Research article Special Issues

The $ L_1 $-induced norm analysis for linear multivariable differential equations

  • Received: 20 September 2024 Revised: 26 November 2024 Accepted: 29 November 2024 Published: 04 December 2024
  • MSC : 39A06, 40A25, 45A05, 65L03, 93-08, 93C05, 93C55

  • In this paper, we consider the $ L_1 $-induced norm analysis for linear multivariable differential equations. Because such an analysis requires integrating the absolute value of the associated impulse response on the infinite-interval $ [0, \infty) $, this interval was divided into $ [0, H) $ and $ [H, \infty) $, with the truncation parameter $ H $. The former was divided into $ M $ subintervals with an equal width, and the kernel function of the relevant input\slash output operator on each subinterval was approximated by a $ p $th order polynomial with $ p = 0, 1, 2, 3 $. This derived to an upper bound and a lower bound on the $ L_1 $-induced norm for $ [0, H) $, with the convergence rate of $ 1/M^{p+1} $. An upper bound on the $ L_1 $-induced norm for $ [H, \infty) $ was also derived, with an exponential order of $ H $. Combining these bounds led to an upper bound and a lower bound on the original $ L_1 $-induced norm on $ [0, \infty) $, within the order of $ 1/M^{p+1} $. Furthermore, the $ l_1 $-induced norm of difference equations was tackled in a parallel fashion. Finally, numerical studies were given to demonstrate the overall arguments.

    Citation: Junghoon Kim, Jung Hoon Kim. The $ L_1 $-induced norm analysis for linear multivariable differential equations[J]. AIMS Mathematics, 2024, 9(12): 34205-34223. doi: 10.3934/math.20241629

    Related Papers:

  • In this paper, we consider the $ L_1 $-induced norm analysis for linear multivariable differential equations. Because such an analysis requires integrating the absolute value of the associated impulse response on the infinite-interval $ [0, \infty) $, this interval was divided into $ [0, H) $ and $ [H, \infty) $, with the truncation parameter $ H $. The former was divided into $ M $ subintervals with an equal width, and the kernel function of the relevant input\slash output operator on each subinterval was approximated by a $ p $th order polynomial with $ p = 0, 1, 2, 3 $. This derived to an upper bound and a lower bound on the $ L_1 $-induced norm for $ [0, H) $, with the convergence rate of $ 1/M^{p+1} $. An upper bound on the $ L_1 $-induced norm for $ [H, \infty) $ was also derived, with an exponential order of $ H $. Combining these bounds led to an upper bound and a lower bound on the original $ L_1 $-induced norm on $ [0, \infty) $, within the order of $ 1/M^{p+1} $. Furthermore, the $ l_1 $-induced norm of difference equations was tackled in a parallel fashion. Finally, numerical studies were given to demonstrate the overall arguments.



    加载中


    [1] G. I. Song, H. Y. Park, J. H. Kim, The $H_\infty$ robust stability and performance conditions for uncertain robot manipulators, IEEE-CAA J. Autom. Sinica, 12 (2025), 1–3.
    [2] N. Strijbosch, G. E. Dullerud, A. R. Teel, W. P. M. H. Heemels, $L_2$-gain analysis of periodic event-triggered control and self-triggered control using lifting, IEEE Trans. Autom. Control, 66 (2022) 3749–3756. https://doi.org/10.1109/TAC.2020.3025304
    [3] O. R. Kang, J. H. Kim, The $l_\infty$-induced norm of multivariable discrete-time linear systems: upper and lower bounds with convergence rate analysis, AIMS Math., 8 (2023), 29140–29157. https://doi.org/10.3934/math.20231492 doi: 10.3934/math.20231492
    [4] D. Kwak, J. H. Kim, T. Hagiwara, Robust stability analysis of sampled-data systems with uncertainties characterized by the $L_\infty$-induced norm: gridding treatment with convergence rate analysis, IEEE Trans. Autom. Control, 68 (2023), 8119–8125. https://doi.org/10.1109/TAC.2023.3288631 doi: 10.1109/TAC.2023.3288631
    [5] D. Kwak, J. H. Kim, T. Hagiwara, Generalized framework for computing the $L_\infty$-induced norm of sampled-data systems, Appl. Math. Comput., 437 (2023), 127518. https://doi.org/10.1016/j.amc.2022.127518 doi: 10.1016/j.amc.2022.127518
    [6] J. H. Kim, T. Hagiwara, The generalized $H_2$ controller synthesis problem of sampled-data systems, Automatica, 142 (2022), 110400. https://doi.org/10.1016/j.automatica.2022.110400 doi: 10.1016/j.automatica.2022.110400
    [7] H. T. Choi, H. Y. Park, J. H. Kim, Output-based event-triggered control for discrete-time system with three types of performance analysis, AIMS Math., 8 (2023), 17091–17111. http://dx.doi.org/10.3934/math.2023873 doi: 10.3934/math.2023873
    [8] H. Y. Park, H. T. Choi, J. H. Kim, The $l_{\infty/p}$-gains for discrete-time observer-based event-triggered systems, Int. J. Robust Nonlinear Control, 33 (2023), 6121–6134. https://doi.org/10.1002/rnc.6685 doi: 10.1002/rnc.6685
    [9] G. Vossen, H. Maurer, On $L1$-minimization in optimal control and applications to robotics, Optim. Control Appl. Methods, 27 (2006), 301–321. https://doi.org/10.1002/oca.781 doi: 10.1002/oca.781
    [10] V. Barbu, M. Iannelli, Optimal control of population dynamics, J. Optim. Theory Appl., 102 (1999), 1–14. https://doi.org/10.1023/A:1021865709529 doi: 10.1023/A:1021865709529
    [11] F. Saldaña, A. Kebir, J. A. Camacho-Gutièrrez, M. Aguiar, Optimal vaccination strategies for a heterogeneous population using multiple objectives: the case of $L1$-and $L2$- formulations, Math. Biosci., 366 (2023), 109103. https://doi.org/10.1016/j.mbs.2023.109103 doi: 10.1016/j.mbs.2023.109103
    [12] M. Xiang, Z. Xiang, Stability, $L_1$-gain and control synthesis for positive switched systems with time-varying delay, Nonlinear Anal.-Hybrid Syst., 9 (2013), 9–17. https://doi.org/10.1016/j.nahs.2013.01.001 doi: 10.1016/j.nahs.2013.01.001
    [13] W. Xiang, J. Lam, J. Shen, Stability analysis and $L_1$-gain characterization for switched positive systems under dwell-time constraint, Automatica, 85 (2017), 1–8. https://doi.org/10.1016/j.automatica.2017.07.016 doi: 10.1016/j.automatica.2017.07.016
    [14] G. Zong, W. Qi, H. R. Karimi, $L_1$ control of positive semi-markov jump systems with state delay, IEEE Trans. Syst. Man Cybern. -Syst., 51 (2021), 7569–7578. https://doi.org/10.1109/TSMC.2020.2980034 doi: 10.1109/TSMC.2020.2980034
    [15] Y. Ebihara, D. Peaucelle, D. Arzelier, Analysis and synthesis of interconnected positive systems, IEEE Trans. Autom. Control, 62 (2017), 652–667. https://doi.org/10.1109/TAC.2016.2558287 doi: 10.1109/TAC.2016.2558287
    [16] X. Chen, Analysis and synthesis of positive systems under l1 and L1 performance, 1 Ed., Springer, 2017. http://doi.org/10.1007/978-981-10-2227-2
    [17] A. Linnemann, Computing the $L_1$-norm of continuous-time linear systems, SIAM J. Control Optim. 46 (2007), 2052–2070. https://doi.org/10.1137/040613482
    [18] J. Kim, D. Kwak, J. H. Kim, Computing the $L_1$-induced norm of sampled-data systems, IEEE Conf. Decis. Cont., in press, 2024.
    [19] V. Chellaboina, W. M. Haddad, D. S. Bernstein, D. A. Wilson, Induced convolution operator norms of linear dynamical systems, Math. Control, Signals Syst., 13 (2000), 216–239. https://doi.org/10.1007/PL00009868 doi: 10.1007/PL00009868
    [20] D. A. Wilson, Convolution and hankel operator norms of linear systems, IEEE Trans. Automa. Control, 34 (1989), 94–97. https://doi.org/10.1109/9.8655 doi: 10.1109/9.8655
    [21] J. H. Kim, T. Hagiwara, Computing the $L_\infty[0, h)$-induced norm of a compression operator via fast-lifting, Syst. Control Lett., 67 (2014), 1–8. http://doi.org/10.1016/j.sysconle.2014.01.009 doi: 10.1016/j.sysconle.2014.01.009
    [22] J. H. Kim, T. Hagiwara, Computing the $L_\infty$-induced norm of linear time-invariant systems via kernel approximation and its comparison with input approximation, IET Control Theory Appl., 9 (2015), 700–709. http://doi.org/10.1049/iet-cta.2014.0453 doi: 10.1049/iet-cta.2014.0453
    [23] M. Ilyas, N. Abbas, M. UbaidUllah, W. A. Imtiaz, M. A. Q. Shah, K. Mahmood, Control law design for twin rotor MIMO system with nonlinear control strategy, Discrete Dyn. Nat. Soc., 2016 (2016), 2952738. https://doi.org/10.1155/2016/2952738 doi: 10.1155/2016/2952738
    [24] [110.1109/ICPCES.2012.6508113] B. Pratap, A. Agrawal, S. Purwar, Optimal control of twin rotor MIMO system using output feedback, Proceedings of the 2nd International Conference on Power, Control and Embedded Systems, 2012, 1–6. http://doi.org/10.1109/ICPCES.2012.6508113
    [25] T. Chen, B. A. Francis, Optimal sampled-data control systems, Springer Science & Business Media, 2012. https://doi.org/10.1007/978-1-4471-3037-6
    [26] H. Y. Park, J. H. Kim, K. Yamamoto, A new stability framework for trajectory tracking control of biped walking robots, IEEE Trans. Ind. Inform., 18 (2024), 6767–6777. https://doi.org/10.1109/TII.2021.3139909 doi: 10.1109/TII.2021.3139909
    [27] H. Y. Park, J. H. Kim, The $l_1$ optimal state estimator for load frequency control of power systems: A comparative and extensive study, IEEE Access, 10 (2022), 120680–120689. https://doi.org/10.1109/ACCESS.2022.3222487 doi: 10.1109/ACCESS.2022.3222487
    [28] D. Kwak, J. H. Kim, T. Hagiwara, A new quasi-finite-rank approximation of compression operators on $L_\infty[0, H)$ with applications to sampled-data and time-delay systems: piecewise linear kernel approximation approach, J. Frankl. Inst., 361 (2024), 107271. https://doi.org/10.1016/j.jfranklin.2024.107271 doi: 10.1016/j.jfranklin.2024.107271
    [29] S. Long, Y. Zhang, S. Zhong, New results on the stability and stabilization for singular neutral systems with time delay, Appl. Math. Comput., 473 (2024), 128643. https://doi.org/10.1016/j.amc.2024.128643 doi: 10.1016/j.amc.2024.128643
    [30] H. T. Choi, J. H. Kim, Set-invariance-based interpretations for the $L_1$ performance of nonlinear systems with non-unique solutions, Int. J. Robust Nonlinear Control, 33 (2023), 1858–1875. https://doi.org/10.1002/rnc.6469 doi: 10.1002/rnc.6469
    [31] H. T. Choi, J. H. Kim, The $L_1$ controller synthesis for piecewise continuous nonlinear systems via set invariance principles, Int. J. Robust Nonlinear Control, 33 (2023), 8670–8692. https://doi.org/10.1002/rnc.6843 doi: 10.1002/rnc.6843
    [32] H. T. Choi, J. H. Kim, T. Hagiwara, Characterizing $L_1$ output feedback controller for nonlinear systems: existence conditions via output controlled invariance domain, Int. J. Robust Nonlinear Control, 34 (2024) 11760–11785. https://doi.org/10.1002/rnc.7589
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(256) PDF downloads(45) Cited by(0)

Article outline

Figures and Tables

Figures(1)  /  Tables(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog