Let $ K = \mathbb{Q}(\sqrt{m}) $ be an imaginary quadratic field with $ O_K $ its ring of integers. Let $ \pi $ and $ \beta $ be an irreducible element and a nonzero element, respectively, in $ O_K $. In the authors' earlier work, it was proved for the cases, $ m\not\equiv 1\ ({\mathrm{mod}}\ 4) $ and $ m\equiv 1\ ({\mathrm{mod}}\ 4) $ that if $ \pi = \alpha_n\beta^n+\alpha_{n-1}\beta^{n-1}+\cdots+\alpha_1\beta+\alpha_0 = :f(\beta) $, where $ n\geq 1 $, $ \alpha_n\in O_K\setminus\{0\} $, $ \alpha_{0}, \ldots, \alpha_{n-1} $ belong to a complete residue system modulo $ \beta $, and the digits $ \alpha_{n-1} $ and $ \alpha_n $ satisfy certain restrictions, then the polynomial $ f(x) $ is irreducible in $ O_K[x] $. In this paper, we extend these results by establishing further irreducibility criteria for polynomials in $ O_K[x] $. In addition, we provide elements of $ \beta $ that can be applied to the new criteria but not to the previous ones.
Citation: Phitthayathon Phetnun, Narakorn R. Kanasri. Further irreducibility criteria for polynomials associated with the complete residue systems in any imaginary quadratic field[J]. AIMS Mathematics, 2022, 7(10): 18925-18947. doi: 10.3934/math.20221042
Let $ K = \mathbb{Q}(\sqrt{m}) $ be an imaginary quadratic field with $ O_K $ its ring of integers. Let $ \pi $ and $ \beta $ be an irreducible element and a nonzero element, respectively, in $ O_K $. In the authors' earlier work, it was proved for the cases, $ m\not\equiv 1\ ({\mathrm{mod}}\ 4) $ and $ m\equiv 1\ ({\mathrm{mod}}\ 4) $ that if $ \pi = \alpha_n\beta^n+\alpha_{n-1}\beta^{n-1}+\cdots+\alpha_1\beta+\alpha_0 = :f(\beta) $, where $ n\geq 1 $, $ \alpha_n\in O_K\setminus\{0\} $, $ \alpha_{0}, \ldots, \alpha_{n-1} $ belong to a complete residue system modulo $ \beta $, and the digits $ \alpha_{n-1} $ and $ \alpha_n $ satisfy certain restrictions, then the polynomial $ f(x) $ is irreducible in $ O_K[x] $. In this paper, we extend these results by establishing further irreducibility criteria for polynomials in $ O_K[x] $. In addition, we provide elements of $ \beta $ that can be applied to the new criteria but not to the previous ones.
[1] | G. Pólya, G. Szegö, Problems and theorems in analysis, New York: Springer-Verlag, 1976. |
[2] | J. Brillhart, M. Filaseta, A. Odlyzko, On an irreducibility theorem of A. Cohn, Canad. J. Math., 33 (1981), 1055–1059. https://dx.doi.org/10.4153/CJM-1981-080-0 doi: 10.4153/CJM-1981-080-0 |
[3] | M. R. Murty, Prime numbers and irreducible polynomials, Amer. Math. Monthly, 109 (2002), 452–458. https://dx.doi.org/10.1080/00029890.2002.11919872 doi: 10.1080/00029890.2002.11919872 |
[4] | S. Alaca, K. S. Williams, Introductory algebraic number theory, Cambridge: Cambridge University Press, 2004. |
[5] | H. Pollard, H. G. Diamond, The theory of algebraic numbers, 2 Eds., Cambridge: Cambridge University Press, 1975. |
[6] | K. H. Rosen, Elementary number theory and its applications, 5 Eds., New York: Addison-Wesley, 2005. |
[7] | P. Singthongla, N. R. Kanasri, V. Laohakosol, Prime elements and irreducible polynomials over some imaginary quadratic fields, Kyungpook Math. J., 57 (2017), 581–600. https://dx.doi.org/10.5666/KMJ.2017.57.4.581 doi: 10.5666/KMJ.2017.57.4.581 |
[8] | S. Tadee, V. Laohakosol, S. Damkaew, Explicit complete residue systems in a general quadratic field, Divulg. Mat., 18 (2017), 1–17. |
[9] | P. Phetnun, N. R. Kanasri, P. Singthongla, On the irreducibility of polynomials associated with the complete residue systems in any imaginary quadratic fields, Int. J. Math. Math. Sci., 2021, 5564589. https://dx.doi.org/10.1155/2021/5564589 doi: 10.1155/2021/5564589 |
[10] | P. Singthongla, Prime elements and irreducible polynomials over some algebraic number fields, Ph.D dissertation, Khon Kaen University, Khon Kaen, Thailand, 2018. |