In this paper, the large-time behavior of global strong solutions is justified for the three dimensional compressible micropolar fluids subjected to Hall current. Both the global existence and the optimal decay rates of strong solutions are obtained when the smooth initial data are sufficiently close to the non-vacuum equilibrium in $ H^1 $. In addition, the vanishing limit of the Hall coefficient is also justified.
Citation: Mingyu Zhang. On the Cauchy problem of compressible Micropolar fluids subjected to Hall current[J]. AIMS Mathematics, 2024, 9(12): 34147-34183. doi: 10.3934/math.20241627
In this paper, the large-time behavior of global strong solutions is justified for the three dimensional compressible micropolar fluids subjected to Hall current. Both the global existence and the optimal decay rates of strong solutions are obtained when the smooth initial data are sufficiently close to the non-vacuum equilibrium in $ H^1 $. In addition, the vanishing limit of the Hall coefficient is also justified.
[1] | R. A. Adams, Sobolev space, Vol. 65, New York: Academic Press, 1975. |
[2] | G. Ahmadi, M. Shahinpoor, Universal stability of magneto-micropolar fluid motions, Int. J. Eng. Sci., 12 (1974), 657–663. https://doi.org/10.1016/0020-7225(74)90042-1 doi: 10.1016/0020-7225(74)90042-1 |
[3] | Y. Amirat, K. Hamdache, Weak solutions to the equations of motion for compressible magnetic fluids, J. Math. Pures Appl., 91 (2009), 433–467. https://doi.org/10.1016/j.matpur.2009.01.015 doi: 10.1016/j.matpur.2009.01.015 |
[4] | Y. Amirat, K. Hamdache, Global weak solutions to the equations of theremal convection in micropolar fluids subjected to Hall current, Nonlinear Anal., 102 (2014), 186–207. https://doi.org/10.1016/j.na.2014.02.001 doi: 10.1016/j.na.2014.02.001 |
[5] | M. T. Chen, X. Y. Xu, J. W. Zhang, Global weak solutions of 3D compressible micropolar fluids with discontinuous initial data and vacuum, Commun. Math. Sci., 13 (2015), 225–247. https://doi.org/10.4310/CMS.2015.v13.n1.a11 doi: 10.4310/CMS.2015.v13.n1.a11 |
[6] | H. Chen, Y. M. Sun, X. Zhong, Global classical solutions to the 3D Cauchy problem of compressible magneto-micropolar fluid equations with far field vacuum, Discrete Cont. Dyn. Syst. Ser. B, 29 (2024), 282–318. https://doi.org/10.3934/dcdsb.2023096 doi: 10.3934/dcdsb.2023096 |
[7] | T. G. Cowling, Magnetohydrodynamics, 2 Eds., London: Adam Hilger, 1976. |
[8] | X. Y. Cui, S. B. Fu, R. Sun, F. F. Tian, Optimal decay-in-time rates of solutions to the Cauchy problem of 3D compressible magneto-micropolar fluids, Bound. Value Probl., 2024 (2024), 33. https://doi.org/10.1186/s13661-024-01839-1 doi: 10.1186/s13661-024-01839-1 |
[9] | F. Crispo, P. Marenmonti, An interpolation inequality in exterior domains, Send. Sem. Mat. Univ. Padova., 112 (2004), 11–39. |
[10] | A. C. Eringen, Theory of micropolar fluids, Indiana Univ. Math. J., 16 (1966), 1–18. |
[11] | A. C. Eringen, Theory of thermomicrofluids, J. Math. Anal. Appl., 38 (1972), 480–496. https://doi.org/10.1016/0022-247X(72)90106-0 doi: 10.1016/0022-247X(72)90106-0 |
[12] | A. C. Eringen, Microcontinuum field theories Ⅱ: fluent media, Springer-Verlag, New York, 2001. |
[13] | J. S. Fan, A. Alsaedi, T. Hayat, G. Nakamura, Y. Zhou, On strong solutions to the compressible Hall-magnetohydrodynamic system, Nonlinear Anal., 22 (2015), 423–434. https://doi.org/10.1016/j.nonrwa.2014.10.003 doi: 10.1016/j.nonrwa.2014.10.003 |
[14] | E. Gagliardo, Ulterior proprietà di alcune classi di funzioni in più variabili, Ricerche Mat., 8 (1959), 24–51. |
[15] | J. C. Gao, Z. A. Yao, Global existence and optimal decay rates of solutions for compressible Hall-MHD equations, Discrete Contin. Dyn. Syst., 36 (2016), 3077–3106. https://doi.org/10.3934/dcds.2016.36.3077 doi: 10.3934/dcds.2016.36.3077 |
[16] | H. Homann, R. Grauer, Bifurcation analysis of magnetic reconnection in Hall-MHD systems, Phys. D., 208 (2005), 59–72. https://doi.org/10.1016/j.physd.2005.06.003 doi: 10.1016/j.physd.2005.06.003 |
[17] | S. Kawashima, Systems of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydrodynamics, Ph.D. Thesis, Kyoto University, 1983. https://doi.org/10.14989/doctor.k3193 |
[18] | S. H. Lai, X. Y. Xu, J. W. Zhang, On the Cauchy problem of compressible full Hall-MHD equations, Z. Angew. Math. Phys., 70 (2019), 139. https://doi.org/10.1007/s00033-019-1178-z doi: 10.1007/s00033-019-1178-z |
[19] | S. H. Lai, X. Y. Xu, Global strong solutions for planar full compressible Hall-MHD equations with large initial data, Commun. Math. Sci., 19 (2021), 1913–1943. https://doi.org/10.4310/cms.2021.v19.n7.a7 doi: 10.4310/cms.2021.v19.n7.a7 |
[20] | A. Majda, Compressible fluid flow and systems of conservation laws in several space variables, Vol. 53, New York: Springer, 1984. https://doi.org/10.1007/978-1-4612-1116-7 |
[21] | K. S. Mekheimer, M. A. El Kot, Influence of magnetic field and Hall currents on blood floe through a stenotic artery, Appl. Math. Mech.-Engl. Ed., 29 (2008), 1093–1104. https://doi.org/10.1007/s10483-008-0813-x doi: 10.1007/s10483-008-0813-x |
[22] | A. Matsumura, T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., 20 (1980), 67–104. https://doi.org/10.1215/kjm/1250522322 doi: 10.1215/kjm/1250522322 |
[23] | P. D. Mininni, D. O. Gómez, S. M. Mahajan, Dynamo action in magnetohydrodynamics and Hall magnetohydrodynamics, Astrophys. J., 587 (2003), 472. https://doi.org/10.1086/368181 doi: 10.1086/368181 |
[24] | N. Mujakovi\'c, Global in time estimates for one-dimensional compressible viscous micropolar fluid model, Glas. Mat., 40 (2005), 103–120. https://doi.org/10.3336/gm.40.1.10 doi: 10.3336/gm.40.1.10 |
[25] | N. Mujakovi\'c, Non-homogeneous boundary value problem for one-dimensional compressible viscous micropolar fluid model: a global existence theorem, Math. Inequal. Appl., 12 (2009), 651–662. https://doi.org/10.7153/mia-12-49 doi: 10.7153/mia-12-49 |
[26] | N. Rani, S. K. Tomar, Thermal convection problem of micropolar fluid subjected to hall current, Appl. Math. Model., 34 (2010), 508–519. https://doi.org/10.1016/j.apm.2009.06.007 doi: 10.1016/j.apm.2009.06.007 |
[27] | D. A. Shalybkov, A. V. Urpin, The Hall effect and the decay of magnetic fields, Astron. Astrophys., 321 (1997), 685–690. |
[28] | L. L. Tong, Z. Tan, Optimal decay rates of the compressible magneto-micropolar fluids system in $\mathbb{R}^3$, Commun. Math. Sci., 17 (2019), 1109–1134. https://doi.org/10.4310/CMS.2019.v17.n4.a13 doi: 10.4310/CMS.2019.v17.n4.a13 |
[29] | M. Wardle, Star formation and the Hall effect, Astrophys. Space Sci., 292 (2004), 317–323. https://doi.org/10.1023/B:ASTR.0000045033.80068.1f doi: 10.1023/B:ASTR.0000045033.80068.1f |
[30] | R. Y. Wei, B. L. Guo, Y. Li, Global existence and optimal convergence rates of solutions for 3D compressible magneto-micropolar fluid equations, J. Differ. Equations, 263 (2017), 2457–2480. https://doi.org/10.1016/j.jde.2017.04.002 doi: 10.1016/j.jde.2017.04.002 |
[31] | Z. Y. Xiang, On the Cauchy problem for the compressible Hall-magneto-hydrodynamics equations, J. Evol. Equ., 17 (2017), 685–715. https://doi.org/10.1007/s00028-016-0333-7 doi: 10.1007/s00028-016-0333-7 |
[32] | Q. J. Xu, Z. Tan, H. Q. Wang, Global existence and asymptotic behavior for the 3D compressible magneto-micropolar fluids in a bounded domain, J. Math. Phys., 61 (2020), 011506. https://doi.org/10.1063/1.5121247 doi: 10.1063/1.5121247 |
[33] | Q. Xu, X. Zhong, Strong solutions to the three-dimensional barotropic compressible magneto-micropolar fluid equations with vacuum, Z. Angew. Math. Phys., 73 (2022), 14. https://doi.org/10.1007/s00033-021-01642-3 doi: 10.1007/s00033-021-01642-3 |
[34] | X. Ye, Z. J. Wang, On vanishing limits of the shear viscosity and Hall coefficients for the planar compressible Hall-MHD system, Math. Meth. Appl. Sci., 45 (2022), 3698–3717. https://doi.org/10.1002/mma.8012 doi: 10.1002/mma.8012 |
[35] | P. X. Zhang, Decay of the compressible magneto-micropolar fluids, J. Math. Phys., 59 (2018), 023102. https://doi.org/10.1063/1.5024795 doi: 10.1063/1.5024795 |
[36] | X. Zhang, H. Cai, Existence and uniqueness of time periodic solutions to the compressible magneto-micropolar fluids in a periodic domain, Z. Angew. Math. Phys., 71 (2020), 184. https://doi.org/10.1007/s00033-020-01409-2 doi: 10.1007/s00033-020-01409-2 |
[37] | J. W. Zhang, J. N. Zhao, Some decay estimates of solutions for the 3-D compressible isentropic magnetohydrodynamics, Commun. Math. Sci., 8 (2010), 835–850. https://doi.org/10.4310/CMS.2010.v8.n4.a2 doi: 10.4310/CMS.2010.v8.n4.a2 |