Research article Special Issues

New exact solitary wave solutions for fractional model

  • Received: 28 March 2022 Revised: 21 July 2022 Accepted: 28 July 2022 Published: 19 August 2022
  • MSC : 35C08, 34K20, 32W50

  • This manuscript involves the new exact solitary wave solutions of fractional reaction-diffusion model using the exp $ \mathrm{(-\ }\varphi \left(\eta \right) \mathrm{)} $-expansion method. The spatial model of fractional form is applied in modeling super-diffusive systems in the field of engineering, biology, physics (neutron diffusion theory), ecology, finance, and chemistry. The findings of miscellaneous studies showed that presented method is efficient for exploring new exact solutions to solve the complexities arising in mathematical physics and applied sciences. The new solutions which are obtained in the form of the rational, exponential, hyperbolic and trigonometric functions have a wide range in physics and engineering fields. Several results would be obtained under various parameters which shows good agreement with the previous published results of different papers. The proposed method can be extended to solve further problems arising in the engineering fields. My main contribution is programming and comparisons.

    Citation: Ayyaz Ali, Zafar Ullah, Irfan Waheed, Moin-ud-Din Junjua, Muhammad Mohsen Saleem, Gulnaz Atta, Maimoona Karim, Ather Qayyum. New exact solitary wave solutions for fractional model[J]. AIMS Mathematics, 2022, 7(10): 18587-18602. doi: 10.3934/math.20221022

    Related Papers:

  • This manuscript involves the new exact solitary wave solutions of fractional reaction-diffusion model using the exp $ \mathrm{(-\ }\varphi \left(\eta \right) \mathrm{)} $-expansion method. The spatial model of fractional form is applied in modeling super-diffusive systems in the field of engineering, biology, physics (neutron diffusion theory), ecology, finance, and chemistry. The findings of miscellaneous studies showed that presented method is efficient for exploring new exact solutions to solve the complexities arising in mathematical physics and applied sciences. The new solutions which are obtained in the form of the rational, exponential, hyperbolic and trigonometric functions have a wide range in physics and engineering fields. Several results would be obtained under various parameters which shows good agreement with the previous published results of different papers. The proposed method can be extended to solve further problems arising in the engineering fields. My main contribution is programming and comparisons.



    加载中


    [1] B. Ghanbari, J. Liu, Exact solitary wave solutions to the (2+1)-dimensional generalised Camassa-Holm-Kadomtsev-Petviashvili equation, Pramana, 94 (2020), 1–11. https://doi.org/10.1007/s12043-019-1893-1 doi: 10.1007/s12043-019-1893-1
    [2] L. Akinyemi, M. Mirzazadeh, K. Hosseini, Solitons and other solutions of perturbed nonlinear Biswas–Milovic equation with Kudryashov's law of refractive index, Nonlinear Anal-Model., 27 (2022), 1–17. https://doi.org/10.15388/namc.2022.27.26374 doi: 10.15388/namc.2022.27.26374
    [3] H. Ahmad, A. Seadawy, T. Khan, P. Thounthong, Analytic approximate solutions for some nonlinear Parabolic dynamical wave equations, J. Taibah Univ. Sci., 14 (2020), 346–358. https://doi.org/10.1080/16583655.2020.1741943 doi: 10.1080/16583655.2020.1741943
    [4] A. Hossain, M. Akbar, M. Azad, The closed form solutions of simplified MCH equation and third extended fifth order nonlinear equation, Propuls. Power Res., 8 (2019), 163–172. https://doi.org/10.1016/j.jppr.2019.01.006 doi: 10.1016/j.jppr.2019.01.006
    [5] A. Seadawy, D. Lu, C. Yue, Travelling wave solutions of the generalized nonlinear fifth-order KdV water wave equations and its stability, J. Taibah Univ. Sci., 11 (2017), 623–633. https://doi.org/10.1016/j.jtusci.2016.06.002 doi: 10.1016/j.jtusci.2016.06.002
    [6] A. Seadawy, Manafian, Jalil, New soliton solution to the longitudinal wave equation in a magneto-electro-elastic circular rod, Results Phys., 8 (2018), 1158–1167. https://doi.org/10.1016/j.rinp.2018.01.062 doi: 10.1016/j.rinp.2018.01.062
    [7] S. Belmor, C. Ravichandran, F. Jarad, Nonlinear generalized fractional differential equations with generalized fractional integral conditions, J. Taibah Univ. Sci., 14 (2020), 114–123. https://doi.org/10.1080/16583655.2019.1709265 doi: 10.1080/16583655.2019.1709265
    [8] M. N. Islam, M. Asaduzzaman, M. S. Ali, Exact wave solutions to the simplified modified Camassa-Holm equation in mathematical physics, AIMS Math., 5 (2019), 26–41. http://DOI:10.3934/math.202000 doi: 10.3934/math.202000
    [9] K. Jothimani, K. Kaliraj, Z. Hammouch, C. Ravichandran, New results on controllability in the framework of fractional integrodifferential equations with nondense domain, Eur. Phys. J. Plus, 134 (2019), 441. https://doi.org/10.1140/epjp/i2019-12858-8 doi: 10.1140/epjp/i2019-12858-8
    [10] A. R. Seadawy, Three-dimensional weakly nonlinear shallow water waves regime and its traveling wave solutions, Int. J. Comput. Meth., 15 (2018), 1850017. https://doi.org/10.1142/S0219876218500172 doi: 10.1142/S0219876218500172
    [11] A. R. Seadawy, Solitary wave solutions of two-dimensional nonlinear Kadomtsev–Petviashvili dynamic equation in dust-acoustic plasmas, Pramana, 89 (2017), 1–11. http://DOI10.1007/s12043-017-1446-4 doi: 10.1007/s12043-017-1446-4
    [12] W. Jiang, C. Huang, X. Deng, A new probability transformation method based on a correlation coefficient of belief functions, Int. J. Intell. Syst., 34 (2019), 1337–1347. https://doi.org/10.1002/int.22098 doi: 10.1002/int.22098
    [13] M. H. Ifeyinwa, Mathematical modeling of the transmission dynamics of syphilis disease using differential transformation method, Math. Model. Appl., 5 (2020), 47–54. http://doi:10.11648/j.mma.20200502.1 doi: 10.11648/j.mma.20200502.1
    [14] P. Polacik, Propagating Terraces and the Dynamics of Front-Like Solutions of Reaction-Diffusion Equations on $\mathbb{R}$, American Mathematical Society, (2020). https://doi.org/10.1090/memo/1278
    [15] J. Wang, J. Wang, Analysis of a reaction–diffusion cholera model with distinct dispersal rates in the human population, J. Dyn. Differ. Equ., 33 (2021), 549–575. https://doi.org/10.1007/s10884-019-09820-8 doi: 10.1007/s10884-019-09820-8
    [16] K. Mustapha, An L1 approximation for a fractional reaction-diffusion equation, a second-order error analysis over time-graded meshes, SIAM J. Numer. Anal., 58 (2020), 11319–1338. https://doi.org/10.1137/19M1260475 doi: 10.1137/19M1260475
    [17] W. R. Schneider, W. Wyss, Fractional diffusion and wave equations, J. Math. Phys., 30 (1989), 134–144. https://doi.org/10.1063/1.528578 doi: 10.1063/1.528578
    [18] O. P. Agrawal, Solution for a fractional diffusion-wave equation defined in a bounded domain, Nonlinear Dynam., 29 (2002), 145–155.
    [19] Y. Fujita, Cauchy problems of fractional order and stable processes, Jan. J. Appl. Math., 7 (1990), 459–476.
    [20] R. Schumer, D. A. Benson, M. M. Meerschaert, S. W. Wheatcraft, Eulerian derivation of the fractional advection-dispersion equation, J. Contam. Hydrol., 48 (2001), 69–88. https://doi.org/10.1016/S0169-7722(00)00170-4 doi: 10.1016/S0169-7722(00)00170-4
    [21] M. Matinfar, M. Saeidy, Application of Homotopy analysis method to fourth-order parabolic partial differential equations, AAM, 5 (2010), 6. https://digitalcommons.pvamu.edu/aam/vol5/iss1/6
    [22] Y. He, S. Li, Y. Long, AExact solutions of the Klein-Gordon equation by modified Exp-function method, Int. Math. Forum, 7 (2012), 175–182.
    [23] E. Zayed, K. A. Gepreel, The $\frac{G^{'}}{G}$-expansion method for finding traveling wave solutions of nonlinear partial differential equations in mathematical physics, J. Math. Phys., 50 (2009), 013502. https://doi.org/10.1063/1.3033750 doi: 10.1063/1.3033750
    [24] E. Misirli, Y. Gurefe, Exp-function method for solving nonlinear evolution equations, Math. Comput. Appl., 16 (2011), 258–266. https://doi.org/10.3390/mca16010258 doi: 10.3390/mca16010258
    [25] A. Golbabai, K. Sayevand, The homotopy perturbation method for multi-order time fractional differential equations, Nonlinear Sci. Lett. A, 1 (2010), 147–154.
    [26] A. T. Ali, New generalized Jacobi elliptic function rational expansion method, J. Comput. Appl. Math., 235 (2011), 4117–4127. https://doi.org/10.1016/j.cam.2011.03.002 doi: 10.1016/j.cam.2011.03.002
    [27] V. Ala, U. Demirbilek, K. R. Mamedov, An application of improved Bernoulli sub-equation function method to the nonlinear conformable time-fractional SRLW equation, AIMS Math., 5 (2020), 3751–3761. http://DOI:10.3934/math.2020243 doi: 10.3934/math.2020243
    [28] A. Hyder, M. Barakat, General improved Kudryashov method for exact solutions of nonlinear evolution equations in mathematical physics, Phys. Scripta, 95 (220), 045212. http://doi.org/10.1088/1402-4896/ab6526
    [29] C. Li, D. Qian, Y. Chen, On Riemann-Liouville and caputo derivatives, Discrete Dyn. Nat. Soc., 2011 (2011). https://doi.org/10.1155/2011/562494
    [30] C. A. Sierra, Salas, Á. H. S. Salas, Exact solutions for a reaction diffusion equation by using the generalized tanh method, Scientia et Technica, 1 (2007), 35. https://doi.org/10.22517/23447214.5487
    [31] J. Mei, H. Zhang, D. Jiang, New exact solutions for a Reaction-Diffusion equation and a Quasi-Camassa-Holm Equation, Appl. Math. E-Notes, 4 (2004), 85–91. http://www.math.nthu.edu
    [32] H. Naher, F. A. Abdullah, Some new traveling wave solutions of the nonlinear reaction diffusion equation by using the improved $\frac{G^{'}}{G}$-expansion method, Math. Probl. Eng., 2012 (2012). https://doi.org/10.1155/2012/871724
    [33] M. K. Kaabar, M. Kaplan, Z. Siri, New exact soliton solutions of the ()-dimensional conformable Wazwaz-Benjamin-Bona-Mahony equation via two novel techniques, J. Funct. Space., 2021 (2021). https://doi.org/10.1155/2021/4659905
    [34] X. Wang, X. Yue, M. K. Kaabar, A. Akbulut, M. Kaplan, A unique computational investigation of the exact traveling wave solutions for the fractional-order Kaup-Boussinesq and generalized Hirota Satsuma coupled KdV systems arising from water waves and interaction of long waves, J. Ocean Eng. Sci., (2022). https://doi.org/10.1016/j.joes.2022.03.012
    [35] H. Younas, S. Iqbal, I. Siddique, M. K. Kaabar, M. Kaplan, Dynamical investigation of time-fractional order Phi-4 equations, Opt. Quant. Electron., 54 (2022), 1–15. https://doi.org/10.1007/s11082-022-03562-6 doi: 10.1007/s11082-022-03562-6
    [36] M. K. Kaabar, F. Martínez, J. F. Gómez-Aguilar, B. Ghanbari, M. Kaplan, H. Günerhan, New approximate analytical solutions for the nonlinear fractional Schrödinger equation with second-order spatio-temporal dispersion via double Laplace transform method, Math. Meth. Appl. Sci., 44 (2021), 11138–11156. https://doi.org/10.1002/mma.7476 doi: 10.1002/mma.7476
    [37] X. Yue, Z. Zhang, A. Akbulut, M. K. Kaabar, M. Kaplan, A new computational approach to the fractional-order Liouville equation arising from mechanics of water waves and meteorological forecasts, J. Ocean Eng. Sci., (2022). https://doi.org/10.1016/j.joes.2022.04.001http://dx.doi.org/10.1090/S0894-0347-1992-1124979-1
    [38] Y. Bi, Z. Zhang, Q. Liu, T. Liu, Research on nonlinear waves of blood flow in arterial vessels, Commun. Nonlinear Sci., 102 (2021), 105918. https://doi.org/10.1016/j.cnsns.2021.105918 doi: 10.1016/j.cnsns.2021.105918
    [39] Y. Yang, J. Song, On the generalized eigenvalue problem of Rossby waves vertical velocity under the condition of zonal mean flow and topography, Appl. Math. Lett., 121 (2021), 107485. https://doi.org/10.1016/j.aml.2021.107485 doi: 10.1016/j.aml.2021.107485
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1087) PDF downloads(90) Cited by(0)

Article outline

Figures and Tables

Figures(8)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog