanbari, D. Baleanu, New solutions of Gardner's equation using two analytical methods, Front. Phys., 7 (2019), 202. https://doi.org/10.3389/fphy.2019.00202 doi: 10.3389/fphy.2019.00202
  • This article has been cited by:

    1. Waqas Ali Faridi, Umair Asghar, Muhammad Imran Asjad, Ferdous M.O. Tawfiq, Fairouz Tchier, Wen-Xiu Ma, Husein M.M. Jaradat, Mohammed M.M. Jaradat, WITHDRAWN: The construction of first integral, soliton wave solutions, chaos analysis and sensitive demonstration of Konopelchenko–Dubrovsky equation, 2023, 22113797, 107101, 10.1016/j.rinp.2023.107101
    2. Nisa Çelik, Duygu Tetik, New dynamical analysis of the exact traveling wave solutions to a (3+1)-dimensional Gardner-KP equation by three efficient architecture, 2024, 179, 09600779, 114444, 10.1016/j.chaos.2023.114444
    3. E. S. Aly, M. A. Sohaly, S. Z. Hassan, Noorjahan Abdul Azees, M. Daher Albalwi, Leema Aliyarukunju, Nadia A. Askar, The new wave structures to the perturbed NLSE via Wiener process with its wide-ranging applications, 2023, 13, 2158-3226, 10.1063/5.0174693
    4. Selmahan Selim, Applying the Modified F-Expansion Method to Find the Exact Solutions of the Bogoyavlenskii Equation, 2024, 9, 2548-0391, 145, 10.30931/jetas.1527211
    5. Awatif Muflih Alqahtani, Jyoti Geetesh Prasad, Solution of local fractional generalized coupled Korteweg–de Vries (cKdV) equation using local fractional homotopy analysis method and Adomian decomposition method, 2024, 32, 2769-0911, 10.1080/27690911.2023.2297028
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1812) PDF downloads(104) Cited by(5)

Figures and Tables

Figures(9)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog