In this paper, we study global behavior of the following max-type system of difference equations of the second order with four variables and period-two parameters
$ \left\{\begin{array}{ll}x_{n} = \max\Big\{A_n , \frac{z_{n-1}}{y_{n-2}}\Big\}, \ y_{n} = \max \Big\{B_n, \frac{w_{n-1}}{x_{n-2}}\Big\}, \ z_{n} = \max\Big\{C_n , \frac{x_{n-1}}{w_{n-2}}\Big\}, \ w_{n} = \max \Big\{D_n, \frac{y_{n-1}}{z_{n-2}}\Big\}, \ \end{array}\right. \ \ n\in \{0, 1, 2, \cdots\}, $
where $ A_n, B_n, C_n, D_n\in (0, +\infty) $ are periodic sequences with period 2 and the initial values $ x_{-i}, y_{-i}, z_{-i}, w_{-i}\in (0, +\infty)\ (1\leq i\leq 2) $. We show that if $ \min\{A_0C_1, B_0D_1, A_1C_0, B_1D_0\} < 1 $, then this system has unbounded solutions. Also, if $ \min\{A_0C_1, B_0D_1, A_1C_0, B_1D_0\}\geq 1 $, then every solution of this system is eventually periodic with period $ 4 $.
Citation: Taixiang Sun, Guangwang Su, Bin Qin, Caihong Han. Global behavior of a max-type system of difference equations of the second order with four variables and period-two parameters[J]. AIMS Mathematics, 2023, 8(10): 23941-23952. doi: 10.3934/math.20231220
In this paper, we study global behavior of the following max-type system of difference equations of the second order with four variables and period-two parameters
$ \left\{\begin{array}{ll}x_{n} = \max\Big\{A_n , \frac{z_{n-1}}{y_{n-2}}\Big\}, \ y_{n} = \max \Big\{B_n, \frac{w_{n-1}}{x_{n-2}}\Big\}, \ z_{n} = \max\Big\{C_n , \frac{x_{n-1}}{w_{n-2}}\Big\}, \ w_{n} = \max \Big\{D_n, \frac{y_{n-1}}{z_{n-2}}\Big\}, \ \end{array}\right. \ \ n\in \{0, 1, 2, \cdots\}, $
where $ A_n, B_n, C_n, D_n\in (0, +\infty) $ are periodic sequences with period 2 and the initial values $ x_{-i}, y_{-i}, z_{-i}, w_{-i}\in (0, +\infty)\ (1\leq i\leq 2) $. We show that if $ \min\{A_0C_1, B_0D_1, A_1C_0, B_1D_0\} < 1 $, then this system has unbounded solutions. Also, if $ \min\{A_0C_1, B_0D_1, A_1C_0, B_1D_0\}\geq 1 $, then every solution of this system is eventually periodic with period $ 4 $.
[1] | T. Sun, G. Su, C. Han, L. Li, W. Quan, Global behavior of a max-type system of difference equations with four variables, J. Appl. Math. Comput., 68 (2022), 391–402. https://doi.org/10.1007/s12190-021-01543-8 doi: 10.1007/s12190-021-01543-8 |
[2] | S. Stevic, On the recursive sequence $x(n+1) = \frac{A}{\Pi^k_{i = 0}\; x(n-i)}+\frac{1}{\Pi^{2(k+1)}_{j = k+2}\; x(n-j)}$, Taiwanese J. Math., 7 (2003), 249–259. |
[3] | S. Stevic, Boundedness character of a class of difference equations, Nonlinear Anal. TMA, 70 (2009), 839–848. https://doi.org/10.1016/j.na.2008.01.014 doi: 10.1016/j.na.2008.01.014 |
[4] | E. Fotiades, G. Papaschinopoulos, On a system of difference equations with maximum, Appl. Math. Comput., 221 (2013), 684–690. https://doi.org/10.1016/j.amc.2013.07.014 doi: 10.1016/j.amc.2013.07.014 |
[5] | G. Su, T. Sun, B. Qin, On the solutions of a max-type system of difference equations with period-two parameters, Adv. Differ. Equ., 2018 (2018), 358. https://doi.org/10.1186/s13662-018-1826-1 doi: 10.1186/s13662-018-1826-1 |
[6] | G. Su, C. Han, T. Sun, L. Li, On the solutions of a max-type system of difference equations of higher order, Adv. Differ. Equ., 2020 (2020), 213. https://doi.org/10.1186/s13662-020-02673-2 doi: 10.1186/s13662-020-02673-2 |
[7] | Y. Yazlik, D. T. Tollu, N. Taskara, On the solutions of a max-type difference equation system, Math. Meth. Appl. Sci., 38 (2015), 4388–4410. https://doi.org/10.1002/mma.3377 doi: 10.1002/mma.3377 |
[8] | T. Sun, H. Xi, On the solutions of a system of difference equations with maximum, Appl. Math. Comput., 290 (2016), 292–297. https://doi.org/10.1016/j.amc.2016.06.020 doi: 10.1016/j.amc.2016.06.020 |
[9] | S. Stević, On a symmetric system of max-type difference equations, Appl. Math. Comput., 219 (2013), 8407–8412. https://doi.org/10.1016/j.amc.2016.06.020 doi: 10.1016/j.amc.2016.06.020 |
[10] | S. Stević, On positive solutions of a system of max-type difference equations, J. Comput. Anal. Appl., 16 (2014), 906–915. |
[11] | K. S. Berenhaut, J. D. Foley, S. Stević, Boundedness character of positive solutions of a max difference equation, J. Differ. Equ. Appl., 12 (2006), 1193–1199. https://doi.org/10.1080/10236190600949766 doi: 10.1080/10236190600949766 |
[12] | D. M. Cranston, C. M. Kent, On the boundedness of positive solutions of the reciprocal max-type difference equation $ x_n = \max\{\frac{A^1_{n-1}}{x_{n-1}}, \frac{A^2_{n-1}}{x_{n-2}}, \cdots, \frac{A^t_{n-1}}{x_{n-t}}\}$ with periodic parameters, Appl. Math. Comput., 221 (2013), 144–151. https://doi.org/10.1016/j.amc.2013.06.040 doi: 10.1016/j.amc.2013.06.040 |
[13] | M. M. El-Dessoky, On the periodicity of solutions of max-type difference equation, Math. Meth. Appl. Sci., 38 (2015), 3295–3307. https://doi.org/10.1002/mma.3296 doi: 10.1002/mma.3296 |
[14] | E. M. Elsayed, B. D. Iričanin, On a max-type and a min-type difference equation, Appl. Math. Comput., 215 (2009), 608–614. https://doi.org/10.1016/j.amc.2009.05.045 doi: 10.1016/j.amc.2009.05.045 |
[15] | E. M. Elsayed, B. S. Alofi, The periodic nature and expression on solutions of some rational systems of difference equations, Alexandria Engin. J., 74 (2023), 269–283. https://doi.org/10.1016/j.aej.2023.05.026 doi: 10.1016/j.aej.2023.05.026 |
[16] | W. Liu, S. Stević, Global attractivity of a family of nonautonomous max-type difference equations, Appl. Math. Comput., 218 (2012), 6297–6303. https://doi.org/10.1016/j.amc.2011.11.108 doi: 10.1016/j.amc.2011.11.108 |
[17] | W. Liu, X. Yang, S. Stević, On a class of nonautonomous max-type difference equations, Abstr. Appl. Anal., 2011 (2011), 327432. https://doi.org/10.1155/2011/436852 doi: 10.1155/2011/436852 |
[18] | B. Qin, T. Sun, H. Xi, Dynamics of the max-type difference equation $x_{n+1} = \max\{\frac{A}{x_n}, x_{n-k}\}$, J. Comput. Appl. Anal., 14 (2012), 856–861. https://doi.org/10.1016/j.amc.2016.06.020 doi: 10.1016/j.amc.2016.06.020 |
[19] | T. Sauer, Global convergence of max-type equations, J. Differ. Equ. Appl., 17 (2011), 1–8. https://doi.org/10.1080/10236190903002149 doi: 10.1080/10236190903002149 |
[20] | S. Stević, Global stability of a max-type difference equation, Appl. Math. Comput., 216 (2010), 354–356. https://doi.org/10.1080/10236190903002149 doi: 10.1080/10236190903002149 |
[21] | S. Stević, Periodicity of a class of nonautonomous max-type difference equations, Appl. Math. Comput., 217 (2011), 9562–9566. https://doi.org/10.1016/j.amc.2011.04.022 doi: 10.1016/j.amc.2011.04.022 |
[22] | S. Stević, Representation of solutions of bilinear difference equations in terms of generalized Fibonacci sequences, Electron. J. Qual. Th. Differ. Equ., 67 (2014), 1–15. https://doi.org/10.14232/ejqtde.2014.1.67 doi: 10.14232/ejqtde.2014.1.67 |
[23] | S. Stević, M. A. Alghamdi, A. Alotaibi, Long-term behavior of positive solutions of a system of max-type difference equations, Appl. Math. Comput., 235 (2014), 567–574. https://doi.org/10.1016/j.amc.2013.11.045 doi: 10.1016/j.amc.2013.11.045 |
[24] | S. Stević, M. A. Alghamdi, A. Alotaibi, N. Shahzad, Eventual periodicity of some systems of max-type difference equations, Appl. Math. Comput., 236(2014), 635–641. https://doi.org/10.1016/j.amc.2013.12.149 doi: 10.1016/j.amc.2013.12.149 |
[25] | G. Su, T. Sun, B. Qin, Eventually periodic solutions of a max-type system of difference equations of higher order, Discrete Dynam. Nat. Soc., 2018 (2018), 8467682. https://doi.org/10.1155/2018/8467682 doi: 10.1155/2018/8467682 |
[26] | T. Sun, Q. He, X. Wu, H. Xi, Global behavior of the max-type difference equation $x_n = \max\{\frac{1}{ x_{n-m}}, \frac{A_n}{ x_{n-r}}\}$, Appl. Math. Comput., 248 (2014), 687–692. https://doi.org/10.1016/j.amc.2014.10.018 doi: 10.1016/j.amc.2014.10.018 |
[27] | T. Sun, J. Liu, Q. He, X. Liu, Eventually periodic solutions of a max-type difference equation, The Sci. World J., 2014 (2014), 219437. https://doi.org/10.1155/2014/219437 doi: 10.1155/2014/219437 |
[28] | T. Sun, B. Qin, H. Xi, C. Han, Global behavior of the max-type difference equation $x_{n+1} = \max\{\frac{1}{x_n}, \frac{A_n}{x_{n-1}}\}$, Abstr. Appl. Anal., 2019 (2009), 152964. https://doi.org/10.1155/2009/152964 doi: 10.1155/2009/152964 |
[29] | T. Sun, H. Xi, C. Han, B. Qin, Dynamics of the max-type difference equation $x_n = \max\{ \frac{ 1}{ x_{n-m}}, \frac{ A_n}{ x_{n-r}}\}$, J. Appl. Math. Comput., 38 (2012), 173–180. https://doi.org/10.1007/s12190-010-0471-y doi: 10.1007/s12190-010-0471-y |
[30] | Q. Xiao, Q. Shi, Eventually periodic solutions of a max-type equation, Math. Comput. Model., 57 (2013), 992–996. https://doi.org/10.1016/j.mcm.2012.10.010 doi: 10.1016/j.mcm.2012.10.010 |