This paper investigates the analysis of $ \mathrm{b} $-generalized skew derivations, denoted as $ \Delta_1 $ and $ \Delta_2 $, within a prime ring $ \mathcal{R} $ with characteristic different from 2. Here, $ \mathcal{Q}_r $ represents the right Martindale quotient ring of $ \mathcal{R} $, and $ \mathcal{C} $ denoted its extended centroid. Additionally, $ \mathcal{L} $ is a noncentral Lie ideal of $ \mathcal{R} $. Assuming $ \Delta_1 $ and $ \Delta_2 $ are nontrivial $ \mathrm{b} $-generalized skew derivations associated with the same automorphism $ \alpha $, the paper aims to explore the detailed structure of these generalized derivations that satisfy the specific equation:
$ p u \Delta_1(u) + \Delta_1(u) u q = \Delta_2(u^2), \ \text{with} \ p + q \notin \mathcal{C}, \; \; \text{for all } u \in \mathcal{L}. $
The above-studied result generalized the already existing results [
Citation: Omaima Alshanqiti, Ashutosh Pandey, Mani Shankar Pandey. A characterization of $ b $-generalized skew derivations on a Lie ideal in a prime ring[J]. AIMS Mathematics, 2024, 9(12): 34184-34204. doi: 10.3934/math.20241628
This paper investigates the analysis of $ \mathrm{b} $-generalized skew derivations, denoted as $ \Delta_1 $ and $ \Delta_2 $, within a prime ring $ \mathcal{R} $ with characteristic different from 2. Here, $ \mathcal{Q}_r $ represents the right Martindale quotient ring of $ \mathcal{R} $, and $ \mathcal{C} $ denoted its extended centroid. Additionally, $ \mathcal{L} $ is a noncentral Lie ideal of $ \mathcal{R} $. Assuming $ \Delta_1 $ and $ \Delta_2 $ are nontrivial $ \mathrm{b} $-generalized skew derivations associated with the same automorphism $ \alpha $, the paper aims to explore the detailed structure of these generalized derivations that satisfy the specific equation:
$ p u \Delta_1(u) + \Delta_1(u) u q = \Delta_2(u^2), \ \text{with} \ p + q \notin \mathcal{C}, \; \; \text{for all } u \in \mathcal{L}. $
The above-studied result generalized the already existing results [
[1] | C. Gupta, On b-generalized derivations in prime rings, Rend. Circ. Mat. Palermo, Ⅱ. Ser., 72 (2023), 2703–2720. https://doi.org/10.1007/s12215-022-00817-9 doi: 10.1007/s12215-022-00817-9 |
[2] | B. Prajapati, C. Gupta, Composition and orthogonality of derivations with multilinear polynomials in prime rings, Rend. Circ. Mat. Palermo, Ⅱ. Ser., 69 (2020), 1279–1294. https://doi.org/10.1007/s12215-019-00473-6 doi: 10.1007/s12215-019-00473-6 |
[3] | V. De Filippis, F. Wei, An engel condition with x-generalized skew derivations on lie ideals, Commun. Algebra, 46 (2018), 5433–5446. https://doi.org/10.1080/00927872.2018.1469028 doi: 10.1080/00927872.2018.1469028 |
[4] | E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc., 8 (1957), 1093–1100. https://doi.org/10.2307/2032686 doi: 10.2307/2032686 |
[5] | M. Brešar, On the distance of the composition of two derivations to the generalized derivations, Glasgow. Math. J., 33 (1991), 89–93. https://doi.org/10.1017/S0017089500008077 doi: 10.1017/S0017089500008077 |
[6] | V. De Filippis, Product of generalized skew derivations on Lie ideals, Commun. Algebra, 49 (2021), 2987–3009. https://doi.org/10.1080/00927872.2021.1887204 doi: 10.1080/00927872.2021.1887204 |
[7] | V. De Filippis, F. Wei, Centralizers of X-generalized skew derivations on multilinear polynomials in prime rings, Commun. Math. Stat., 6 (2018), 49–71. https://doi.org/10.1007/s40304-017-0125-6 doi: 10.1007/s40304-017-0125-6 |
[8] | V. De Filippis, G. Scudo, F. Wei, b-Generalized skew derivations on multilinear polynomials in prime rings, Polynomial Identities in Algebras, 44 (2021), 109–138. https://doi.org/10.1007/978-3-030-63111-6_7 doi: 10.1007/978-3-030-63111-6_7 |
[9] | A. Pandey, G. Scudo, b'-Generalized skew derivations acting as a Jordan derivation on multilinear polynomials in prime rings, Commun. Algebra, 51 (2023), 2658–2672. https://doi.org/10.1080/00927872.2023.2168915 doi: 10.1080/00927872.2023.2168915 |
[10] | M. S. Pandey, A. Pandey, A note on $b$-generalized skew derivations on prime rings, Advances in Ring Theory and Applications, 443 (2022), 87–101. https://doi.org/10.1007/978-3-031-50795-3_7 doi: 10.1007/978-3-031-50795-3_7 |
[11] | B. Dhara, G. S. Sandhu, Hypercommuting conditions of $b$-generalized skew derivations on Lie ideals in prime rings, Ricerche Mat., (2024). https://doi.org/10.1007/s11587-024-00885-2 doi: 10.1007/s11587-024-00885-2 |
[12] | L. Carini, G. Scudo, On Posner's theorem with b-generalized skew derivations on Lie ideals, J. Algebra Appl., 22 (2023), 2350057. https://doi.org/10.1142/S0219498823500573 doi: 10.1142/S0219498823500573 |
[13] | K. I. Beidar, Rings with generalized identities. 3, Vestnik Moskovskogo Universiteta Seriya i Matematika, Mekhanika, 4 (1978), 66–73. |
[14] | T. K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad., 20 (1992), 27–38. |
[15] | C. L. Chuang, T. K. Lee, Identities with a single skew derivation, J. Algebra, 288 (2005), 59–77. https://doi.org/10.1016/j.jalgebra.2003.12.032 doi: 10.1016/j.jalgebra.2003.12.032 |
[16] | V. De Filippis, O. M. Di Vincenzo, Vanishing derivations and centralizers of generalized derivations on multilinear polynomials, Commun. Algebra, 40 (2012), 1918–1932. https://doi.org/10.1080/00927872.2011.553859 doi: 10.1080/00927872.2011.553859 |
[17] | N. Argaç, V. De Filippis, Actions of generalized derivations on multilinear polynomials in prime rings, Algebra Colloq., 18 (2011), 955–964. https://doi.org/10.1142/S1005386711000836 doi: 10.1142/S1005386711000836 |
[18] | C. L. Chuang, The additive subgroup generated by a polynomial, Israel J. Math., 59 (1987), 98–106. https://doi.org/10.1007/BF02779669 doi: 10.1007/BF02779669 |
[19] | J. Bergen, I. N. Herstein, J. W. Kerr, Lie ideals and derivations of prime rings, J. Algebra, 71 (1981), 259–267. https://doi.org/10.1016/0021-8693(81)90120-4 doi: 10.1016/0021-8693(81)90120-4 |
[20] | V. De Filippis, B. Prajapati, S. K. Tiwari, Some generalized identities on prime rings and their application for the solution of annihilating and centralizing problems, Quaest. Math., 45 (2021), 267–305. https://doi.org/10.2989/16073606.2020.1854887 doi: 10.2989/16073606.2020.1854887 |
[21] | T. Erickson, W. S. Martindale, J. M. Osborn, Prime non associative algebras, Pacific J. Math., 60 (1975), 49–63. |
[22] | W. S. Martindale, Prime rings satisfying a generalized polynomial identity, J. Algebra, 12 (1969), 576–584. https://doi.org/10.1016/0021-8693(69)90029-5 doi: 10.1016/0021-8693(69)90029-5 |
[23] | N. Jacobson, Structure of rings, Washington: American Mathematical Society, 1956. |
[24] | C. Faith, Y. Utumi, On a new proof of Litoff's theorem, Acta Mathematica Academiae Scientiarum Hungaricae, 14 (1963), 369–371. https://doi.org/10.1007/bf01895723 doi: 10.1007/bf01895723 |
[25] | L. Carini, V. De Filippis, G. Scudo, Identities with product of generalized skew derivations on multilinear polynomials, Commun. Algebra, 44 (2016), 3122–3138. https://doi.org/10.1080/00927872.2015.1027354 doi: 10.1080/00927872.2015.1027354 |
[26] | T. K. Lee, Generalized derivations of left faithful rings, Commun. Algebra, 27 (1999), 4057–4073. https://doi.org/10.1080/00927879908826682 doi: 10.1080/00927879908826682 |
[27] | I. N. Herstein, Topics in ring theory, Chicago: University of Chicago Press, 1969. |
[28] | O. M. Di Vincenzo, On the n-th centralizer of a Lie ideal, Boll. Unione Mat. Ital., 7 (1989), 77–85. |
[29] | C. Lanski, S. Montgomery, Lie structure of prime rings of characteristic 2, Pac. J. Math., 42 (1972), 117–136. https://doi.org/10.2140/pjm.1972.42.117 doi: 10.2140/pjm.1972.42.117 |
[30] | C. L. Chuang, Gpis having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc., 103 (1988), 723–728. https://doi.org/10.2307/2046841 doi: 10.2307/2046841 |
[31] | C. J. Hou, W. M. Zhang, Q. Meng, A note on ($\alpha$, $\beta$)-derivations, Linear Algebra Appl., 432 (2010), 2600–2607. https://doi.org/10.1016/j.laa.2009.12.008 doi: 10.1016/j.laa.2009.12.008 |