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Abstract: This manuscript involves the new exact solitary wave solutions of fractional reaction-
diffusion model using the exp (− ϕ (η) )-expansion method. The spatial model of fractional form is
applied in modeling super-diffusive systems in the field of engineering, biology, physics (neutron
diffusion theory), ecology, finance, and chemistry. The findings of miscellaneous studies showed
that presented method is efficient for exploring new exact solutions to solve the complexities arising
in mathematical physics and applied sciences. The new solutions which are obtained in the form
of the rational, exponential, hyperbolic and trigonometric functions have a wide range in physics
and engineering fields. Several results would be obtained under various parameters which shows
good agreement with the previous published results of different papers. The proposed method can
be extended to solve further problems arising in the engineering fields. My main contribution is
programming and comparisons.
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1. Introduction

In the last few decades, an outstanding advancement has been witnessed in nonlinear sciences and
engineering fields. Many scientists showed keen interest in finding the exact and numerical solutions
for the nonlinear PDEs. Numerous techniques were devised in this regard which includes the GERFM
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method [1], modified variational iteration algorithm-II [3], enhanced (G
′

G )-expansion method [4], the
direct algebraic method [5], the extended trial equation method [6], the generalized fractional integral
conditions method [7], the modified simple equation method [8], the Monch’s theorem method [9], the
extended modified mapping method [10], the reductive perturbation method [11], the new probability
transformation method [12] and the differential transformation method [13]. In future work for more
related extensions or generalizations of the results these references may be very helpful [2, 32–36].

The time fractional derivatives in the fractional reaction-diffusion model describes the process
relating to the physical phenomena, physically known as the historical dependence. The space
fractional derivative explains the path dependence and global correlation properties of physical
processes, that is, the global dependence. The reaction diffusion equation has a dynamic role in
dissipative dynamical systems as studied by various biologists [38], scientists and engineers [14].
The nonlinear form of this model has found a number of applications in numerous branches of
biology, physics and chemistry [14, 15]. This model has also been useful for other areas of science
and effectively generalized by employing the theory of fractional calculus, for instance see [15, 16].
Diffusion-wave equations involving Caputo’s derivative [17, 18], Riemann-Liouville derivatives [19]
have been discussed by various researchers. Anomalous dispersion equations can be explained by
fractional derivative [20]. An extensive variety of exact methods which have been applied for exact
solutions of the fractional nonlinear reaction diffusion equation, for example see [14–20] and references
there in.

To interpret numerous physical phenomena in some special fields of science and engineering,
nonlinear evolution equations are extensively used as models especially in solid-state physics and
plasma physics. Finding the exact solutions of NLEEs is a key role in the study of these physical
phenomena [39]. A lot of research work has been carried out during the past decades for evaluating
the exact and numerical solutions of many nonlinear evolution equations. Among them are homotopy
analysis method [21], modified exp-function method [22], (G

′

G )-expansion method [23], exp-function
method [24], homotopy perturbation method [25], Jacobi elliptic function method [26], sub equation
function method [27], kudryashov method [28], and so on.We can be expressed the exact solutions of
FPDE via exp (−ϕ (η)). (

ϕ′ (η)
)

= exp (−ϕ (η)) + µ exp(ϕ (η) ) + λ (1.1)

The article is arranged as follows: Section 1 represents the introduction of the article. In section
2, we have explained the Caputo’s fractional derivative. In section 3, we have interpreted the exp
(−ϕ (η))-expansion method. In section 4, we use this method to explore the reaction-diffusion model.
In section 5 and 6, graphical representation and physical interpretation are explained. In section 7 and
8, we have interpreted the results, discussions and conclusion.

1.1. Caputo’s fractional derivative

Property 1: [29] A function f (x, t),where x > 0 is considered as Cα. Here α ∈ R, if ∃ a R and
(p > α) , such that

f (x) = xp f1 (x) (1.2)

f1 (x) ∈ C[0,∞).Where f1 (x) ∈ C[0,∞)
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Property2: [29] A function f (x, t) ,where x > 0 is considered to be in space Cm
α . Here m ∈ N∪{0} ,

if f (m) ∈ Cα.

Iµt f (x, t) =
1

Γ (µ)

∫ t

0
(t − T)µ−1 f (x,T) dT, t > 0. (1.3)

Property3: [29] Suppose f ∈ Cαand α ≥ −1, then the Riemann Liouville integral µ, where µ > 0
is given by

Property4: [29] A fractional Caputo derivative of f with respect to t, where f ∈ Cm
−1, m ∈ N∪{0} ,is

given as

Dµ
t f (x, t) =

∂m

∂tm f (x, t) , µ = m (1.4)

= Im−µ
t

∂m

∂tm f (x, t) ,m − 1 ≤ µ < m (1.5)

Note that

Iµt Dµ
t f (x, t) = f (x, t) −

m−1∑
k=0

∂k f
∂tk

(x, 0)
tk

k!
, m − 1 < µ ≤ m, m ∈ N (1.6)

Iµt tν =
Γ (ν + 1)

Γ (µ + ν + 1)
tµ+ν. (1.7)

1.2. Interpretation of the method

Consider the fractional partial differential equation,

ϕ
(
u,Dα

t u, ux, uxx,D2α
t u,Dα

t ux, . . .
)

= 0, t > 0, x ∈ R, 0 ≤ α ≤ 1, (1.8)

where Dα
t u, Dα

x u, Dα
xxu are derivatives,u (η) = u (x, t). For solving Eq 1.8, we follow:

Step 1: Using a transformation, we get,

η = x ± V
tα

Γ (1 + α)
, u = u (η) , (1.9)

where constant V is a nonzero. By substituting Eq 1.9 in Eq 1.8 yields ODE:

ϕ
(
u,±Vu

′

, ku
′

,V2u
′′

, k2u
′′

, . . .
)

= 0. (1.10)

Step 2: Assuming the traveling wave solution

u (η) =

M∑
n=0

an

(
e−ϕ(η)

)n
, (1.11)

where ϕ (η) satisfies the following equation:

ϕ
′

(η) = e−ϕ(η) + λ + µeϕ(η) (1.12)

ϕ
′′

(η) = −λe−ϕ(η)
− e−2ϕ(η) + µλeϕ(η) + µ2e2ϕ(η),
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where prime indicates derivative w.r.t.η. The solutions of Eq 1.12 are written in the form of different
cases.

Class1: when µ , 0 and λ2 − 4µ > 0, we have

ϕ (η) = ln
{

1
2µ

(
−λ−λtanh

(
λ

2
(c1 + η)

))}
. (1.13)

where λ =
√(
−4µ + λ2)

Class 2: when, µ , 0 and λ2 − 4µ < 0, we have

ϕ (η) = ln
{

1
2µ

(
−λ+λtan

(
λ

2
(c1 + η)

))}
. (1.14)

where, λ =
√(
−4µ + λ2)

Class 3: when, λ , 0, µ = 0 and λ2 − 4µ > 0, we have

ϕ (η) = −ln
{

λ

−1+exp (λ (k + η))

}
ϕ (η) = −ln

{
λ

−1+exp(λ(k+η))

}
.

Class 4: when, λ, µ , 0 and λ2 − 4µ = 0, we have

ϕ (η) = ln
{

2
(2 + λ (k + η))(
λ2 (η + k)

) }
.

Class 5: when, λ, µ = 0 and λ2 − 4µ = 0, we have

ϕ (η) =
[
ln {η + k}

]
, (1.15)

Step 3: Using the homogeneous balancing principal, in (10), we attain M. In view of Eq (11), Eq (10)
and Eq (12), we obtain a system of equations with these parameters, a n, λ, µ. We substitute the values
in Eq (11) and Eq (12) and obtained the results of Eq (8).

2. Solution procedure

Suppose the reaction-diffusion equation is,

D2α
t u + δuxx + βu + γu3 = 0, 0 < α ≤ 1, (2.1)

where δ, β and γ are parameters without zero, setting, δ = a, β = b and γ = c and changing Eq 2.1 into
an ODE.

V2u
′′

+ au
′′

+ bu + cu3 = 0, (2.2)

where prime represents the derivative w. r. t. η.With the help of balancing principal, u′′ and u3, we
attain, M = 1.
Rewriting the solution of Eq 2.2 we get,

u (η) =
[
a0 + a1

(
exp (−ϕ (η))

)]
, (2.3)
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where a0,a1 , 0 are constants, while λ, µ are some constants.
Substituting u, u

′′

and u3 in Eq 2.2, we get the solution sets as.
Solution set 1

λ = 0, C = C,V = −
1
2

√
2
√
−µ (2aµ + b)
µ

, a0 = 0, a1 =

√
cbµ
c

Substituting in Eq 2.3, we get,
u (η) = a1

(
exp (−ϕ (η))

)
, (2.4)

Substituting all the five classes in Eq 2.4, we get the solutions.
Class 1: When, λ2 − 4µ > 0 and µ , 0,

v1 = −
1
2

√
cbµ tanh

(
1
2

(
1
2

√
2
√
−µ(2aµ+b)tα

µΓ(α+1) + x
) √
−4µ

) √
−4µ

cµ

Class 2: When, λ2 − 4µ < 0 and µ , 0,

v2 =
1
2

√
cbµ tan

(
1
2

(
1
2

√
2
√
−µ(2aµ+b)tα

µΓ(α+1) + x
)
√

4
√
µ

)
√

4

c
√
µ

(2.5)

Solution set 2: λ = 0,C = C, V =
1
2

√
2
√
−µ(2aµ + b)
µ

, a0 = 0, a1 = −

√
cbµ
c


Substituting in Eq 2.3, we get,

u (η) = a1
(
exp (−ϕ (η))

)
, (2.6)

Substituting equations 1.13 and 1.14 in Eq 2.6, we get the solutions.
Class 1:When, µ , 0 and λ2 − 4µ > 0,

v3 =
1
2

√
cbµ tanh

(
1
2

(
−1

2

√
2
√
−µ(2aµ+b)tα

µΓ(α+1) + x
) √
−4µ

) √
−4µ

cµ
(2.7)

Class 2: When, µ , 0 and λ2 − 4µ < 0,

v4 = −
1
2

√
cbµ tan

(
1
2

(
−1

2

√
2
√
−µ(2aµ+b)tα

µΓ(α+1) + x
)
√

4
√
µ

)
√

4

c
√
µ

(2.8)

Solution Set 3 
λ = λ, C = C, V =

√
−(λ2−4µ)(aλ2−4aµ−2b)

λ2−4µ , a0 = bλ√
c(λ2−4µ)b

,

a1 = −
2
√
−c(λ2−4µ)b µ

c(λ2−4µ)
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Substituting in Eq 2.3, we get,
u (η) = a1

(
exp (−ϕ (η))

)
+ a0, (2.9)

Substituting equations 1.13 to 1.15 in Eq 2.9, we get the solutions.
Class 1: When, µ , 0 and−4µ + λ2 > 0,

v5 = −
bλ√

c
(
λ2 − 4µ

)
b
−

1
c(λ2 − 4µ)

(2.10)
√

c
(
λ2 − 4µ

)
b


−λ − tanh(

1
2

(
−

√
(λ2−4µ)(aλ2−4aµ−2b)tα

(λ2−4µ)Γ(α+1)
+ x

) √
λ2 − 4µ

)
√
λ2 − 4µ




Class 2: When, µ , 0 and−4µ + λ2 < 0,

v6 = −
bλ√

c
(
λ2 − 4µ

)
b

(2.11)

−



√
c
(
λ2 − 4µ

)
b

−λ + tan(
1
2

(
−

√
(λ2−4µ)(aλ2−4aµ−2b)tα

(λ2−4µ)Γ(α+1)
+ x

) √
−λ2 + 4µ

)
√
−λ2 + 4µ




Class 3: When λ , 0, −4µ + λ2 > 0 and µ = 0,

v7 = −
bλ√

c
(
λ2 − 4µ

)
b

(2.12)

−

2
√

c
(
λ2 − 4µ

)
bµ

(
eλ

(
−

√
(λ2−4µ)(aλ2−4aµ−2b)tα

(λ2−4µ)Γ(α+1) + x
)
− 1

)
c
(
λ2 − 4µ

)
λ

Class 4:When, λ , 0, µ = 0 and −4µ + λ2 = 0,

v8 = −
bλ√

c
(
λ2 − 4µ

)
b

(2.13)

+

2
√

c
(
λ2 − 4µ

)
bµ

(
2λ

(
−

√
(λ2−4µ)(aλ2−4aµ−2b)tα

(λ2−4µ)Γ(α+1) + x
)

+ 2
)

c
(
λ2 − 4µ

)
λ2

(
−

√
(λ2−4µ)(aλ2−4aµ−2b)tα

(λ2−4µ)Γ(α+1) + x
)

Case 5: When, λ = 0, µ = 0 and −4µ + λ2 = 0,

v9 =
bλ√

−c
(
λ2 − 4µ

)
b
−

2
c(λ2 − 4µ)

(2.14)√−c
(
λ2 − 4µ

)
b µ

− √
−

(
λ2 − 4µ

) (
aλ2 − 4aµ − 2b

)
tα

(λ2 − 4µ)Γ(α + 1)
+ x
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3. Graphical demonstration

Physical interpretation

With some free parameters the proposed technique provides solitary wave solutions. By setting
the specific parameters we have explained the miscellaneous wave solutions. In this study, we would
explain the physical interpretation of the solutions for reaction-diffusion equation taking solution v1

for µ = 20 λ = 1 b = 11 a = 10 a1 = 12 c = −11 α = 1, shows the solitary wave solution in
Figure 1. Figure 2 shows Soliton wave solution with paremeters µ = 910 λ = 1 b = 11 a = 10
a1 = 12 c = −11 α = .5. Figures 3, 4 and 7 interprets the singular kink solution of v3, v4, v7 for
µ = .010 λ = 1 b = .11 a = 10 a1 = 12 c = −11 α = .1, µ = .0010 λ = −991 b = 11 a = 10
a1 = 102 c = −1 α = .1, µ = 20 λ = 1 b = 11 a = 10 a1 = 12 c = −11 α = .25. Finally
kink wave results have been obtained from v5, v6, v8 by setting the parameters, µ = 3.0 λ = 1 b = 11
a = 10 a1 = 12 c = −11 α = 0.001, µ = 2.0 λ = 1 b = 11 a = 10 a1 = 12 c = −11 α = 0.001,
µ = 20 λ = 1 b = 11 a = 10 a1 = 12 c = −11 α = 0.01, which is presented in Figures 5, 6
and 8. The solutions gained in this article have been checked by putting them back into the original
equation and found correct. From the above obtained results we have many potential applications in
fluid mechanics, quantum field theory, plasma physics and nonlinear optics.

Figure 1. Solitary wave solusion ν1(η).

When

µ = 20, λ = 1, b = 11, a = 10, a1 = 12, c = −11, α = 1
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Figure 2. Soliton wave solusion ν2(η).

When

µ = 910, λ = 1, b = 11, a = 10, a1 = 12, c = −11, α = 1

Figure 3. Singular kink wave solusion ν3(η).

When

µ = .010, λ = 1, b = .11, a = 10, a1 = 12, c = −11, α = .1
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Figure 4. Singular kink wave solusion ν4(η).

When

µ = .0010, λ = −991, b = 11, a = 10, a1 = 102, c = −11, α = .1

Figure 5. kink wave solusion ν5(η).

When

µ = 3.0, λ = 1, b = 11, a = 10, a1 = 12, c = −11, α = .001
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Figure 6. kink wave solusion ν6(η).

When

µ = 2.0, λ = 1, b = 11, a = 10, a1 = 12, c = −11, α = .001

Figure 7. Singular kink wave solusion ν7(η).

When

µ = 20, λ = 1, b = 11, a = 10, a1 = 12, c = −11, α = .25
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Figure 8. kink wave solusion ν8(η).

When
µ = 20, λ = 1, b = 11, a = 10, a1 = 12, c = −11, α = .01

4. Results and discussions

If we set b = β, c = γ, µ = r and η = ξ in the obtaining solution v2 and v3 in this article is equal to
u5 and u1 for case 5 respectively found in [31] see Table 1.

Table 1. Comparing the results of [31], with our results.

Attained Results [31] results

(i) If we set b = β, c = γ, µ = r and η = ξ (i) The solution u1 is as
then our solution v3 becomes

v3 =

√
−β

γ
tanh

(√
−rξ

)
u1 =

√
−β

γ
tanh

(√
−rξ

)
(ii) If we set b = β, c = γ, µ = r and η = ξ (ii) The solution u5 is as

then our solution v2 becomes

v2 =

√
β

γ
tan

(√
rξ

)
u5 =

√
β

γ
tan

(√
rξ

)
If we set b = β, c = γ and η = ξ, in the obtaining solution v2 and v4 in this article is equal to u and

u for c1 , 0, c2 = 0, λ = 0 and µ > 0 in [23] see Table 2.
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Table 2. Comparing the results of [23], with our results.

Attained Results [23] results

(i) If we set b = β, c = γ and η = ξ (i) The solution u is as
then our solution v2 becomes

v2 =

√
β

γ
tan

(√
µξ

)
u (ξ) = ±

√
β

γ
tan

(√
µξ

)
(ii) If we set b = β, c = γ and η = ξ (ii) The solution u is as

then our solution v3 becomes

v3 = −

√
β

γ
tan

(√
µξ

)
u (ξ) = ±

√
β

γ
tan

(√
µξ

)
If we set b = β, c = γ in the obtaining solution v2 and v4 are equal to v9 and v9 for λ = 0 and µ is

positive in v9 found in [32] see Table 3.

Table 3. Comparing the results of [32], with our results.

Attained Results [32] results

(i) If we set b = β, c = γ (i) The solution u is as

then our solution v2 becomes u (ξ) = ±

√
β

γ
tan

(√
µη

)
v2 =

√
β

γ
tan

(√
µη

)
(ii) If we set b = β, c = γ (ii) The solution u is as

then our solution v4 becomes u (ξ) = ±

√
β

γ
tan

(√
µη

)
v3 = −

√
β

γ
tan

(√
µη

)
If we set b = −β, c = γ and η = ξ in the obtaining solution v2 and v4 in this article are equal to u2

and u2 for k > 0, β > 0 and our v1 and v3 are equal to u4 and u4 for k < 0, β < 0 respectively founded
in [30] see Table 4.
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Table 4. Comparing the results of [30], with our results.

Attained Results [30] results

(i) If we set b = −β, c = γ, µ = k and η = ξ (i) The solution u2 is as
then our solution v2 becomes

v2 =

√
−β

γ
tan

(√
kξ

)
u1 = ±

√
−β

γ
tan

(√
kξ

)
(ii) If we set b = −β, c = γ, µ = k and η = ξ (ii) The solution u2 is as

then our solution v4 becomes

v2 = −

√
β

γ
tan

(√
kξ

)
u2 = ±

√
β

γ
tan

(√
kξ

)
(iii) If we set b = −β, c = γ, µ = −k and η = ξ (iii) The solution u4 is as

then our solution v1 becomes

v1 = −

√
−β

γ
tanh

(√
−kξ

)
u4 = ±

√
−β

γ
tanh

(√
−kξ

)
(iv) If we set b = β, c = γ, µ = −k and η = ξ (iv) The solution u4 is as

then our solution v4 becomes

v4 = −

√
β

γ
tanh

(√
−kξ

)
u4 = ±

√
β

γ
tanh

(√
−kξ

)
5. Conclusions

In the current paper, we explore that the proposed method is effective and capable to find exact
solutions of reaction-diffusion equation. The obtained solutions indicate that the suggested method is
direct, constructive and simple. The proposed technique can be implemented to the other NLPDEs
of fractional order to establish new reliable solutions. The exact solutions are different and new
along with different values of parameters. The reduction in the magnitude of computational part
and the consistency of the technique give a broader applicability to the technique. The reaction
diffusion equation has a dynamic role in dissipative dynamical systems as studied by various biologists,
scientists and engineers. This model has found a number of applications in biology, physics (neutron
diffusi0n theory), ecology and chemistry. It has also been claimed that reaction-diffusion processes
have crucial basis for procedures associated to morphogenesis in biology and may even be connected
to skin pigmentation and animal coats. Other applications of this model contain spread of epidemics,
ecological invasions, wound healing and tumors growth. Another aim for the consideration in reaction-
diffusion systems is that although they are nonlinear partial differential equations, there are often
visions for an analytical treatment. My main contribution is programming and comparisons.
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