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1. Introduction and preliminaries

Let A be a unital Banach algebra with unit eA and X be a unitary Banach A-bimodule in the sense
that eA · x = x · eA = x for every x ∈ X. We say that a linear map d : A → X is a derivation if
d(ab) = d(a) · b+ a · d(b) for all a, b ∈ A. For each x ∈ X, the mapping dx : A→ X, dx(a) := a · x− x · a
is a bounded derivation, called an inner derivation.

We can define the right and left actions of A on the dual space X∗ of X via

(a · f )(x) = f (xa), ( f · a)(x) = f (ax)

for each a ∈ A, x ∈ X, f ∈ X∗.
A Banach algebra A is called amenable if for each Banach A-bimodule X, the only bounded

derivations from A to X∗ are inner derivations. The notion of an amenable Banach algebra was
introduced by Johnson in [11]. For more details about this notion, see [14]. A Banach algebra A
is weakly amenable, if every bounded derivation from A to A∗ is an inner derivation. The concept of
weak amenability of Banach algebras was introduced by Bade, Curtis, and Dales [1] for commutative
Banach algebras and then by Johnson [12] for a general Banach algebra.
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A bilinear mapping D : A × A → X is called a biderivation if it is a derivation in each argument;
that is, for every b ∈ A, the maps a 7→ D(a, b) and a 7→ D(b, a) are derivations. Consider the subspace
Z(A, X) = {x ∈ X | a · x = x · a,∀a ∈ A} of X. Then, for each x ∈ Z(A, X), the mapping Dx : A× A→ X
defined by Dx(a, b) = x[a, b] = x(ab − ba) (a, b ∈ A) is an example of a biderivation and called
an inner biderivation. In [7], Bresar proved that all biderivations on noncommutative prime rings
are inner. For more applications and details about biderivations, see [8]. Also see [5, 9], where the
structures of biderivations on triangular algebras and generalized matrix algebras were studied, along
with the conditions under which these biderivations are inner.

Although derivations and biderivations, as well as inner derivations and inner biderivations, appear
similar, there are fundamental differences between them. These differences become more evident when
a biderivation is required to be an inner biderivation. One reason is that biderivations depend on two
components, while another is that inner biderivations must involve elements from Z(A, X). Similarly,
amenability and weak amenability differ from biamenability and weak biamenability, as explained
in [3, 4].

In [4], Barootkoob and Mohammadzadeh introduced the concept of biamenability of Banach
algebras and demonstrated that, although amenability and biamenability of Banach algebras share
some superficial similarities, they exhibit notably distinct and, in some cases, contrasting properties.
Specifically, it was shown that commutative Banach algebras and the unitization of Banach algebras
are not biamenable, even if they are amenable. Furthermore, it was established that B(H), the algebra
of all bounded operators on an infinite-dimensional Hilbert space H, is biamenable but not amenable.
A complete characterization of biderivations and inner biderivations on triangular Banach algebras has
been provided in [2]. Additionally, a result concerning the weak biamenability of triangular Banach
algebras was established in [2].

Bresar introduced the concept of generalized derivations in [6]. The notion of generalized
amenability of Banach algebras was later investigated in [13, 15], where the authors provided various
results specifically for triangular Banach algebras.

Let A be a unital Banach algebra and X be a unitary Banach A-bimodule. A linear mapping g : A→
X is said to be a generalized derivation if

g(ab) = g(a) · b + a · g(b) − a · g(eA) · b

for all a, b ∈ A. The generalized derivation gx,y : A → X is called an inner generalized derivation if
there exist x, y ∈ X such that gx,y(a) := x · a + a · y. Similar to the amenability of a Banach algebra,
we say A is generalized amenable if for each Banach A-bimodule X, the only bounded generalized
derivations from A to X∗ are inner generalized derivations.

A bilinear mapping G : A×A→ X is called a generalized biderivation if it is a generalized derivation
in each argument; that is,

G(ab, c) = G(a, c) · b + a ·G(b, c) − a ·G(eA, c) · b,

and
G(a, bc) = G(a, b) · c + b ·G(a, c) − b ·G(a, eA) · c

for all a, b, c ∈ A.
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Example 1. Let A = M2(C) be the unital Banach algebra of all 2 × 2 upper triangular matrices over
the complex field C. We define a map G : A × A→ A by

G
((

a b
0 c

)
,

(
d e
0 f

))
=

(
0 b f + ae
0 0

)
.

Then, we see that G is a generalized biderivation.

Lemma 1. Let A be a unital Banach algebra and X be a unitary Banach A-bimodule. Suppose that
x, y ∈ X. Then the mapping Gx,y : A × A→ X defined by

Gx,y(a, b) := a · x · b + b · y · a

is a generalized biderivation.

Proof. It is clear that Gx,y is bilinear. Also, we have

Gx,y(ab, c) = (ab) · x · c + c · y · (ab)
= (ab) · x · c + c · y · (ab) + a · x · (cb) − a · x · (cb) + (ac) · y · b − (ac) · y · b
= a · x · (cb) + c · y · (ab) + (ab) · x · c + (ac) · y · b − a · x · (cb) − (ac) · y · b
= (a · x · c + c · y · a) · b + a · (b · x · c + c · y · b) − a · (x · c + c · y) · b
= Gx,y(a, c) · b + a ·Gx,y(b, c) − a ·Gx,y(eA, c) · b,

and

Gx,y(a, bc) = a · x · (bc) + (bc) · y · a
= a · x · (bc) + (bc) · y · a + b · y · (ac) − b · y · (ac) + (ba) · x · c − (ba) · x · c
= a · x · (bc) + b · y · (ac) + (ba) · x · c + (bc) · y · a − (ba) · x · c − b · y · (ac)
= (a · x · b + b · y · a) · c + b · (a · x · c + c · y · a) − b · (a · x + y · a) · c
= Gx,y(a, b) · c + b ·Gx,y(a, c) − b ·Gx,y(a, eA) · c

for all a, b, c ∈ A. Hence, Gx,y is a generalized biderivation. □

We call the map of the form Gx,y given in Lemma 1 an inner generalized biderivation. We denote
by GZ1(A, X) and GN1(A, X) the linear spaces of all bounded generalized biderivations and inner
generalized biderivations from A × A into X, respectively. Also we call the quotient space

GH1(A, X) := GZ1(A, X)/GN1(A, X),

the first generalized bicohomology group from A × A into X. Similar to the definition of
biamenability [2, 4] of Banach algebras, we now define the concept of generalized biamenability of
unital Banach algebras as follows. The Banach algebra A is said to be generalized biamenable if
every bounded generalized biderivation G : A × A → X∗ is an inner generalized biderivation; i.e.,
GH1(A, X∗) = {0}. A Banach algebra A is called weakly generalized biamenable if every bounded
generalized biderivation from A × A to A∗ is an inner generalized biderivation.

In this paper, we first prove some theorems on generalized biamenability of Banach algebras.
And we also give some results characterizing all generalized biderivations and inner generalized
biderivations on triangular Banach algebras.
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2. Results

In this section, let A be a unital Banach algebra with the unit eA and X be a unitary Banach A-
bimodule.

Theorem 1. Let A be a Banach algebra and consider C as a Banach A-bimodule. If there is a nonzero
generalized derivation g : A→ C, then generalized biamenability of A implies generalized amenability
of A.

Proof. Let X be a Banach A-bimodule and g′ : A→ X∗ be a bounded generalized derivation. Then,

G : A × A→ X∗, G(a, b) = g(a)g′(b)

is a bounded generalized biderivation. Indeed, we have

G(ab, c) = g(ab)g′(c)
= (g(a)b)g′(c) + (ag(b))g′(c) − (ag(eA)b)g′(c),

and

G(a, c) · b + a ·G(b, c) − a ·G(eA, c) · b
= (g(a)g′(c)) · b + a · (g(b)g′(c)) − a · (g(eA)g′(c)) · b

for all a, b, c ∈ A. Since C is a Banach A-bimodule, we get

G(ab, c) = G(a, c) · b + a ·G(b, c) − a ·G(eA, c) · b

for all a, b, c ∈ A. Similarly, we have

G(a, bc) = g(a)g′(bc)
= g(a)(g′(b) · c) + g(a)(b · g′(c)) − g(a)(b · g′(eA) · c),

and

G(a, b) · c + b ·G(a, c) − b ·G(a, eA) · c
= (g(a)g′(b)) · c + b · (g(a)g′(c)) − b · (g(a)g′(eA)) · c

for all a, b, c ∈ A. Hence, it is clear that

G(a, bc) = G(a, b) · c + b ·G(a, c) − b ·G(a, eA) · c.

Then, we see that G is a generalized biderivation. Hence, there are f , h ∈ X∗ such that

g(a)g′(b) = G(a, b) = a · f · b + b · h · a

for all a, b ∈ A. Therefore, for every b ∈ A and for some a ∈ A such that g(a) , 0, we have

g
′

(b) =
(
a · f
g(a)

)
· b + b ·

(
h · a
g(a)

)
.

So, we get that g′ is inner, and then A is generalized amenable. □
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A question naturally arises from the generalized biamenability of a Banach algebra, can we then
determine whether another Banach algebra is generalized biamenable? The answer is affirmative in the
following cases.

Theorem 2. If θ : A → B is a continuous homomorphism of Banach algebras with the dense range
and A is generalized biamenable, then so is B.

Proof. Let X be a Banach B-bimodule. Consider X as an A-bimodule with module actions a · x = θ(a)x
and x · a = xθ(a) for each a ∈ A and x ∈ X. Now, for each G ∈ GZ1(B, X∗), G ◦ (θ × θ) ∈ GZ1(A, X∗)
and generalized biamenability of A implies that

(G ◦ (θ × θ))(a, b) = G(θ(a), θ(b)) = θ(a) · f · θ(b) + θ(b) · h · θ(a) (a, b ∈ A)

for some f , h ∈ X∗. By density we conclude that

G(a′, b′) = a′ · f · b′ + b′ · h · a′

for all a′, b′ ∈ B. □

An immediate consequence of this theorem is the following:

Corollary 1. Let A be a generalized biamenable Banach algebra and I be a closed ideal in A. Then
the Banach algebra A/I is generalized biamenable.

Proof. The canonical mapping A → A/I is a contractive, surjective homomorphism, and therefore
continuous. □

3. Results for triangular Banach algebras

Let A and B be Banach algebras, and suppose that X is A-B-module; that is, X is a Banach space, a
left A-module, a right B-module, and the actions of A and B are continuous in that

∥a · x · b∥ ≤ ∥a∥∥x∥∥b∥

for each a ∈ A, x ∈ X, b ∈ B. If A has a unit 1A and B has a unit 1B, then X is said to be unital in the
sense that 1A · x = x · 1B = x for every x ∈ X. We define the corresponding triangular Banach algebra

T := Tri(A, X, B) =
{(

a x
0 b

)
| a ∈ A, x ∈ X, b ∈ B

}
with the usual 2 × 2 matrix addition and multiplication. The norm on T is∥∥∥∥∥∥

(
a x
0 b

)∥∥∥∥∥∥ := ∥a∥ + ∥x∥ + ∥b∥.

Moreover, if the Banach algebras A, B, and the A-B-module X are unital, then T is unital. The dual of
triangular Banach algebra T is

T ∗ =
{(

f h
0 g

)
| f ∈ A∗, h ∈ X∗, g ∈ B∗

}
,
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where
(

f h
0 g

) ((
a x
0 b

))
:= f (a) + h(x) + g(b). T ∗ is a triangular T -bimodule with respect to the

following module actions (
a x
0 b

)
·

(
f h
0 g

)
:=

(
a · f + x · h b · h

0 b · g

)
,

(
f h
0 g

)
·

(
a x
0 b

)
:=

(
f · a h · a
0 h · x + g · b

)
for every

(
a x
0 b

)
∈ T and

(
f h
0 g

)
∈ T ∗. Such algebras were introduced by Forrest and Marcoux

in [10].
We will assume that the corner Banach algebras A and B are unital and that X is a unital A-B-module

and T is associated triangular Banach algebra. We begin with the following theorem.

Theorem 3. Let δA : A × A → A∗ and δB : B × B → B∗ be bounded generalized biderivations. Then
the bilinear mapping G : T × T → T ∗ defined by

G
((

a x
0 b

)
,

(
a′ x′

0 b′

))
=

(
δA(a, a′) 0

0 δB(b, b′)

)
is a bounded generalized biderivation. Furthermore, G is inner if and only if δA and δB are inner.

Proof. It is easy to verify that G is a generalized biderivation. Also,∥∥∥∥∥∥
(
δA(a, a′) 0

0 δB(b, b′)

)∥∥∥∥∥∥
= ∥δA(a, a′)∥ + ∥δB(b, b′)∥
≤ ∥δA∥∥a∥∥a′∥ + ∥δB∥∥b∥∥b′∥

≤ (∥δA∥ + ∥δB∥) (∥a∥ + ∥x∥ + ∥b∥) (∥a′∥ + ∥x′∥ + ∥b′∥)

≤ (∥δA∥ + ∥δB∥)

∥∥∥∥∥∥
(

a x
0 b

)∥∥∥∥∥∥
∥∥∥∥∥∥
(

a′ x′

0 b′

)∥∥∥∥∥∥ .
Hence, G is bounded. Suppose that G is an inner generalized biderivation. Then, there exist(

f1 h1

0 g1

)
,

(
f2 h2

0 g2

)
∈ T ∗ such that

G
((

a x
0 b

)
,

(
a′ x′

0 b′

))
=

(
a x
0 b

)
·

(
f1 h1

0 g1

)
·

(
a′ x′

0 b′

)
+

(
a′ x′

0 b′

)
·

(
f2 h2

0 g2

)
·

(
a x
0 b

)
.

In particular, we have that(
δA(a, a′) 0

0 0

)
= G

((
a 0
0 0

)
,

(
a′ 0
0 0

))
AIMS Mathematics Volume 9, Issue 12, 36259–36272.
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=

(
a 0
0 0

)
·

(
f1 h1

0 g1

)
·

(
a′ 0
0 0

)
+

(
a′ 0
0 0

)
·

(
f2 h2

0 g2

)
·

(
a 0
0 0

)
=

(
a · f1 0

0 0

)
·

(
a′ 0
0 0

)
+

(
a′ · f2 0

0 0

)
·

(
a 0
0 0

)
=

(
(a · f1) · a′ 0

0 0

)
+

(
(a′ · f2) · a 0

0 0

)
=

(
a · f1 · a′ + a′ · f2 · a 0

0 0

)
.

Thus, δA(a, a′) = a · f1 · a′ + a′ · f2 · a. So δA is an inner generalized biderivation. Similarly, we can
show that δB is an inner generalized biderivation.

Conversely, if δA : A × A→ A∗ and δB : B × B→ B∗ are inner generalized biderivations, then there
are f1, f2 ∈ A∗ and g1, g2 ∈ B∗ such that for each a, a′ ∈ A, δA(a, a′) = a · f1 · a′ + a′ · f2 · a, and for each
b, b′ ∈ B, δB(b, b′) = b · g1 · b′ + b′ · g2 · b. Then, we have

G
((

a x
0 b

)
,

(
a′ x′

0 b′

))
=

(
δA(a, a′) 0

0 δB(b, b′)

)
=

(
a · f1 · a′ + a′ · f2 · a 0

0 b · g1 · b′ + b′ · g2 · b

)
=

(
a x
0 b

)
·

(
f1 0
0 g1

)
·

(
a′ x′

0 b′

)
+

(
a′ x′

0 b′

)
·

(
f2 0
0 g2

)
·

(
a x
0 b

)
.

Hence, G is an inner generalized biderivation. □

Theorem 4. Let T ∗ be the triangular bimodule
(

A∗ X∗

0 B∗

)
associated to the triangular Banach

algebra T . Assume that G : T × T → T ∗ is a bounded generalized biderivation. Then, there exist
bounded generalized biderivations δA : A × A→ A∗ and δB : B × B→ B∗, and h1, h2 ∈ X∗ such that

G
((

a x
0 b

)
,

(
a′ x′

0 b′

))
=

(
δA(a, a′) + x · h2 h1 · a + b · h2

0 h1 · x + δB(b, b′)

)
for every a, a′ ∈ A, b, b′ ∈ B and x, x′ ∈ X.

Proof. Suppose G is a generalized biderivation on T . Write G as

G
((

a x
0 b

)
,

(
a′ x′

0 b′

))
=

(
δA(a, a′) + dB(b, b′) + k1(x, x′) r1(a, a′) + r2(b, b′) + r3(x, x′)

0 dA(a, a′) + δB(b, b′) + k2(x, x′)

)
,

where δA : A × A → A∗, δB : B × B → B∗, dA : A × A → B∗, dB : B × B → A∗, k1 : X × X → A∗,
k2 : X × X → B∗, r1 : A × A→ X∗, r2 : B × B→ X∗ and r3 : X × X → X∗ are all bilinear maps. Let

G
((

1A 0
0 0

)
,

(
a′ x′

0 b′

))
=

(
f1 h1

0 g1

)
,
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and

G
((

0 0
0 1B

)
,

(
a′ x′

0 b′

))
=

(
f2 h2

0 g2

)
for some f1, f2 ∈ A∗, h1, h2 ∈ X∗ and g1, g2 ∈ B∗. Then, we have

G
((

1A 0
0 1B

)
,

(
a′ x′

0 b′

))
= G

((
1A 0
0 0

)
+

(
0 0
0 1B

)
,

(
a′ x′

0 b′

))
= G

((
1A 0
0 0

)
,

(
a′ x′

0 b′

))
+G

((
0 0
0 1B

)
,

(
a′ x′

0 b′

))
=

(
f1 h1

0 g1

)
+

(
f2 h2

0 g2

)
=

(
f1 + f2 h1 + h2

0 g1 + g2

)
.

On the other hand,

(
δA(a, a′) r1(a, a′)

0 dA(a, a′)

)
= G

((
a 0
0 0

)
,

(
a′ x′

0 b′

))
= G

((
1A 0
0 0

) (
a 0
0 0

)
,

(
a′ x′

0 b′

))
= G

((
1A 0
0 0

)
,

(
a′ x′

0 b′

))
·

(
a 0
0 0

)
+

(
1A 0
0 0

)
·G

((
a 0
0 0

)
,

(
a′ x′

0 b′

))
−

(
1A 0
0 0

)
·G

((
1A 0
0 1B

)
,

(
a′ x′

0 b′

))
·

(
a 0
0 0

)
=

(
f1 h1

0 g1

)
·

(
a 0
0 0

)
+

(
1A 0
0 0

)
·

(
δA(a, a′) r1(a, a′)

0 dA(a, a′)

)
−

(
1A 0
0 0

)
·

(
f1 + f2 h1 + h2

0 g1 + g2

)
·

(
a 0
0 0

)
=

(
f1 · a h1 · a

0 0

)
+

(
δA(a, a′) 0

0 0

)
−

(
f1 + f2 0

0 0

)
·

(
a 0
0 0

)
=

(
f1 · a h1 · a

0 0

)
+

(
δA(a, a′) 0

0 0

)
−

(
f1 · a + f2 · a 0

0 0

)
=

(
δA(a, a′) − f2 · a h1 · a

0 0

)
.

Thus, for all a, a′ ∈ A, we have f2 · a = 0, r1(a, a′) = h1 · a and dA(a, a′) = 0. So f2 = 0. Similarly, we
have (

dB(b, b′) r2(b, b′)
0 δB(b, b′)

)
= G

((
0 0
0 b

)
,

(
a′ x′

0 b′

))
= G

((
0 0
0 b

) (
0 0
0 1B

)
,

(
a′ x′

0 b′

))
= G

((
0 0
0 b

)
,

(
a′ x′

0 b′

))
·

(
0 0
0 1B

)
+

(
0 0
0 b

)
·G

((
0 0
0 1B

)
,

(
a′ x′

0 b′

))
AIMS Mathematics Volume 9, Issue 12, 36259–36272.



36267

−

(
0 0
0 b

)
·G

((
1A 0
0 1B

)
,

(
a′ x′

0 b′

))
·

(
0 0
0 1B

)
=

(
dB(b, b′) r2(b, b′)

0 δB(b, b′)

)
·

(
0 0
0 1B

)
+

(
0 0
0 b

)
·

(
0 h2

0 g2

)
−

(
0 0
0 b

)
·

(
f1 h1 + h2

0 g1 + g2

)
·

(
0 0
0 1B

)
=

(
0 0
0 δB(b, b′)

)
+

(
0 b · h2

0 b · g2

)
−

(
0 b · h1 + b · h2

0 b · g1 + b · g2

)
·

(
0 0
0 1B

)
=

(
0 0
0 δB(b, b′)

)
+

(
0 b · h2

0 b · g2

)
−

(
0 0
0 b · g1 + b · g2

)
=

(
0 b · h2

0 δB(b, b′) − b · g1

)
.

Thus, we have dB(b, b′) = 0, b · g1 = 0, and r2(b, b′) = b · h2 for all b, b′ ∈ B. So g1 = 0. For x ∈ X, we
have (

k1(x, x′) r3(x, x′)
0 k2(x, x′)

)
= G

((
0 x
0 0

)
,

(
a′ x′

0 b′

))
= G

((
1A 0
0 0

) (
0 x
0 0

)
,

(
a′ x′

0 b′

))
= G

((
1A 0
0 0

)
,

(
a′ x′

0 b′

))
·

(
0 x
0 0

)
+

(
1A 0
0 0

)
·G

((
0 x
0 0

)
,

(
a′ x′

0 b′

))
−

(
1A 0
0 0

)
·G

((
1A 0
0 1B

)
,

(
a′ x′

0 b′

))
·

(
0 x
0 0

)
=

(
f1 h1

0 0

)
·

(
0 x
0 0

)
+

(
1A 0
0 0

)
·

(
k1(x, x′) f3(x, x′)

0 k2(x, x′)

)
−

(
1A 0
0 0

)
·

(
f1 h1 + h2

0 g2

)
·

(
0 x
0 0

)
=

(
0 0
0 h1 · x

)
+

(
k1(x, x′) 0

0 0

)
−

(
f1 0
0 0

)
·

(
0 x
0 0

)
=

(
0 0
0 h1 · x

)
+

(
k1(x, x′) 0

0 0

)
−

(
0 0
0 0

)
=

(
k1(x, x′) 0

0 h1 · x

)
.

Thus, r3(x, x′) = 0 and k2(x, x′) = h1 · x for all x, x′ ∈ X. Also, we have(
k1(x, x′) r3(x, x′)

0 k2(x, x′)

)
= G

((
0 x
0 0

)
,

(
a′ x′

0 b′

))
= G

((
0 x
0 0

) (
0 0
0 1B

)
,

(
a′ x′

0 b′

))
= G

((
0 x
0 0

)
,

(
a′ x′

0 b′

))
·

(
0 0
0 1B

)
+

(
0 x
0 0

)
·G

((
0 0
0 1B

)
,

(
a′ x′

0 b′

))
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36268

−

(
0 x
0 0

)
·G

((
1A 0
0 1B

)
,

(
a′ x′

0 b′

))
·

(
0 0
0 1B

)
=

(
k1(x, x′) r3(x, x′)

0 k2(x, x′)

)
·

(
0 0
0 1B

)
+

(
0 x
0 0

)
·

(
0 h2

0 g2

)
−

(
0 x
0 0

)
·

(
f1 h1 + h2

0 g2

)
·

(
0 0
0 1B

)
=

(
0 0
0 k2(x, x′)

)
+

(
x · h2 0

0 0

)
−

(
x · h1 + x · h2 0

0 0

)
·

(
0 0
0 1B

)
=

(
0 0
0 k2(x, x′)

)
+

(
x · h2 0

0 0

)
−

(
0 0
0 0

)
=

(
x · h2 0

0 k2(x, x′)

)
.

Thus, k1(x, x′) = x · h2 and r3(x, x′) = 0 for all x, x′ ∈ X. Hence, we have

G
((

a x
0 b

)
,

(
a′ x′

0 b′

))
=

(
δA(a, a′) + x · h2 h1 · a + b · h2

0 h1 · x + δB(b, b′)

)
for all a, a′ ∈ A, b, b′ ∈ B, x, x′ ∈ X. So, for each a, a′ ∈ A, b′ ∈ B, and x′ ∈ X, we have

G
((

a 0
0 0

)
,

(
a′ x′

0 b′

))
=

(
δA(a, a′) h1 · a

0 0

)
.

Moreover, (
δA(a1a2, a′) h1 · (a1a2)

0 0

)
= G

((
a1a2 0

0 0

)
,

(
a′ x′

0 b′

))
= G

((
a1 0
0 0

) (
a2 0
0 0

)
,

(
a′ x′

0 b′

))
= G

((
a1 0
0 0

)
,

(
a′ x′

0 b′

))
·

(
a2 0
0 0

)
+

(
a1 0
0 0

)
·G

((
a2 0
0 0

)
,

(
a′ x′

0 b′

))
−

(
a1 0
0 0

)
·G

((
1A 0
0 1B

)
,

(
a′ x′

0 b′

))
·

(
a2 0
0 0

)
=

(
δA(a1, a′) h · a1

0 0

)
·

(
a2 0
0 0

)
+

(
a1 0
0 0

)
·

(
δA(a2, a′) h · a2

0 0

)
−

(
a1 0
0 0

)
·

(
f1 h1 + h2

0 g2

)
·

(
a2 0
0 0

)
=

(
δA(a1, a′) · a2 (h · a1) · a2

0 0

)
+

(
a1 · δA(a2, a′) 0

0 0

)
−

(
a1 · f1 0

0 0

)
·

(
a2 0
0 0

)
=

(
δA(a1, a′) · a2 (h · a1) · a2

0 0

)
+

(
a1 · δA(a2, a′) 0

0 0

)
−

(
(a1 · f1) · a2 0

0 0

)
=

(
δA(a1, a′) · a2 + a1 · δA(a2, a′) − a1 · f1 · a2 h · (a1a2)

0 0

)
for all a1, a2 ∈ A. So, we have δA(a1a2, a′) = δA(a1, a′) ·a2+a1 ·δA(a2, a′)−a1 · f1 ·a2 for each a1, a2 ∈ A.
In particular, taking a1 = a2 = 1A, we get δA(1A, a′) = δA(1A, a′)+δA(1A, a′)− f1, that is, f1 = δA(1A, a′).
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Similarly, we can show

δA(a′, a1a2) = δA(a′, a1) · a2 + a1 · δA(a′, a2) − a1 · δA(a′, 1A) · a2.

Therefore, δA is a generalized biderivation. Further, since G is bounded, so

∥δA(a, a′)∥ ≤ ∥δA(a, a′)∥ + ∥h · a∥

=

∥∥∥∥∥∥
(
δA(a, a′) h · a

0 0

)∥∥∥∥∥∥
=

∥∥∥∥∥∥G
((

a 0
0 0

)
,

(
a′ 0
0 0

))∥∥∥∥∥∥
≤ ∥G∥

∥∥∥∥∥∥
(

a 0
0 0

)∥∥∥∥∥∥
∥∥∥∥∥∥
(

a′ 0
0 0

)∥∥∥∥∥∥
= ∥G∥ ∥a∥ ∥a′∥.

It follows that δA is bounded. Also, for each a′ ∈ A, b, b′ ∈ B and x′ ∈ X, we have

G
((

0 0
0 b

)
,

(
a′ x′

0 b′

))
=

(
0 b · h2

0 δB(b, b′)

)
.

Moreover, (
0 (b1b2) · h2

0 δB(b1b2, b′)

)
= G

((
0 0
0 b1b2

)
,

(
a′ x′

0 b′

))
= G

((
0 0
0 b1

) (
0 0
0 b2

)
,

(
a′ x′

0 b′

))
= G

((
0 0
0 b1

)
,

(
a′ x′

0 b′

))
·

(
0 0
0 b2

)
+

(
0 0
0 b1

)
·G

((
0 0
0 b2

)
,

(
a′ x′

0 b′

))
−

(
0 0
0 b1

)
·G

((
1A 0
0 1B

)
,

(
a′ x′

0 b′

))
·

(
0 0
0 b2

)
=

(
0 b1 · h2

0 δB(b1, b′)

)
·

(
0 0
0 b2

)
+

(
0 0
0 b1

)
·

(
0 b2 · h2

0 δB(b2, b′)

)
−

(
0 0
0 b1

)
·

(
f1 h1 + h2

0 g2

)
·

(
0 0
0 b2

)
=

(
0 0
0 δB(b1, b′) · b2

)
+

(
0 b1 · (b2 · h2)
0 b1 · δB(b2, b′)

)
−

(
0 b · h1 + b1 · h2

0 b1 · g2

)
·

(
0 0
0 b2

)
=

(
0 0
0 δB(b1, b′) · b2

)
+

(
0 b1 · (b2 · h2)
0 b1 · δB(b2, b′)

)
−

(
0 0
0 b1 · g2 · b2

)
=

(
0 (b1b2) · h2

0 δB(b1, b′) · b2 + b1 · δB(b2, b′) − b1 · g2 · b2

)
for all b1, b2 ∈ B. So, we have

δB(b1b2, b′) = δB(b1, b′) · b2 + b1 · δB(b2, b′) − b1 · g2 · b2
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for each b1, b2 ∈ B. Taking b1 = b2 = 1B, we have g2 = δB(1B, b′). Similarly, we can show

δB(b′, b1b2) = δB(b′, b1) · b2 + b1 · δB(b′, b2) − b1 · δB(b′, 1B) · b2.

Therefore, δB is a generalized biderivation. Further, since G is bounded, it is clear that δB is bounded.
□

Theorem 5. Let A and B be unital Banach algebras, and let T = Tri(A, 0, B) be the corresponding
triangular Banach algebra. Then,

GH1(T,T ∗) � GH1(A, A∗) ⊕GH1(B, B∗).

Proof. Define f : GZ1(A, A∗) ⊕ GZ1(B, B∗) → GH1(T,T ∗) by f ((δA, δB)) := [G′], where [G′] is the

equivalent class of G′ :=
(
δA 0
0 δB

)
in GH1(T,T ∗). Clearly, f is linear. By Theorems 3 and 4, f is

surjective. Also, by Theorem 3, we have

Ker f =
{

(δA, δB) |
(
δA 0
0 δB

)
is inner

}
= {(δA, δB) | δA and δB are inner}
= GN1(A, A∗) ⊕GN1(B, B∗).

Therefore, we have

GH1(T,T ∗) � (GZ1(A, A∗) ⊕GZ1(B, B∗))/(GN1(A, A∗) ⊕GN1(B, B∗)).

Then, we have the desired result. □

Corollary 2. T = Tri(A, 0, B) is weakly generalized biamenable if and only if A and B are weakly
generalized biamenable.

Now, we give a result about generalized biamenability for triangular Banach algebras.

Theorem 6. If T = Tri(A, 0, B) is generalized biamenable, then A and B are both generalized
biamenable Banach algebras.

Proof. Suppose that T :=
(

A 0
0 B

)
is generalized biamenable. Since

(
A 0
0 0

)
is a closed ideal of

T , the quotient algebra
(

A 0
0 B

)
/

(
A 0
0 0

)
is generalized biamenable by Corollary 1. On the other

hand,
(

A 0
0 B

)
/

(
A 0
0 0

)
� B, thus, B is generalized biamenable. Similarly, since

(
0 0
0 B

)
is a

closed ideal of T , we have
(

A 0
0 B

)
/

(
0 0
0 B

)
� A. Thus, it follows from Corollary 1 that A is

generalized biamenable. □
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4. Conclusions

As we mentioned in the introduction, in this paper, we studied the generalized biderivations of unital
Banach algebras. Some results of this new concept have been obtained, and the author thinks that using
various methods the results on generalized biamenability can be extended to areas related to Banach
algebras in the future.
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