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1. Introduction

In this paper, we are interested in the mathematical analysis of the equations in a viscous, electrically
conducting, micropolar fluids in the presence of a magnetic field, taking into account the effect of Hall
current. When the strength of the magnetic field is sufficiently large, Ohm’s law J = o(E + u X b)
needs to be modified to include Hall current so that the electric current density J satisfies the relation

=)

J+a)e‘re(J><b):O'(E+u><b+
en,

where E, b, and u stand for the electric field, magnetic induction, and the fluid velocity, respectively.
W,,T.,0,e, and p, are the cyclotron frequency of electrons, electron collision time, electric
conductivity, electron charge, and electron pressure, respectively (see [7, p.101]). Then the electric
field E can be written as

1
Vpe.
en,

1
E=—(J+wrJxb)-uxb-
o
Faraday’s and Ampere’s laws yield

0b+VXE=0, VXxb=u,l,
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where p, is the magnetic permeability constant. Thus, the generalized magnetic induction equation
with the Hall effect has the following form:
1

61b+V><(lu0_

(V><b+weTeV><b><b)):Vx(uxb).

The theory of micropolar fluids was developed by Eringen [10-12] and a generalization including
the effects of magnetic fields has been developed by Ahmadi and Shahinpoor [2]. It has important
engineering applications, such as in the extraction of oils/gas from oil fields, fluid flow in chemical
engineering and magnetohydrodynamic (MHD) generators with neutral fluid seeding in the form of
rigid microinclusions (see [12] and the references therein).

This paper is concerned with the mathematical analysis of the equations describing the flow in
viscous, electrically conducting, micropolar fluids in the presence of a magnetic field, taking into
account the effect of Hall current. The three-dimensional (3D) compressible, viscous micropolar fluids
subject to Hall current occupying a domain Q c R? are given by

o, + div(ou) = 0,
(ou), + div(ou ® u) + Vp(p)
=W +OHAu+ (U + 4, — OHVdiva + 2V x w + (V x b) X b,
(oW), + div(ou ® W) + 4W = (iAW + (s + Ao)Vdivw + 20V x u, (LD
V x b) x b
b,—Vx(uxb)+ﬁVx(%) — VAb,
divh = 0.

Here, p > 0,u = (u', u?,u?),w = W', w?, w?) and b = (b', b*, b*) stand for the density, velocity, micro-
rotational velocity and magnetic field, respectively. p(p) = ap” (a > 0, v > 1) is the pressure. The
constants u; and A; denote the shear and bulk viscosity coefficients, £ is the dynamics micro-rotation
viscosity, u,, and A, are the angular viscosities, v is the magnetic diffusivity of the magnetic field and
B is the Hall coeflicient, and they satisfy

ur >0, >0,0>0,v>0,>0, 2u; +34,-40>0, 2u;+31>0.
Let Q = R3. We consider the Cauchy problem of (1.1) with the far-field behavior
(p.u, W, b)(x, t)‘mm - (1,0,0,0, 30, (1.2)
and the initial data

(o, u, W, b)(x, t)‘z:o = (po, Wp, Wy, bp)(x), x € R’ (1.3)

Micropolar fluids are fluids with microstructures belonging to a class of fluids with a nonsymmetric
stress tensor. They exhibit micro-rotation effects and micro-rotational inertia. Liquids, fluids with
additives, some polymeric fluids, colloidal fluids, and animal blood are a few examples of micropolar
fluids. The theory of micropolar fluids was introduced by Eringen [10] and subsequently extended
widely to the case of electrically conducting fluids in the magnetic field and to polarized fluids in an
electric field. With the deepening of the research of micropolar fluid theory, the fluids considering the
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Hall effect attracted more and more attention. It has important engineering applications, such as in the
extraction of oils/gas from oil fields, fluid flow in chemical engineering, and magnetohydrodynamic
generators with neutral fluids seeding in the form of microinclusions.

There is much literature on the Cauchy problems of the micropolar system. If the magnetic field b =
0, then the system (1.1) reduces to the classical micropolar fluid system, which has been successfully
applied for modeling rheologically complex liquids such as blood and suspensions (see, e.g., [10-12]).
Physically it may represent the fluids consisting of bar-like elements. Mujakovié [24, 25] studied the
one-dimensional problem. Amirat, Hamdache [3] proved the existence of a global weak solution in a
bounded domain in R*. Later, Chen et al. [5] obtained the global weak solutions of 3D compressible
micropolar fluids with discontinuous initial data and vacuum.

From the mathematical viewpoint, the system (1.1) becomes the classical compressible magneto-
micropolar fluids provided § = 0. Compared with the classical magneto-micropolar fluids, the
system (1.1) has the Hall term W in (1.1)4, which is very important in describing many phenomena
such as magnetic reconnection in space plasmas, star formation, neutron stars and geo-dynamo
(see [16,23,27,29] and references therein). When the Hall term is neglected, the system (1.1) reduces
to the well-known compressible magneto-micropolar fluid system, which has received many studies
(see [17, 28,30, 32,33, 35,36]). Wei et al. [30] established the existence of global-in-time smooth
solutions under the condition of the small perturbations of initial data in H>-norm and also obtained
the long-time behavior of magneto-micropolar fluids. Based on the time-weighted energy estimate,
Zhang in [35] proved the asymptotic stability of steady state with the strictly positive constant density,
vanishing velocity, micro-rotational velocity, and magnetic field. Their results were later improved by
Tong and Tan [28], where they showed that the solution of the magneto-micropolar fluids converges to
its constant equilibrium state at the exact same L*-decay rate as the linearized equations, which shows
that the convergence rate is optimal (see [6, 8,35] for related results).

If we consider the effects of the Hall term in the MHD system, Xiang [31] investigated the large-
time behavior of solutions to the 3D compressible Hall magneto-hydrodynamics equations in addition,
he also obtained that the smooth solution of the compressible Hall-magneto-hydrodynamics system
converges globally in time to the smooth solution of the compressible magneto-hydro-dynamics system
as B — 0. Later, Lai et al. [18] considered the 3D compressible full Hall-MHD equations, and they
obtained the global existence and optimal decay rates when the initial data are appropriately small.
Lai and Xu [19] established the global existence of strong solutions for planar compressible, viscous,
heat-conductive Hall-MHD equations with large initial data (see also [13, 15,34] for related results).

For the magneto-micropolar fluids with Hall term, it has attracted the attention of many physicists
and mathematicians due to their important background, rich phenomena, mathematical complexity, and
challenges (see [4,21,26]). Mekheimer and El Kot [21] investigated the influence of magnetic field
and Hall current on blood flow through a stenotic artery. Rani and Tomar [26] investigated the thermal
instability of a micropolar fluid layer heated from below in the presence of the Hall current, and showed
that the Hall current parameter has a destabilizing effect on the system. Amirat and Hamdache [4]
studied the system, which is a combination of the generalized magnetic induction, the equations of
micropolar fluids, and the temperature equation, and obtained the global existence of weak solutions
in a bounded domain of R?.

Motivated by the results as in [4, 18,31], the aim of this paper is to study the large-time behavior of
solutions to the 3D compressible micropolar fluids subjected to Hall current. Before stating the main
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results, we explain the notation and conventions used throughout this paper. We denote

ff(x) dx:fR3f(x) dx.

For 1 < r < oo,k € Z and a@ > 0, we denote the standard homogeneous and inhomogeneous Sobolev
spaces:

e | VAl < 0o}, [lallper = [IV¥ullL,

L'=L'[R3, D"={uel!
Wer=LraDk,  HY= Wk, DF=DF, D'={ueL®|||Vul < oo}

We use (-, -) to denote the inner product over the Hilbert space L*(R?), i.e.,

(fog) & fR Fg .

and set
IS, Ol = Sl zr sy + 118l Er w3y for p > 0.

We now state the definition of strong solutions of (1.1)—(1.3) as follows.

Definition 1.1. A pair of functions (p,u, w,b) is called a strong solution to the problem (1.1)—(1.3) in
R3 X (0, 00), if and only if (p,u, w, b) satisfies (1.1) almost everywhere in R x (0, o), and belongs to
the following class of functions in which the uniqueness can be shown to hold

p—1€eC(0,T];H) N L*0,T; H"), inf  p(x,1) >0,
(x,H)€R3%(0,00)
(u,w,b) € C([0, T]; H*) N L*(0,T; HY),
forany 0 < T < co.

Now, we state our main results as follows. First, we will give the global existence and decay rates
of strong solutions of the system (1.1) as follows.

Theorem 1.1. 1. Global existence. Suppose that (py — 1,0, Wy, by) € H>. Then there exists a positive
constant &, depending only on ||[V*(py — 1,u9, Wo, bo)llgt, w1, A1, &5 1, A2, v,y, and a, such that the
system (1.1)—(1.3) possesses a unique global strong solution (p,u, w,b) on R? x (0, o) satisfying

I = 1w, w. b)) + fo (VP12 + (T, Tw, VD)(s)II: )ds

2
< C”(PO - 15“09 Wo, b0)||H3’

(1.4)

forall t > 0, provided
(oo — 1, ug, Wo, bo)llzn < &, (1.5)

where the positive constant C is independent of 8 and t.

I1. Decay rates. Assume further that (oo — 1,9, Wo, bo) € L'. Then there exists a positive constant
g1 € (0, &9, depending on ||[V*(py — 1,9, Wo, bl and ||(po — 1, ug, Wo, bo)ll.1, such that for any t > 0

3 m
V(o — Lu,w,b)0ll: < €1+ 032, m=o0,1, (1.6)
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and that for any t > T with T > 0 being large enough and depending on ||V*(po — 1, ug, Wo, bl and
(oo — 1, 1o, Wo, bo)llz1,

7
20 _ S -1
{II(V (= Lu, w2 <C(1 +1) 4, (1.7)

3 m
Vbl < €A+ 073D, m=23,
provided ||(po — 1, a9, Wo, bo)l|z1 < &1.

Remark 1.1. It was worth noting that all of our estimates are uniform in the Hall coefficient S in
Theorem 1.1.

Remark 1.2. Compared with the decay estimates of the linear system (cf. Lemma 2.1), the decay
rates stated in the second part of Theorem 1.1 are optimal, except for the one of ||V3(p — 1,u, w, b)||,2.
Indeed, if (oy — 1, up, Wy, bg) € H” with m > 4, then the optimal decay rates of the solutions can be
obtained up to the (m — 1)-th order derivatives of (o — 1, u, w, b) and the m-th order derivatives of b. The
lack of the optimal decay estimates of ||[V"(p—1,u, w, b)||;2 is mainly due to the insufficient dissipation
of density and the strong coupling of fluid quantities.

Next, we will show that the unique smooth solution of the 3D compressible micropolar fluids
subjected to Hall current converges globally in time to a smooth solution of the 3D compressible
magneto-micropolar system as the Hall coefficient 5 — 0.

Theorem 1.2 (Vanishing Hall limit). Suppose that (0°, v, wP,b?) and (0°,u’, w°, b°) are two smooth
solutions to Eq (1.1) obtained in Theorem 1.1 corresponding to B > 0 and 8 = 0, respectively. Then
forany T € (0, ), it holds that

L=’ ¥ -u’, w-ow and b —Db° in C([0, T]; H?), (1.8)
as 3 — 0. Moreover, there exists a positive constant ¢ depending on T such that

sup [l(0° = %, v —u’, W’ — WO, b’ =)D, < B (1.9)

t€[0,T]

The proofs of Theorems 1.1 and 1.2 are similar to the ones in [18,31,37], based on the standard L*-
method and the origin ideas developed by Matsumura and Nishida [22]. It is worth noting that though
the H'-perturbation of initial data is small, the higher-order derivatives could be of large oscillations.
Compared with the results in [37], where the authors only obtained the optimal decay estimates for the
LP-norm (p € [2, 6]) of the solution and the L*-norm of its first-order derivative, the decay rates of both
I(V2p, V*u, V>w, V2b)(1)||,2 and ||V>b||;> for large t > O are also optimal in the present paper. This will
be achieved by making full use of the H'-decay estimates and the Sobolev interpolation inequalities
(see (3.81) and (3.82)). The key point here is that all the estimates are uniform in the Hall coefficient .

2. Reformulation

In this section, the global strong solutions near the state (1, 0, 0, 0) to the Cauchy problem (1.1)—(1.3)
will be constructed. Define

o=p-1, v
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Then, the quantities (o, v, w, h) satisfy

o; +divv = Ry,
V,—(/Jl +{)AV - (/11 + A —é)Vdin+a’}/VQ—2{VX(U =R,
Wy — o Aw — (U + )Vdivw + 4w — 2(V X v = R;,

_ (2.1)
h,—vAh =R;, divh =0,
(Qa v, W, h)|t:O = (Q07 Vo, Wo, hO) = (pO - 1’ Ugp, Wo, bO)’
(QO’ Vo, Wo, hO) - (Oa 0’ 0’ O)’ as |x| — 00,
where the functions R;, R,, R3, and R, are defined as
Ry £ —odivy —v - Vp,
Ry % —v -V = f(0)| (1 + DAV + (uy + Ay - H)Vdivy|
+8(0)(V X h) X h — h(0)Vo - 2{ f(0)V X w, 2.2
Rs £ —v - Vo - f(0)|tAw + (1 + 1) Vdive] ’
+4{ f(0)w — 2L f(0)V X v,
Ry 2 —v - Vh - hdivy + h - Vv - BV x| 2(@)[(V x k) X h]|.
and f(0), g(0), and h(o) given by
A Q A 1 A -2
N L0 2 12 -1). 2.
f@* 17 8@ and he)=ay(ie+17*-1) (23)

The left-hand side of (2.1) is indeed the linearized magneto-micropolar fluid equations. Thus, the
L? — L? time decay property of the linearized magneto-micropolar fluid equations of (2.1) can be
obtained in similar arguments as used in [35, Theorem 2.1]. Thus, we can rewrite the solution of (2.1)
as

!
V(t) = eV + f e LR, Ry, Ry, Ry)dT,
0

where V £ (0,v, w, h), Vy £ (00, vy, wo, hy), and L is a matrix-valued differential operator given by

0 div 0 0
|7V G+ OA= G+ Ay - OV —2LVX 0 .
0 —2VX 47 — A — (1 + L)Vdiv - 0 ‘
0 0 0 yA

Therefore, due to [35], we have the following lemma.

Lemma 2.1. Suppose that Vo € L' N H>. Let V £ V(x, 1), be the smooth solution of V, + LV = 0. Then
foranym e {0,1,2,3,4},

3 .m
9" V@llz < A+ 07 ES(Volly + 197 Voll,2), 25)
where C > 0 is a generic constant depending only on uy, Ay, , up, A, and v.

AIMS Mathematics Volume 9, Issue 12, 34147-34183.



34153

Lemma 2.1, together with the Duhamel principle, gives rise to the following lemma.
Lemma 2.2. Assume that a quadruple of (0, v, w, h) is the smooth solution of (2.1) with the initial data
(00, Vo, Wo, ho) € L' N H>. Then for anym €0, 1,2, 3,

3, m
19" (0.7, . WOl < €1+ 175 D0, vo. w0, o)l
+ Cf(l +1—1) 4" 2/||(Ry, R, R3, R\l A T,
0
where C > 0 is a generic constant depending only on uy, Ay, {, tp, A, and v.

Next, we will give the product and commutator estimates, which can be found in [20].

Lemma 2.3. Suppose that f and g are the smooth functions in the Schwartz class. Then, for any s > 0
and 1 < p < +oo, there exists a generic positive constant C such that

ID*(f)ller < C(Ilfllm 1Dl + IIDSfIILszIgIIqu), 2.7)

and
ID*(fg) — fDgllr < C(”Vf”LPl ID* gl + IIDSfIILszIgIIqu), (2.8)

where py, p, > 1 satisfying

1 1 1 1 1
P P q P2 92

The following lemma, which can be found in [37], is essential for deriving the decay rates.

Lemma 2.4. Suppose that a, b, c € R satisfy a € [0,b],b € (1,0) and ¢ € (0, 00). Then, there exists a
positive constant C, depending only on a, b, and c, such that for any t > 0,

! !
f (1+1—7)7%0 +7)dr + f (1+1) %" dr < C(1 + 1) (2.10)
0 0

Finally, we recall the local existence theorem of (1.1)—(1.3) (also cf. Egs (2.1)—(2.3)), which can be
proved in a similar way to [13].

Lemma 2.5. Suppose that the initial data satisfies

(0o — 1.ug, Wo,bo) € H®, inf po(x) > 0, divhy = 0. @.11)
xeR3

Then there exists a small positive time T, such that the problem (1.1)—(1.3) possesses a unique classical
solution (p,u, w,b) on R x [0, T,] satisfying

(p — 1,u,w,b) € C([0, T.]; H*) N L*(0, T,; HY), inf  p(x,1) > 0. (2.12)
(x,H)ER3X[0,T,]

Proof. In order to prove Lemma 2.5, we denote the Banach space
B = {a s < K}
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with the form

[allg = 1l 0.7:m3) + 0l 200,714 + 10| Lo 0,711y + 110 120072 12)- (2.13)

Let i, w, b be given, the linear problem of (1.1)—(1.3) can be written as
o; + div(pi) = 0, |llim o(x, 1) =1,
o, 0) = po,
ou; + pu - Vu + Vp(p)
=W +OHAu+ (u; + 4, — OHVdivu + 2V x w + (V x b) X b,

u(-,0) = up, Iim u(x, ) =0,

.0 =, lim u(en o1
PW, + pll - VW + 4w = i AW + (U + Ao)Vdivw + 20V X 1,
w(-,0) = wy, |llim w(x, 1) =0,

(Vxb)xb
(2

b,—Vx@{@xb)+pVx = vAb, divb = 0,

b(-,0) = by, ‘llim b(x,1)=0.
Let (u, w, b) be the unique strong solution to the problem (2.14). We define the fixed point map:
F :(@1,W,b) e BXBxB— (u,w,b) e BXxBx B

with
(-, 0) = uy, W(-,0) = wo, b(-,0) = by, divh = 0, |1|im @, w,b) = (0,0,0).

We will prove the map # mapping B X B X B into B X B X B for suitable constant K and small 7', and
¥ is a contraction mapping on B X B X B, and thus ¥ has a unique fixed point in 8 X B x B. In order
to do this, we will divide the proof into five steps.

Step 1. For given @t € B, we will prove that for some small 0 < 7 < 1, the problems (2.14),
and (2.14), has a unique solution p satisfying

C'<p<C, |Vpllisorm <C. lloill~orm < CK, (2.15)

here and later on, C will denote a constant independent of K.
Since (2.14), is linear with regular 11, the existence and uniqueness are well-known. We only need
to establish (2.15). In order to prove (2.15), we know from (2.14), that

!
p(x, 1) = po exp( — f divﬁds), (2.16)
0

which yields

T T
inf po exp (- f Idivill|dt) < p(x, 7) < sup py exp( f iVl dt),
0 0
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thus
Cinfpy < infpgexp (- CKT”z) < p(x, 1) < sup ppexp (CKT”Z) < Cllooll e

provided that KT'?> < 1and T < 1.
In a similar way, we use (2.16) to denote the expression of Vp, Ap and VAp, and then give the
estimation of Vp, Ap, and VAp as follows:

t T
IVpllooriee) < Cexp( f Idival~ds)(1 + f 16l2dlr)
0 0

<C(+TK)<C,

T T T
. » - 2
18llz 0.7 < C exp( f Idivalldr)| 1 + f Gl + ( f llzdr) |
0 0 0
<C+T'"K+TK*) <C,

and

T T T
Lo 5 B 2
IV A2 < Cexp ( f Idivil]«dr)[ 1 + f 16|t + ( f 6| dit) |
0 0 0
<C(1+T"K+T*kK*<C,

provided that T'?K < 1 and T < 1.
Similarly,

< [[allze .7 IVolleo,r;2) + llollz=0.7:2)ldiva]| =0, 7,12y < CK,
I|th||L°°(0,T;L2) < ||ﬁ||L°°(0,T;H2)||VP||L°°(0,T;H1) + ||p||L°°(0,T;L°°)||ﬁ”L°°(O,T;H2) < CK,
||V2pt||L°°(0,T;L2) <
provided that KT'? < 1 and T < 1, and thus (2.15) hold.

||Pt||L°°(0,T;L2)
Q|2 0.7.52) IVl Lo 0.1:12) + IOl 0,729 10| o 0. 7.13) < CK,

Step II. For given i1,b € B, we will prove that for some small 0 < 7 < 1, the problem (2.14),
and (2.14)g have a unique solution b satisfying

||b||L°°(0,T;H3) + ||b||L2(0,T;H4) + ||bt||L°°(O,T;H') + ||bz||L2(0,T;H2) < Cy. (2.17)

Since (2.14); is linear with regular p, @, and b, the existence and uniqueness are well-known we
only need to establish (2.17). In order to prove (2.17), we multiply (2.14); by b and integrate over R>,
after integration by parts, we have from the Gronwall inequality that

Bl 0.7:.22) + 1Bl 20,7211y < C,s

provided that K>T < 1.
Applying A to (2.14)7, and then multiplying it by Ab, after integration by parts, we get

1d 5 5
EEI'A’" dx+f|VAb| dx

:fA(ﬁxb)~A(be)dx—fAW~A(V><b)dx

=J1 + Jh.
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We bound J; as follows:
- 1
Ji <A@ X D)2 1|ACV X b)ll2 < CK||b|52|IVADI|2 < ZIIVAbIIiz + CK?|1bI7,.

Using (2.15), we bound J, as follows:

2Zal.(v x b) x 0;b

Jzz—f((VXl:))XAb+ " p JA(V x b)dx

—f[A%-((be)xl?)+2V})-V((be)xi))]-A(be)dx

< CK||ABIIVABILY + CKIIAD|| 2| VAB),2

—IIVAbII2 + CK*||AB|17,
Due to the Gronwall inequality, one has

bl ~,7:12) + bl 20 7.0 < Ci,s

provided that K*T + K*T < 1.
Applying VA to (2.14);, then multiplying it by VAb, after integration by parts, we get from Gronwall
inequality that
bl o 0,7:m%) + Bl 207,14 < Ci,s

provided that K°T + K*T + K*T < 1.
Applying 0, to (2.14)7, then multiplying it by d,b, after integration by parts, we infer that

2dt f |b,|>dx + f IVb,[>dx

- f@,(ﬁ % b) - (V X b,)dx — fatw - (V x b))dx

(8.l 21181l + I18l-1B,l122)IIV X byl
+ C(10l BNV X Bllzs + 18DV X Blls IV X bill2

—||Vb,||2 +CK? + CK* + CK(|0,BII2. + VA1, ).
Using Gronwall’s inequality, one has
Dl o0.7:02) + 1Bell20.7:11) < Ch,s

provided that K*T < 1. In the same way, applying Ad; to (2.14);, then multiplying it by Ab,, after
integration by parts, we get from Gronwall’s inequality that

Wbl .71ty + 1Bl 200,7:02) < Ci,

provided that K®T < 1, which yields (2.17).
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Step III. For given p, it € B, we will prove that for some small 0 < T < 1, the problems (2.14)s
and (2.14)s have a unique solution w satisfying

Wl 0.7:m3) + Wl 220, 7:0%) + IWill oo,y + IWell 2207302y < Ca. (2.18)

Since (2.14)s in linear with regular p and @, the existence and uniqueness are well-known, we only
need to establish (2.18). In order to prove (2.18), we multiply (2.14)s by w and integrate over R3. After
integration by parts, we have

1d
2dt
= 2§fV xa-wdx < Cl|Vil|2[wll2 < Cliwllz2,

plwl2dx + f |2l VWP + (a2 + D)ldivwl® + 4w P |dx

which, yields
||W||L°°(0,T;L2) + ||W||L2(0,T;H1) < Co.

Multiplying (2.14)s by w, and integrating over R?, after integrating by parts, one deduces
from (2.15) that

1d
2dt
:fpﬁ-Vw-Wtdx+2§foﬁ-w,dx

~ 1/2 ~
< Cllall =1V Wli2llo" Wil + CIIVl| 2wl

|1l VW + (2 + Ao)ldivw]® + 471wl |dax + f olwi|Pdx

1
< Ellp”zwtlliz +C + CK*||VwII7,,

which gives
Wil 0.0 + Wl 20.7:22) < Ca,

provided K*T < 1.
Applying d; to (2.14)s, then multiplying it by d,w and integrating over R, after integrating by parts,
one deduce

1d
2dt
< CK’|lp"*will2 + CK?,

plw,dx + f |12l VWi + (i + A)ldivw, + 421w, |dx

which gives
Wl 0,702y + IWell 200,701y < Ca,

provided K*T < 1.
In a similar way, we deduce from the H>-theory of the elliptic system that

IWllzo0.7:03) + Wl 220.7:04) < Cas
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and
Wil oo,y + IWell 20,7202y < Co,
provided K*T < 1.

Step IV. For given p, 1, W, b € B, we will prove that for some small 0 < T < 1, the problem (2.14);
and (2.14), have a unique solution u satisfying

||u||L°°(O,T;H3) + ||u||L2(0,T;H4) + ||uz||L°°(0,T;H1) + gl 20,7202y < Cs. (2.19)

Since (2.14); is linear with regular p, @, b and W, the existence and uniqueness are well-known, we
only need to establish (2.19). In order to prove (2.19), we multiply (2.14); by u and integrate over R*.
After integration by parts and taking (2.16)—(2.18) into consideration, we obtain

1d
2dt
:f(be)xb-udx+pr(p)-udx+2{fV><w-udx

< ClIblI=1IVBl|2llullz2 + ClIVpllzlfullz2 + ClIVWI 2 [l 2
< Clulle,

plufdx + f (21 + OIVUP + (1 + 4 = Oldival]dx

which, yields

allzs.r.r2) + lllz20.7:m1) < Ca.

Multiplying (2.14); by u, and integrating over R?, after integrating by parts, one deduces
1d
2dt
= —fpfrVu-u,dx—pr(p)~u,dx+2{fV><w-utdx+f(VXb)xb-u,dx
< Clll = 1Vull 2o 2ull 2 + ClIVpllz Il + CIVWI 2|2 + 1Bl IV B2 |l ]2

(1 + OIVUP + (1 + 4y = Oldivul |dx + f pludx

1
< Enp“zu,niz + C + CK?||Vul]?

12°

which gives
||u||L°°(O,T;H1) + ||ut||L2(O,T;L2) < Cy,
provided K*T < 1.

Applying 0, to (2.14)3, then multiplying it by d,u and integrating over R?, after integrating by parts,
one deduces

1d
2 dt
=2 f V X W, - udx — f (pii - Vu), - u,dx — f piuPdx - f Vp(p), - wdx

pluPdx + f (1 + DIV + Gy + Ay = OldivePJdx

+ f [(V x b) x b, - udx < CK?||p"*u,||,2 + CK?,
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which gives
|l o0, 7,02y + el 20, 7:m1) < Cos

provided K*T < 1.
In a similar way, we deduce from the H>-theory of the elliptic system that

lallze0,7:m3) + Ml 200,754 < Ca,

and

||ut||L°°(O,T;H') + ||uz||L2(o,T;H2) < Gy,
provided K*T < 1.

Step V. Due to the above analysis, we can take K = max{Cy, C;, C3}, and thus ¥ maps B8 x B x B
into BXx B X B. Therefore, in this step, we will prove that ¥ is contracted in the sense of a weaker norm,
that is, there is a constant @ € (0, 1) such that for any (@;, b, W) (i =1,2) and some small 0 < T < 1,
the following estimate holds:

IF (@, Wi, by) — F(f, Wa, b2l 201y < @@y — 8o, Wy — Wa, by — Do)l 20.1m01)- (2.20)

In order to obtain (2.20), we suppose that (p;,u;, w;,b;) (i = 1,2) are the solutions to the
problem (2.14) corresponding to (@;, W;, b,). Denote

P=pP1—p2, W=U —W, W=W —W, b=b —b,,

=i -, W=W —W, b=b —b.
Then, we obtain that

o; + div(ptly) = —div(p, 1),

p1u, + ity - Vu+ V[p(or) — p(p2)] — (uy + HAa - (u; + 4, = {)Vdiva
+2(V X w+ (VXb)xb,+(VXby)Xb-puy — (o1 —pyin) - Vuy

P1W, + p1ly - VW + 40w — i, AW — (up + A,)Vdivw 221)

=20V X0 — pWy — (p1W1 — paW2) - VW3,

bt+V><(b1xﬁ)+Vx(b><ﬁ2)+ﬁV><[(pl]—plz)((bel)xi)l)]

1 - 1 -
+8V X (—(V X b) x bl) + BV x (—(V X by) X b) = vAb.
P2 P2
Texting (2.21); by p, we obtain that for any € € (0, 1),

1 N . _
3 flplzdx < ClIVall=liplly, + C(||VU||L°°||p2||L°° + ||u||L6||Vp2”L3)“p”L2

- 2 ~
< Cllayllgsllelly> + CliVallzllollz

< &llValZ + C(1 + [l )llol..
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Multiplying (2.21)4 by b, after integration by parts, we see that for any € € (0, 1),

d
EZr”b”%z +V|IVBI[2,
11 _
= f(ﬁ X by + i X b)(V X b)dx +,8f(— = —)((V x b1) x By)(V x b)dx
P P2

1 -
—ﬁf—(bez)xb-(be)dx
C||Vu||Lz||b||Lz + ClIBl VB2 + Clloll2IIVBlI 2Byl + CIVBI- 1Bl 2 1Bl
< §||Vb||Lz + ellVitl2, + ellVBIZ, + ClIBIE + Cliol 1111l + 1152l 11511

Multiplying (2 21); by w and integrating over R>, we obtain that for any & € (0, 1) and € € (0, 1),

5 dtup”wuiz + wlIVWIE, + (2 + A)lIdivwl, + 4w,

—fpwz,-wdx—f(pwl +p2W)-Vw2~wdx+2{f(V><ﬁ)-wdx
< ClWalls ol Wl + Clipll2 Wl + CIVW=lIwlz2 + CIVll:wil,-
< VW, + VI, + sVl

+ C(llplf, + Il + Wl + [Iw2dlslloll?, ).

Multiplying (2 21), by u and integrating over R?, we obtain that for any £ € (0, 1) and € € (0, 1),

> dtup”zuuiz + (1 + OV, + (uy + A4 — Olidivull?,

= f[p(pl) — p(py)divaldx + f[(V Xb)x b+ (VXby)Xb]- -udx

—fpuz,-udx—f(pﬁl+p2ﬁ)~Vu2~udx+2§f(V><w)-udx

< Clipll2lIVall2 + ClIVB|2llall 2 + Clibll 2|l + CIVWI 2|l
+ Clluyllslloll 2 lMallze + Clipll2lalls + ClIVal| 2l
/ll 4

2 =002
IVul7, + €llVBII, + &l Vi,

+ C(||p||Lz + llull2, + 1BIE, + luxdlzsllol 2. ).
Combining the above inequalities and using the Gronwall inequality, and taking € and e suitably

small, we conclude that (2.20) holds true.
Due to the above steps and the Banach fixed point theorem, we finish the proof of Lemma 2.5. O

Lemma 2.6. Let p € 2,3 =] for s € [2,3), or p € [2,00] for s = 3, and let q € (1,00),r € (3, 00).
There exists some generic constant C > 0 which may depend on s and r such that for f € L* N D(l)’s and
geLin D(l)”, we have

F17, < CIFI, 2O fp27ee), (222)

and

llgllze < Cligl|dy =D CrHa=I)g g r/Great=3), (2.23)
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3. Proof of Theorem 1.1

3.1. Global existence of classical solutions

In this section, we will establish some necessary a priori bounds for smooth solution to the
system (2.1)—(2.3) to extend the local classical solution guaranteed by Lemma 2.5. Thus, let 7 > 0 be
a fixed time, and (o, v, w, k) be the smooth solution to (2.1)—(2.3) on R?* X [0, T'] in the class (2.12) with
smooth initial data (0, v, wo, ko) satisfying (2.11). To estimate this solution, we make the following a
priori assumptions. For any given L > 1,(not necessarily small), suppose that

sup |[V3(0,v, w, h)(®)|l; < L, (3.1
t€[0,T]
and
sup ll(e,v,w, h)()llm < a, (3.2)
1€[0,T]

where « is a positive constant, depending on L, and satisfies

.1
O<a<ay= 1C7L 3.3)
Here C is the Sobolev embedding constant of (3.8).
We have the following key a priori estimates on (o, v, w, h).
Proposition 3.1. For any given positive constant M > 0 (not necessarily small), suppose that
(00, Vo, wo, ho) € H, IV2(00, vo, w0, Bo)llin < M. (3.4)

Then there exists a positive constant €, depending only on u,, Ay,{, s, A2, v and M, such that for any
t > 0, the system (2.1) possesses a unique global classical solution (0,v,w, h) € R? x [0, o) satisfying

t
IV (o, v, w, DIl + f (V2. . B3 +IV%ll3, )dr < ClIV(00 vo, wo. Boll3a, (3.5
0
and .
llGo, v, @, @)1 + fo (V. w, W, + Vel )dr < Cli(go. vo. wo, ko)l (3.6)
provided
1100, Vo, wo, Rl < €. (3.7)

In order to prove Theorem 1.1, it was suffices to prove Proposition 3.1. However, the assumptions
of (3.1) and (3.2) are crucial to prove Proposition 3.1. Therefore, our main aim in the next is to close
the a priori assumptions (3.1) and (3.2). Obviously, we can infer from (3.1)—(3.3) and the Sobolev
embedding inequality (cf. [1]) that

1
le®ll= < ClIVll, Vel < 5, Ve[0Tl (3.8)
which implies that
1 3
= < inf  o(x,H)+1< sup  o(x,)+1< =, 3.9
(x,H)eR3x[0,T] (x,)ER3X[0,T] 2
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moreover
I/ (@) < Clel, lg(o)l < C, lh(0)l < Clol, (3.10)

and
£ )l < C, 2" (o)l < C, I (0)l < C, (3.11)

for any m > 1. We now begin to derive a series of a priori estimates.

Lemma 3.1. Let the assumptions (3.1) and (3.2) be in force. Then
d
EII(G)’QJ’, w, b7, + IV, w,b)Il;, < Ca'*L'?|IV(0,v, w, DI, (3.12)

Proof. Multiplying (2.1);—(2.1)4 by ayo,v,w, and h in L?, respectively, and integrating by parts, we
obtain after adding them together that
1d

5 7l@ve.v. w, h)l7, + (,u1||VVIIiz + (1 + )IIdivwll7, + vIVAIL,

+ 1lIVOIR, + (2 + W)Ildivolls, + 2V x v - 20]2,) G.13)
= <R1,Cl)/Q> + <R2,V> + <R3, (1)> + <R4, h>
To deal with the right-hand side of (3.13), we notice from (2.2) and (3.2) that

(R, ayo) < CllolllIVvllzlIVollr: < Cllollm IVvl2[IVoll2

(3.14)
< Ca(|IWvl}, + Vel ).

By using (3.1), (3.2), (3.9)—(3.11), and the Sobolev inequality (2.22), we deduce from (2.2) and the
integration by parts that

(Ro,v) < ClIlllIVVll2lvllzs + ClIVollalIVWlizslvlls + CUVYIAIVYIslloll s
+ ClIVAll 2|kl lls + CllollslIVollzlvlizs + CliollsIVell2vllzs

3.15
< (I, v, Wl + IV 2IV12)(Vo, Y, Voo, VR, G-19)

2 L2
< Ca' L' (IVel, + VI, + Vo, + IVAIL, ),

where we have used the fact that @ € (0, 1) and L > 1. According to the observation of (3.13), one has
lwl?, < C(IV x v = 20, + [IV¥7.),

Lm

thus, by using a similar manner to (3.15) and choosing 6; = min{g, ;=

the above inequality that

}in (3.16), we can deduce from

(R, w) < CIWlllIVollllwlis + CIVellIVolls ol
+ ClIVoll2 IVllllells + Cllelsllwllzllwlizs + Cllell 199l 2llwllzs
< (I v. )l + IVl 21V 0ll)*)(1(Vo, Vv, V)2, + 81l

L2 L2

(3.16)
< Ca'?L'(IVell}, + 199113, + IVl + IVAIZ,)

12

+ 2V Xy = 20|, + %nwnz
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and
(Ra, ) < ClVll= VRN Rlls + CllAI VYl Rl + CIV A 1l V Rl
< C(Iw, )l + IVRILZIV RV, VI, (3.17)
< Ca'PL'(IVv|13, + IIVAIL,).
Substituting (3.14)—(3.17) into (3.13) immediately yields (3.12). O

Lemma 3.2. Let the assumptions (3.1) and (3.2) be in force. Then

d
—|IV v, w, D% + V20, w, b2, + V(Y X v = 2w)|?
dtll (ayo,v,w, )|, +IV-(v,w, B)Il;, + [[V(V xv = 20)|l;, (3.18)

< Ca'PLP(IV2 0, w, W, + V0l ).

Proof. Operating V to (2.1);—(2.1),, multiplying them by ayVo, Vv, Vw, and Vh in L?, respectively,
and integrating by parts, we obtain that

1d .
5 7 IV@re.v. w, h)|l7, + (N1IIV2VIIiz + (1 + IV, + VIV,

+ 1Vl + (2 + L)IVdivel, + Vo - 20)]2,) (3.19)
= <VR1, Cl’yVQ> - (Rz, AV) - <R3, Aa)) - <R4, Ah>

It follows from (3.1), (3.2), and the integration by parts that

(VRy,ayVo) < ClIVoll:IVall219¥llzs + Cliollel Vvl IVoll
< ClIVall, ZIv2ell, 2 (IVellz, + IIV2vIZ, ) (3.20)
< Ca'PL(|IVlly, + IIVVI[}, ).

Due to the Sobolev inequalities (2.22), (2.23), (3.10), and (3.11), it can be obtained by direct calculation
that

IRs, Rs, R)ll> < CIV3l19Ls + Cllell= [Vl + Clll IVl
+ Clielle=11Vellz + CllellzIVeolze + CIlslIVel.s
+ Clielle=IV?ellz2 + Cllellz llwllz + Cliolla 19
+ CIWll VAl + CllRIAIVYILs + ClVOll NIV Rl l1A-
+ CIIVAIG + Cllkll V]l
< C(lle. . WV b, w)lis + [l Wl V2, w, Wiz (3:21)
+ C(lloll-IVelliz + 19l IV All Vbl + IV AIE)

< C(Il@.v. W)l + IV (0. IV (0. W)ILE IV, w, )2

12 L2

+ C(IVall 2 IV20lly2 + V2RIV Rl IV RVl

L2 L2 L2 L2

< Ca"PLP(IV (v, w, Wl + [IVellr2),
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thus, using (3.21), one has

[(Ra, AV)| + [(R3, Aw)| + |(Ra, AR)Y| < Ca'2L3P(IIV2 (v, w, B)II, + |Vl?.)-

Putting (3.20) and (3.22) into (3.19), we obtain (3.18).
Remark 3.1. Obviously, we can infer from (3.20) that
(VRy,ayVo) < ClIVol%lIV¥lls + Cllollz|V*¥ll.21 Vol s
< ClIVoll2 IVl 2 IV W LIV 21122 + Clloll Vol 1V¥ 2

< Ca(|IV%0ll3, + IV?I2.).

Similarly,
IRy, R3, R)llz> < Ca' L (V2 , w, B2 + IV%0ll12),

which, combined with (3.19) and (3.23), yields
d
E"V(ayg’ V, (,l), h)”iZ + ||V2(v’ Cl), h)”iZ < Cal/2L3/2||V2(Qa v’ CL), h)||229

which will be used later to close the estimate of ||V(o, v, w, h)lliz.

Lemma 3.3. Let the assumptions (3.1) and (3.2) be in force. Then
d
—{v.V0) + Vel < Ca'PL2(IV . . )l + Vel
+ C(IVv3,) + IVoI.)-

Proof. Multiplying (2.1), by Vo in L?, one has

d
- (. Vo) + ay||Voll2,

= (v, Vo) + {(u1 + OAv + (u; + A1 — O)Vdivy + 2(V X w, Vo) + (R,, Vo).

Thanks to (2.1),, we deduce from integration by parts that
(v, Vo,) = —(v, V[divy + div(ov)]) = {divv, divy + div(ov))
< CIVVIEZ + CIVYII (Il IV lls + 19V llellzs )
< CIVYIEE, + CIVVlL V2wl 2 (IVel, + 19V,
< CIVVIZ, + Ca' L (10l + 19V,
and

{(u, + OAV + (uy + A, = H)Vdivw + 27V X w, Vo)
a
< C%IIVQH; + CIIV?VI, + ClIV[2,.

The Cauchy-Schwarz inequality, together with (3.21), gives
(R2, Vo) < ClIRa2 Vol < Ca'PLP(|[Vgll2, + IV, w, B)IIZ).

Substituting (3.27)—(3.29) into (3.26) yields (3.25).

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

O
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Lemma 3.4. Let the assumptions (3.1) and (3.2) be in force. Then

d
E”VZ(CWQ, v, 0, DI, + IV, 0, bII7,

(3.30)
< Ca*LP(IVw, w, B2, + IV70l1.)-
Proof. Similar to the proof of Lemma 3.2, we infer from (2.1) that
liIIVz( h)|l7, + ( VW7, + (uy + ADIVEdivvl, + VIV Al
2 dt aYQ’ v’ CL), LZ lul 14 L2 (l‘tl 1 vy L2 v L2
+ 10Vl + (2 + WIIVdivwl, + LIV o - 2w)]2,) (3.3

= (V?Ry,ayV?0) — (V*Ry, Av) — (V*R3, Aw) — (V*R,, Ah).

Keeping in mind that L > 1, thus, the inequalities (2.7) and (2.8), together with Gagliardo-Nirenberg
inequality (cf. [1]) show that

(V2R1,ayV?0) < C(IV%lllV¥ll + lloll=IV¥llzz + 190l 192l IV 0ll.2

< CIVll= (I9v 1,2 IV VIS IV 20l + IVl IVl ZIVvlz)  (3.32)
< Ca'*LY(IV%ll, + IV,

Due to the Sobolev inequalities (2.22) and (2.23), one has

IV - 99z < CIVYIIgslvllzs + ClIIYIloll OV
(||V3v||Lz||v||”2||Vv||”2 + IVl 9wl 2, ) (3.33)

Ca||V3v|| 2.
Similar to the derivation of (3.33), we can obtain that

IV - Vo)llz + IV - VR)|I2 + V(R - divw)ll2 + [V (R - Tv)|,2
<, w, WLV, 0, D)LV @, 0, b)) (3.34)
< Cal|V:v, w, h)|;2.

The combination of (3.8)—(3.11) and the interpolation inequality shows that

V(@ VOlll2 + IV(f(@V x w)ll2 + [[V(f(@V X V)ll.2
< Cliollz=11V20llz + Cllell =V (@, »)llzs + ClIV(w, )l Vol o

< C(IVell 21Vl + IVll IVl + 199l 2V IV el
+ Clloll IV (@, v)ll.2
< Ca' L |VP0ll + Call VP (v, )2
< Ca'PLY (V%2 + IV (v, w)ll12),

(3.35)
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and
(V(fQw), Aw)| < C f (IV2ellwll V2wl + [VollVwllV2w| + ol V2wl )dx
< ClIVellellwlls IV wlls + ClIVellsIVell el Vel (3.36)
+ Clgll IV wll oIVl
< Ca(|IV%ll2: + IV wll2,) + 62 V2wl 2.

where 65 is an undetermined positive constant. According to the observation of (3.31), we know that

IVl < C(IVA(V x v = 20)|2, + IV*(V x »)2)

) 5 - (3.37)
<C(IVA(V x v = 2)II7, + VI,
thus, putting (3.37) into (3.36) and choosing 6, = {%, i‘—é}, one has
(V(fw), Awv)| < Ca(IIV0lR: + IV wIR.) + IV x v = 20)I1,
(3.38)

+ %nv%u;.
Similar to the derivation of (3.35) and (3.38), one has
IV[A(0)(Av, Vdivy, Aw, Vdivaw)]llz2 < ClIVoll IV, )llzs + Cllollz=IV? (v, )2
< ClIVell 2IVll IV v, )l (3.39)
< Ca'’L'"? |V, )12,
\<V2[g(g>(v x h) % h], v2v>\ < ClIVll VRl Rl 11VV]l1s + ClIVoll IVl gs s V2Vl s
+ ClIVoll sV A sl VRl VW16 + ClIV |21l [Vl
+ ClIV?hl|s IV Rl 221Vl s
< ClIIV2ll VRNVl =1Vl 2 + ClVll IV Rl IV AV
+ ClIV20ll 21V Rl 2 VRN 2IVV 2 + CIV B2l V02
+ ClIV2 |21l [V 2
< CaL(|IVll}, + Vv, B2,
(3.40)
and

IV2[g(@)(V x h) X hll;2 < ClIV?0ll2 VAl |lAll~ + ClIVAl|s|lAl = [Volls
+ ClIVollslIVRIs + Clikll=[V3Rll2 + CIVZ Rl VA (3.41)
< CaPLP(IIVllp2 + IV°All.2).
The combination of (3.33)—(3.35) and (3.38)—(3.41), gives
(V2Ro, &) + (VR3, Aw) + (V2Ry, ARY| < Ca' LYVl + 90 0, W), (3.42)
Therefore, substituting (3.32) and (3.42) into (3.31), we can obtain (3.30) by using Cauchy-Schwarz

inequality. O

AIMS Mathematics Volume 9, Issue 12, 34147-34183.



34167

Lemma 3.5. Let the assumptions (3.1) and (3.2) be in force. Then
d, ..
d—t<le"’ Ao) +[IVoll7. < CIIV?VIE, + Cal/2L3/2(||V2(v,w, iy, + ”VZQ”iz)- (3.43)

Proof. Operating div to (2.1), and multiplying the resulting equation by Ap in L?, after integrating by
parts, one has from V - (V X w) = 0 that

—(dwv AoY + ayl|[V?ol?, = —(Vdivw, Vo,) + (divR,, Ao)

e (3.44)
+ {(u + O)divAy + (u; + A1 — O)div(Vdivw), Ao).
Due to (2.1);, one has

'(Vdivv, Vo.)

< C(IVllz2 + V0l V¥ llzs + llollz= V2V 2
+ Wllz= 1Vl 2 IV 2¥ 2

< ClIVIE, + ClIVoll Vol 21V 2, (3.45)
+ VWl IV 2V 2ol 2Vl

< CIVHIE, + Ca' L2V (o, ).

On the other hand, it follows from (3.42) that

(divRs, Ao) + ((uy + O)AivAY + (uy + A, — O)div(Vdivy), AQ>|
a
< V%I, + CIVYIE, + Ca'PL(IV2lf + IV . I,

which, together with (3.44) and (3.45), gives (3.43). O

Lemma 3.6. Let the assumptions (3.1) and (3.2) be in force. Then
d
SV @ye, v, w. B + 90, 0. DI < Ca' LR (IV0, 0, I, + 9l (3.46)

Proof. Similar to the proof of Lemma 3.4, we infer from (2.1) that

1d .
5 IV @ye v, W, + (VIR + Gur + ADIV vl + vIV*RIE,
+ lIVAOIE, + (o2 + DIV divel?, + LIV (ot - 2w)]2,) (347

= (V°R},ayV30) — (V’R,, V?v) — (V’R3, V’w) — (V°Ry, V*h).

Keeping in mind that L > 1, thus, Lemma 2.3, together with Gagliardo-Nirenberg inequality (cf. [1])
shows that

(V’R1,ayV0) < C(IV°ll2I1VVlILs + lloll=[IV*¥llz2 + [Vell AV llze )1V el
< ClIIVell (192 IV IV el + IVl 2Vl ZIVAvIle)  (3.48)
< Ca*LH(IV%ll, + I9*11)-
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Due to the Sobolev interpolation inequalities (2.22) and (2.23) (cf. [9, 14]), one has from (2.7) that

IV - )z < CIVWllgslvllzs + CUVWlel VWl
< C(IVlla W 219V, + IVl 9wl 2V, ) (3.49)

L2 L2 2 L2
< Cal|lV¥Y|;2.
Similar to the derivation of (3.49), we can get

IV - Vo)l + IV - VR)ll2 + V2 (R - divw)ll2 + V(R - I9)ll2
< Q. w, DIV, 0, DIV, 0, bl (3.50)
< Ca||lV*v, w, b)|2.

The combination of (3.8)—(3.11) and the interpolation inequality shows that

IV2(h(@ V2 + IV*(f()V X w)llz + IV} (f(@V X )2
< Cliel=l1Vellz + ClIV(, v, w)llz11V20llzs + Cllll =1V (w, v)ls

1/2 2 nl/2 1/2 2 1/2 1/2 2.11/2 3
< C(IVall} PVl + IVl IVl + IV IV IV el

(3.51)
+ Cliell 19w, »)ll.2
< Ca'PLYIV gl + CallV* (v, )2
< Ca'PL'P(IVoll + V40, )12,
and
(V(f@w). Vw)|
<C f (VP ellwlV?wl + V0lIVwl| V0l + Vol VwllV ol + ol V el )dx
(3.52)

< ClIIVollzllwlls IV wlls + ClIIVell sVl V2wl
+ ClIVal IVl sl Vi wllgs + Clloll IV wll sV wll 2

< Ca(IIVll, + IV*oll3,) + 631V w2,

where 03 is an undetermined positive constant. According to the observation of (3.47), we know that

IV wlly, < C(IV3(Y x v = 20)Il7, + V(Y x W), )

3 2 4112 (3.53)
< C(IV*(V xv = 20)II7, + IV*]2,),
thus, putting (3.53) into (3.52) and choosing 65 = {%, 5_(1:}, one has
(V(f@w), V)| < Co(IVll2s + IV *wI.) + LIV (Y x v = 2w)l,
(3.54)

Ml o4 2
+ ZIIV V|7,
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Similar to the derivation of (3.51) and (3.54), one has from (2.7) that
||V2 [h(0)(Av, Vdivy, Aw, Vdivw)]||;2
< CIVZ0ll IV, )llzs + Clloll=[IV4 (v, w)ll2
< CIVll IVl IV, w)llz2 + ClIVoll, IVl IV, o)l
< Ca' LYV, )2 + ClIVoll A IV el 2 IV 0, )l VA0, w2
< Ca'*L(IV* O, w)llz2 + IV 0ll2),

and
IV*Lg(0)(V % ) X Rlllz2 < CIVoll IVl sl + CIV Rl Rl Vol s
+ CllRll NIV llys + CIIVRI IV Alls
< CaL’*(IVll2 + IV*Rll2),
and

IV*[g(@)(V x k) x k]l < C(IV%llz> + ValllIV20llzs + Vol IV Al
+ CI\VAI IV IV Al
< Ca'PL*P(IIVll2 + IV hll.2).

The combination of (3.49)—(3.51) and (3.54)—(3.57) yields
(VRs, W) + (VRs, V) + (V'Ri, V)| < Ca' S22 + 90, @, B)12),
which, together with (3.47) and (3.48), gives (3.46).

Lemma 3.7. Let the assumptions (3.1) and (3.2) be in force. Then

d .
E<levv, VAg) + IV¥all7, < CIIVPWIlZ, + Cal/4L5/2(IIV3(v,w, Iy, + IIV3QIIi2).

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)

Proof. Operating Vdiv to (2.1), and multiplying the resulting equation by VAo in L?, after integrating

by parts, one has from V - (V X w) = 0 that

—(levv VA0 + ayllV30l%, = (Vdivw, VAg,) + (VdivR,, VAo)

2~
+ {(u1 + OVAivAY + (1 + 1 = £)Vdiv(Vdivw), VAo).
Due to (2.1);, one has
(Vdivw, VAg,) = —(Adivv, Ag;)
< IVl + llollz=IVVllz2 + M=Vl 2 JIV vl 2
< CIVHIE, + ClIVoll IVl 2V,
+ IVl IV 2Vl VP2
< CIIVIZ, + Ca' L2V (o, )|

(3.60)

(3.61)
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On the other hand, it follows from (3.58) that

(VAivRy, VAO) + (i1 + O)VAivAY + (uy + A, — )Vdiv(Vdivy), VAQ>‘

a
< IVl + CIVYIE, + Ca LIV, + IV, 0, W)

which, together with (3.60) and (3.61), gives (3.59). O

With all the a priori estimates obtained in Lemmas 3.1-3.7 at hand, we are ready to prove
Proposition 3.1 next.

Proof of Proposition 3.1. Due to the inequalities of (3.12), (3.18), and (3.25), one has

d
Zl@ve.v. . 7, + IV, w, b,
< CiaPLP(|V(o.v, . B}, + Vel (3.62)

1
<5V, w7, + Cia'* L Voll;

12°

and

d
— (. V0) +IIVelj: < Coa L2 (V0. w. W, +IVoll:)
+ CoIIVvIE, + IV, (3.63)
<26V, w, Wl + Cra' LVl

12°

provided a > 0 is chosen to be small enough such that

.. 1 1
0<a<a =min {8, (W)z’ E}

Therefore, we infer from (3.62) that

d 1
EII(G)’Q, v, w, W, + IV, w, bl < Cra' 2L |Voll7.,

which, multiply M, £ max{4, 8C,} and added to (3.63), gives

d
—(Millaye.v. w. W, + (v, Vo)) + 20V, @, W), + IVell}; < Cx(Mya'>LZVelf.,

where C3(M)) is a positive number depending on M;. Then, if @ > 0 is chosen to be small such that

. 1
0<a<a; £min {al, (W)z},

then, we have

d 1
Z(Mili@ye.v.w. WG, + (v.70)) + 2CaIV 0. 0. I + Vel <.

AIMS Mathematics Volume 9, Issue 12, 34147-34183.



34171

Integrating the above inequality over [0, T'], one has

T
sup (o, v, w, WD, + f (IO, . IE, + Vel )dr < Cliteo. Yo, wo. ko)l (3.64)
0

1t€[0,T]

moreover, Iy
(v. Vo) < Il
It follows from (3.24), (3.30), and (3.46) that

d
EHV(GYQ’ v, w, h)”?.IZ + ||V2(V’ w, h)”ip
< C "LP(IVP 0, 0, DI, + 9%l )

1
< EIIVZ(V, w, W)l + Caa L1 V20lly

H!
thus J |
EHV(CWQ,V,CU, ][ EIIVZ(v, w, 5 < Caa L2 V20l (3.65)
provided @ > 0 is chosen to be small enough such that
. 1
O<a< 3 = min {az,(m) }
Next, we infer from (3.43) and (3.59) that
dg, .. .
d—t((dlvv, Ag) + (Vdivy, VA)) + IV0ll?,
< G5l + Csa L2 (V2 (v, w, B + IV0117)
1
< 2G5V, w, )3, + EIIVZQH?,],
then J :
—((dive, Ag) + (Vdivy, VAQ)) + 511Vl < 265V, . W) (3.66)

provided @ > 0 is chosen to be small enough such that

. 1 1
0 <a<as=min {a3’ (2C5L5/2 )4’ (L5/2 )4}'

Multiplying (3.65) by M, = {8, 8Cs}, and adding the resulting inequality to (3.66), after integrating the
resulting inequality over [0, 7], one has

T
sup [[V(o, v, w, B)D)II3, + f (IV°@, w, DI, + V%013, )dt
0

€[0,7]
A 2
< ClIV(os, o, wo, Ro)llyz-

(3.67)

Taking L* = 4C ||V(Qo,v0,cuo,ho)||12q2 in (3.67), and choosing € > O sufficiently small such that
AC |00, Vo, o, ho)||i,1 < @? in (3.64), then, we can close the a priori assumptions (3.1) and (3.2) by
bootstrap arguments. This, together with the local existence result (cf. Lemma 2.5), finishes the proof
of Proposition 3.1, and thus, the proof of the first part of Theorem 1.1 is complete. O
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3.2. Decay rates

In this subsection, our main aim is to derive the decay rates of the solutions (o, v, w, h) obtained
in the first part of Theorem 1.1.

Lemma 3.8. Let the conditions of Proposition 3.1 be in force. Assume that € > 0 is small enough and
100, Vo, wo, o)1 is bounded. Then for any t > 0,

IV (0, v, w, YD}, < C(A + )77, (3.68)

and

o, v, w, B)®)II;, < C(1 + )72, (3.69)

Proof. Similar to the derivation of (3.64), we can infer from (3.24), (3.30), (3.43), (3.46), and (3.59)
that there exist some positive constants M and ¢ such that if £ > 0 is small enough, then

A @) + &IV, w, )7 + IVl7,) <0,

where
A(1) £ MIIV(0,v, w, b)|I7,, + {divy, Ag) + (Vdivy, VAg).

Therefore
A1) + &IV, v, w, W7, < ClIV(0, v, w, B)II2,. (3.70)

Due to Cauchy-Schwarz inequality, it holds that
[(divw, Ag) + (Vdivw, V)| < C(IV¥IE, + IVl ).

thus
—Co(IIVVIZ, +11V%l2,) < (divw, Ag) + (Vdivw, VAQ) < Co(IIV¥IE, + V20l )-

For suitable large number M > Cq + 1 > 0, then
A ~ V(o v, w, Bl
then, we can infer from (3.70) that there exists a positive constant ¢ such that

A (1) + cA1) < ClIV (0, v, w, h)II}

12°
thus t
A1) < A0)e™™ + C f e NV (o,v, w, h)(9)II}.ds. (3.71)
0

Thanks to (2.6), we have

IV(0,v, w, B)(t)lI2 < C(1 + 1) *IV (00, o, wo, Bo)ll 11 A 1

/ » (3.72)
iC f (141 = 87 Ry, Ray Rs R)llys (s
0
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The Cauchy-Schwarz inequality, together with (3.4)—(3.7), and (3.8)—(3.11), shows that

IR, Ra, R, Rl < Clloll21Vvllz2 + ClIVell2lvllzz + ClIll 2NVl + Clloll 1V2vl2
+ CllAll2lIVAIl2 + Cllollz2[IVollzz + CliollIVallzz + Clvll2l Vel
+ Clloll2 IV wll.z + Cllgllzllwllzz + Clvll VA2 + IRVl
+ ClIVoll NIV AllsllAllz + Clioll=IIV2Rll2 |z + Clioll=IIV A (3.73)

< C(II(Q,v,w, Wiz 1IV (0, v, @, W)l +IVRII, + ||VQ”H1”Vh”L6”h”L2)
sC(M)|IV(0,v, w, bl

<
< eC(M)AV(1),

and similarly,

IRy, R2, R3, Rl < C(IIR1llgt + lI(R1, Ras R3, Ra)llgn)
< Clie, Vw1V, Wl + & 2CADIV (0, v, w, B3, (3.74)
< ePCMDIVo,v, w, b)llx2 '
< e2C(MAYA().
Substituting (3.73) and (3.74) into (3.72), one has from (3.4) that
!
IV(o, v, w, h)(D)ll2 < C(1 + )>* + &'/2C f (1 +1— ) AY2(s5)ds. (3.75)
0

Set
F () 2 sup ((1+5)"2As)).

s€[0,7]

So that, the inequality (2.10), together with (3.75), gives
!

IV(0,v, w, h)(®)|l2 < C(1 +1)™* + &'/2C f (1 +1t— ) A2 (5)ds
0

SCA+ 0+ CePF2 () fo t(l +1—5) 41+ 5)7ds
<C(1L+ 0741+ & 2F 1)),
which, combined with (3.71), shows that
(1+02A@1) < CA + 1) + C(1 + eF (0)(1 + 1)°?
X f t eI + 8)2(s)ds
<C +OC87"(I).

Thus, if € > 0 is small enough, then we obtain that ¥(f) < C. This, together with A(f) ~
IV(0,v,w, h)||?,, yields (3.68).

H2
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In order to prove (3.69), we use (2.6), (2.10), (3.68), (3.73), and (3.74) to obtain that
10, v, w, )Y(Dl2 < CA + 1)~ "*I(00, Vo, w0, ho)llLt A 1

!
+ Cf(l +1—8) (R, R, R3, Rl ;1 A s
0
f
<CA+n>M*+C f (1 +1—5) A2 (5)ds (3.76)
0

!
<C+n7* + CF'" ) f (1+1—s)7*1 + 57 (s)ds
0
<C(1+n7",
which implies the desired estimate (3.69). Therefore, we complete the proof of Lemma 3.8. O

Compared with (2.5) in Lemma 2.1, the decay rates of the H'-norm of solutions stated in Lemma 3.8
are optimal. Next, our main aim is to show the decay estimates of higher derivatives.

Lemma 3.9. Let the conditions of Proposition 3.1 be in force. Then there exists a positive time T such
that if € > 0 is small enough, the following estimate holds.

IV(0, v, w, )(®D)IZ, < C(L+ )77, (3.77)
foranyt>T,.

Proof. In terms of (2.7)—(2.9) in Lemma 2.3, one has from (2.2) and (3.6) that

IVRIll2 < IV (@v)llz2 < C(||Q||L3||V2V”L6 + ||V||L3||V2Q||Lf’)
Clit, )l IV, w2 (3.78)
C

<
< Cell V(0,92
Due to Proposition 3.1 and Lemma 3.8, one has

IV(R2, Rs, R)ll2 < CellV (v, w, B)l| 2 + C(M)IIV (0, v, w, B3,

<
3.79
< CellV’ 0, w, W)z + COMD(L + )7 (3.79)

Taking (3.78) and (3.79) into (3.31), one has from integration by parts that
d _
d—tlle(amv,w, I, + IV, w, b, < CellViollr, + C(1L+1)7,

which, together with (3.46) and (3.59), gives that there exist some positive constants M (suitably large)
and ¢ (suitably small) such that if £ > 0 is small enough, then

A @) + IV 0w, W, + 1Vl7.) < CA+ )77, (3.80)

where
ﬂl] (t) é M”VZ(Q, V, (,(), h)”i]l + <VdiVV, VAQ> ~ ||V2(Qa V, (,(), h)“%_]l .
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The combination of the Sobolev interpolation inequalities (2.22) and (2.23) and Cauchy-Schwarz
inequality shows

1
IV?0ll7. < ClIVall2 Vel < 5(1 + DIVl + CE)A + 0~ 'IVoll7.,
where ¢ > 0 is a positive number to be chosen later. Then
IV30ll7. = 6(1 + 07 '[V0ll7, = C@B)(1 + 1)?[IVoll7.. (3.81)

Similarly,
IV, 0, Bl > 61 + 07V, w, B)ll7, — C@EA + D7V, w, bl (3.82)

Putting (3.81) and (3.82) into (3.80), one has
/ oc ~1p2 2 , C —1o2 412 302
A + =1+ 07V w0, WG + 5 (50 + 07 IV, + 1%l

<CA+D7+ CE1 +07(IVallF + V0, w, B}, ) (3.83)
<CO1+0n7"2

If 1> 6> 0, then [[V0ll7, > 6(1 + H7'[[V70ll3,, so that , we infer from (3.83) that

52
A0 + 70(1 + 07 IV, v, @, B)ll, < C@O)(A + 1)~ (3.84)

Furthermore, due to A/ (7) ~ IV2(0, v, w, h)||§11 for suitable large M, then there exists a positive constant
c; depending only on M and ¢, such that

A1) + 61 (1 + D)7 A1) < COA + 1) (3.85)
If 6 = 4¢}', then it follows from (3.85) that
A+ 41+ 1) A1) < CO)(1 + 1),

thus
d%((l + 0 A (D) = (1 + DAL + 41+ 7' AD) < C(L+ 0772,

which, integrated over (0, 1), gives
(1 + " A, (1) < A0) + C(1 +D'? <2C,(1 + '3, (3.86)

provided ¢ > 0 is large enough such that

ﬂl(O))Z B 1}

t=>T, %max{é,(
7

Dur to A (1) ~ IV3(o,v, w, h)||f,1, thus, we can obtain (3.77) from (3.86). Therefore, we complete the

proof of Lemma 3.9. O
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Lemma 3.10. Let the conditions of Proposition 3.1 be in force. Then there exists a positive time T,
such that if € > 0 is small enough, the following estimate holds

IV3(0, v, @, )(D)II7, < C(1+ 072, (3.87)

foranyt > T,.
Proof. Operating V2 to (2.1)4, multiplying it by VAh in L?, and integrating by parts, we infer from
Cauchy-Schwarz inequality that

d 3y
d—tllV3h||iz + ?||V4h||i2 < ClIV2R4lI7.. (3.83)

The right-hand side terms of (3.88) can be estimated as follows. Due to (2.7)—(2.9), (3.48), we infer
from (3.68), (3.69), and (3.77) that

IV - VR)|I2 + IV (Rdivw)l 2 + V(R - V9)ll.2
Clo, IV, Bl + IV, )V B2
< CIVE, WLV, IV 0, B2

<C +10)™ B4,

(3.89)

and
IV*[8@)(V X k) x W)]llz2 < C(IIg@L=IIV*((V X ) X W)llz2 + [V30ll2I(V X I) X Rl )
< CllRlGIIV* Rl 2 + CIIV3 RNV RIS + CIIVoll 2 IV Al
< CIIVRIIVRI IV RN + CIV ol VAL IV Al 1V AL
§||V4h|| +C( + 1)1

(3.90)

Substituting (3.89) and (3.90) into (3.88), we obtain that
d
d—t||v3h||§2 +IV*hI;, < C(1+ 17", (3.91)

Similar to the derivation of (3.81), one has from (3.77) that

IV*RIZ, > 51+ 07 V2RI, — C(1 + 072|[VAIL,
>51+n7"VhIE, - CcA + 0712,

which, together with (3.91), yields

d

Env%n; +5(L+ 07 IVPAIZ, < C(A + 072 (3.92)
Therefore, we deduce from (3.92) that

d
(A + DUV RIG) = (1 + 0 (||V*h|| +5(1+ 07 |IV*RIL,)
<C+ t)-1/2,

(3.93)
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which, implies
(1+ IR, < IIVholl}, + Cs(1+ D' < 2C(1 +1)'72,

provided
) IV3holl%, 2
t= T2 = maX{T1,<C—8) - 1}
Thus, we can obtain (3.87) from (3.93). Therefore, we complete the proof of Lemma 3.10. O

Proof of decay rates. Collecting Lemmas 3.8-3.10 together, one immediately obtains the desired
decay rates stated in the section part of Theorem 1.1. O

4. Proof of Theorem 1.2

In order to prove Theorem 1.2, we first consider the standard MHD equations without Hall effects
(i.e., B = 0) as follows:
P? + div(p®u®) = 0,
(0°u?); + div(p’u’ @ u’) + Vp°
= (i + AW + (u; + A — O)Vdivu® + 2V x w? + (V x b°) x b°,

(°W?), + div(p°u’ @ w0) + 4¢W? = 1 AW + (s + A2)Vdivw? + 20V x u’, -1
bY — V x (u’ x b%) = vAB®,
divd® = 0,
with far-field boundary conditions and initial conditions:
(0,0’ w0, 59| (1,0,0,0),
oo 4.2)

(pO’ uO’ WO, bO)'[:O = (pO’ Ug, Wo, bO)(x)’ X € R3a

where p° = p(p°) = a(p")".

According to the observation, we know that all of the global estimates and decay rates established
in Section 3 hold for the system (4.1)-(4.2). Therefore, we give the following global existence result
for the problem (4.1)-(4.2).

Proposition 4.1. Assume that the initial data (py, gy, Wo, bo) satisfy
(oo — 1,9, Wo, bo) € H’, IV*(0o — 1, ug, Wo, bo)llt < Lo, 4.3)

for any given constants Ly (not necessary small). Then, there exists a positive constant &, depending
on Ly, 1, A1, ¢, o, A2, v, a, and 7y such that if

lGoo — 1,19, Wo, bo)llgn < &, 4.4)
then the Cauchy problem (4.1)-(4.2) has a unique global classical solution (0°, u®, w°, b°) on R3x(0, c0)
satisfying

t
1" = 1,0, w0, )OI, + f (Vo ()1 + IV, VW, VBO)(s)7 )ds
0

2
< C”(PO - 17u0’ Wo, bO)”H}’

for all t > 0, where C is positive constant independent of t.

4.5)
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In order to prove the convergence rates stated in Theorem 1.2, we define

n2p—p°, vzu-u’, wz2w-w', hzb-b°

where (p,u, w, b) is the solution of the problem (1.1)—(1.3), and (0°,u’, w°, b°) is the solution of
problem (4.1)-(4.2). Then, the quadruple (r, v, @, h) satisfies

,+v-Vo+u’: Vr+ pdivw + ndiva® = 0,
ove+pu-Vy — (up + OAv — (uy + 4, — HVdivw = —mu? — pv - Vu°
1
—mu’ -Vl = V(p - p") + 2.V X@+b-Vh+h- Vb’ - 5V(|b|2 — 1B°P),

pw@, + pu - V@ — pyAw — (U + )Vdive = —aw? — pv - Vw? — 7u® - Vw?

-4l + 2V X, (4.6)
h,—vAh=—u-Vh—v-Vb° +b-Vyv + h-Vu° — bdivw — hdivu’
\Y
—BV X (M), divh = 0,
o

(m,v, @, h)|_, = (0,0,0,0),

(710, o, @o, ho) — (0,0,0,0), as [x| — co.

Lemma 4.1. Let (n,v, @, h) be the solution of system (4.6). There exists a positive constant C = C(T),
independent of B, such that for any T € (0, ), then

T
sup ||z, v, @, B)(@)I7, +f0 IV, @, h)ll},dt < CB. 4.7)

te[0,T]

Proof. Multiplying (4.6); by  in L? and integrating by parts, we infer from (1.4), (4.5), and Cauchy-
Schwarz inequality that

(Il7.). < ClIVGo, ulz(llGr W + V915, ) < C(llGr, WG + IV ). (4.8)

With the aid of (1.4) and (4.5), we can easily deduce from (4.6) that

T
0 0 0N 12 0 0 (VNTHA
w0, wi, w0, By, BOIE, + f %, wi, w0, By, BOIRdt < C. 49)
0

Since it holds that
Ip = p° + IBI” = B°F < C(j] + IR, (4.10)

thus, multiplying (4.6), by v in L? and integrating by parts, we infer from (1.4), (4.5), (4.9), and (4.10)
that
(I02¥13.) + IV¥IE, < CliGr, v, @, B, (4.11)

Similarly, multiplying (4.6); by o in L? and integrating by parts, one can deduce from (1.4), (4.5)
and (4.9) that

(Io"*@2,) + V@I, + [, < Clitr, v, D). (4.12)
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Multiplying (4.6), by h and integrating by parts, we can obtain from (1.4), (4.5) and (4.9) that

(I813,), + VA, < Cllew, W, + CBlo™ (V x b) x b},

4.13)
< Cll, b2, + CB.

Multiplying (4.11) by a suitably large constant and adding the result to (4.8), we obtain from (4.12)
and (4.13) that
(I v, @ W) + VG, @, WG < Clier, v, @, B, + CA,

which, together with the Gronwall inequality and p > 0, gives rise to (4.7). O

Lemma 4.2. Let (nr,v, @, h) be the solution of system (4.6). There exists a positive constant C = C(T),
independent of B, such that for any T € (0, ), then

sup [IV(r,v, @, k)1, f IV2(v, @, b)I},dt < CB°. (4.14)

te[0,T]

Proof. Operating V on both sides of (4.6),, and multiplying it by Vr in L?, after integrating by parts,
we deduce from (4.7) and the Cauchy-Schwarz inequality that

(IIVﬂlliz)t < C@)ll, )l + oIV, < CB° + allV¥IIZ, + C(ONIV ()i (4.15)

12°

where o is an undetermined positive constant.
Multiplying (4.6), by v, in L? and integrating by parts, then, by virtue of (1.4), (4.5), (4.7), and (4.9)

that
(I9¥15) + 10wl < Cllr, v, @, W, + ClIV G, v, @, W,

(4.16)
< CB* + ClIV(m, v, @, h)|2,.

Multiplying (4.6); by @, in L? and integrating by parts, then, by virtue of (1.4), (4.5), (4.7), and (4.9)
that

2 2 122 2 2
(va”Lz + IIWIILZ)Z + o' @I}, < Clitr, v, @, b)lIy, + CIV(x,v, @, B[},

4.17)
< CB + ClIV(r,v, @, b},
Similarly,

(IVAIZ.) + IR} < Clir, v, @, W, + ClIV (v, @, W,

(4.18)
< CB + CIV(m,v, @, )II7,.
Due to (3.9), we know that p is strictly lower-bounded. Thus, it follows from (4.15)—(4.18) that

(VG v, @, IR + i) + 10 @, kI

5 - ) (4.19)
< Cﬁ + O-HV v”LZ + C(O‘)”V(T[, va w, h)”LZ
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The combination of (1.4), (4.5)—(4.7), and (4.9) gives

IV, @, Wi}, < Cllv,, @5, h)II7, + Cll,v, @, B)ll;, + CB

<
N N ) (4.20)
< Cﬁ + C9”(vt9 wt’ ht)”LZ + C”V(ﬂ-’ v» w, h)||L2

Multiplying (4.19) by (Cy + 1) and choosing o = (C9 + 1)/2 in (4.19), adding the resulting inequality
to (4.20), one has
LZ’

(VG v, @, W, +lIwi}.) + IV 0, @, W < CB + ClIV (v, @, hl;

which, together with the Gronwall inequality, yields (4.14). m|
Lemma 4.3. Let (nr,v, @, h) be the solution of system (4.6). There exists a positive constant C = C(T),
independent of B, such that for any T € (0, ), then

T
sup [[V2(m, v, @, )OI}, +f IV (v, @, W7.dt < CB. (4.21)
0

L
t€[0,T]

Proof. Due to (1.4), (2.7)—-(2.9), (4.7), and (4.14), we deduce from (4.6);, Cauchy-Schwarz inequality,
and the Sobolev inequality (2.22) that

1 1
(Hvzﬂ'”iz)t <l i, + §||V3V||iz <CB+ §”V3V”i2 + CIVA(m, v)I7.. (4.22)

Thanks to (4.6),, we have

+ + 4 - 1
v,+u-Vv—'ul éVAv—u1 1 ngivv = ——(Jru?+pv-Vu0
p P p (4.23)

1
+mu’ - VUl +V(p-p*)-20Vx@w—-b-Vh—h -Vb° + EV(lbI2 - Ibolz))-

Operating V? on both sides of (4.23), multiplying the resulting equation by V?v in L2, and integrating
by parts, we get from (2.7)—(2.9) and (4.7)—(4.14) that

3
(IVIi2.), + SIV*IE: < Cllary. @ Wil < CB + CIV(r. v, @, D). (4.24)

Due to (4.6)s, one has

+ A
wt+u-Vw—/£Aw—u2 2

p p

Vdivew

1 (4.25)
= ——(FW? +pov- VW +ma’ - VW' + 4l — 20V x v).
P

Operating V2 on both sides of (4.25), multiplying the resulting equation by V> in L?, and integrating
by parts, we get from (2.7)—(2.9) and (4.7)—(4.14) that

(V@) +IV°@l;, < Clitr,v, @, W < CB* + CIV(x,v, @, ;. (4.26)
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Operating V2 on both sides of (4.6),, multiplying the resulting equation by VA in L?, and integrating
by parts, we get from (2.7)—(2.9) and (4.7)—(4.14) that

(IV2RIE.) +IVRIE, < Clitr,v, @, Bl < CB* + CIV(x,v, @, ;. (4.27)
The combination of (4.22), (4.24), (4.26), and (4.27) gives that
(VG v, @, WIG), + IV, @, DI, < CB° + CIIV (v, @, DI,

which, together with the Gronwall inequality, yields (4.21). O

Proof of Theorem 1.2. Now, the convergence rates of the vanishing limit of the Hall coefficient stated
in Theorem 1.2 readily follows from Lemmas 4.1-4.3. O

5. Conclusions

This paper is concerned with the Cauchy problem of the compressible magneto-micropolar fluids
subjected to Hall current in three-dimensional whole space. Both the global existence and optimal
decay rates of strong solutions are obtained when the smooth initial data are sufficiently close to the
non-vacuum equilibrium in H!. As a by-product of the uniform estimates, the vanishing limit of the
Hall coefficient is also justified. We refer to Theorems 1.1 and 1.2 for details.
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