
http://www.aimspress.com/journal/Math

AIMS Mathematics, 7(6): 9884–9893.
DOI: 10.3934/math.2022551
Received: 26 December 2021
Revised: 19 February 2022
Accepted: 27 February 2022
Published: 18 March 2022

Research article

The image of polynomials in one variable on 2 × 2 upper triangular matrix
algebras

Lan Lu1, Yu Wang2,*, Huihui Wang2 and Haoliang Zhao2

1 Department of Basic Courses, Changchun Guanghua University, Changchun 130033, China
2 Department of Mathematics, Shanghai Normal University, Shanghai 200234, China

* Correspondence: Email: ywang2004@126.com.

Abstract: In the present paper, we give a description of the image of polynomials in one variable
on 2 × 2 upper triangular matrix algebras over an algebraically closed field. As consequences, we give
concrete descriptions of the images of polynomials of degrees up to 4 in one variable on 2 × 2 upper
triangular matrix algebras over an algebraically closed field.

Keywords: polynomial; upper triangular matrix algebra; algebraically closed field
Mathematics Subject Classification: 16S50, 16R10, 15A54

1. Introduction

Let K be a field. By K〈x1, . . . , xn〉 we denote the free K-algebra generated by non-commuting
indeterminate x1, . . . , xn and refer to the elements of K〈x1, . . . , xn〉 as polynomials. Without special
explanation we always assume that every polynomial over K is a polynomial with zero constant term.

Images of polynomials evaluated on algebras play an important role in non-commutative algebras.
The old and famous Lvov-Kaplansky conjecture asserts: The image of a multilinear polynomial in
non-commutative variables over a field K on the matrix algebra Mn(K) is a vector space (see [6] for
details). The parallel topic in group theory (the images of words in groups) has been studied extensively
(see [2, 17]).

In 2012, Kanel-Belov, Malev and Rowen [6] made a major breakthrough and solved the Lvov-
Kaplansky conjecture for n = 2. In 2016, Kanel-Belov, Malev and Rowen [7] solved the Lvov-
Kaplansky conjecture for n = 3. We remark that in [6, 7] the authors considered multilinear elements
only. Some results on the Lvov-Kaplansky conjecture have been obtained in [8, 9, 12].

We remark that the images of multilinear polynomials of small degree on Lie algebras [1, 13] and
Jordan algebras [11] have been discussed.
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In 2019, Fagundes [3] gave a complete description of the image of multilinear polynomials on
strictly upper triangular matrix algebras. In 2019, Fagundes and Mello [4] discussed the image of
multilinear polynomials of degree up to four on upper triangular matrix algebras. They proposed the
following variation of the Lvov-Kaplansky conjecture:

Conjecture 1.1. The image of a multilinear polynomial over a field K on the upper trinagular matrix
algebra Tn(K) is always a vector space.

In 2019, Wang [14] gave a positive answer of Conjecture 1.1 for n = 2. We remark that there
exists a gap in the proof of [14, Theorem 1]. In 2019, Wang, Liu and Bai [15] gave a correct proof
of [14, Theorem 1]. It should be mentioned that Conjecture 1.1 has been answered (see [5, 10]).

In 2021, Zhou and Wang [18] gave a complete description of the image of completely homogeneous
polynomials on 2 × 2 upper triangular matrix algebras over an algebraically closed field. In the same
year, Wang, Zhou and Luo [16] gave the Zariski topology structure of the image of polynomials on 2×2
upper triangular matrix algebras over an algebraically closed field.

In the present paper, we give a description of the image of polynomials in one variable on 2 × 2
upper triangular matrix algebras over an algebraically closed field. As consequences, we give concrete
descriptions of the images of polynomials of degrees up to 4 in one variable on 2 × 2 upper triangular
matrix algebras over an algebraically closed field.

2. Single elements of polynomials in one variable

Let K be a field. Let p(x) be a polynomial in one variable over K. We now give the following
definition, which is crucial for the proof of our main result.

Definition 2.1. Let K be a field. Let p(x) be a polynomial in one variable over K. An element c ∈ K is
said to be a single element of p if p(x) − c has a simple root in K.

By S (p) we denote the set of all simple elements of p.
The following examples give complete descriptions of the set of all simple elements of polynomials

of degree up to 4 in one variable. We omit the proofs of both Examples 2.1 and 2.2.

Example 2.1. Let K be an algebraically closed field. Let

p(x) = x2 + βx,

where β ∈ K. Then one of the following statements holds:

(i) Suppose char(K) , 2. Then S (p) = K \ {− 1
4β

2};
(ii) Suppose char(K) = 2 and β = 0. Then S (p) = ∅;

(iii) Suppose char(K) = 2 and β , 0. Then S (p) = K.

Example 2.2. Let K be an algebraically closed field. Let

p(x) = x3 + β1x2 + β2x,

where β1, β2 ∈ K. Then one of the following statements holds:

(i) Suppose char(K) , 3 and β2
1 = 3β2. Then S (p) = K \ {− 1

27β
3
1};
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(ii) Suppose char(K) , 3 and β2
1 , 3β2. Then S (p) = K;

(iii) Suppose char(K) = 3 and β1 = β2 = 0. Then S (p) = ∅;
(iv) Suppose char(K) = 3 and either β1 , 0 or β2 , 0. Then S (p) = K.

Example 2.3. Let K be an algebraically closed field. Let

p(x) = x4 + β1x3 + β2x2 + β3x,

where β1, β2, β3 ∈ K. Then one of the following statements holds:

(i) Suppose char(K) = 2 and β1 = β3 = 0. Then S (p) = ∅;
(ii) Suppose char(K) = 2 and either β1 , 0 or β3 , 0. Then S (p) = K;

(iii) Suppose char(K) , 2 and β1 = β3 = 0. Then S (p) = ∅;
(iv) Suppose char(K) , 2, β1 = 0 and β3 , 0. Then S (p) = K;
(v) Suppose char(K) , 2, β1 , 0, β2 = 1

4β
2
1 + 2β3β

−1
1 . Then S (p) = K \ {−(β−1

1 β3)2};
(vi) Suppose char(K) , 2, β1 , 0, β2 ,

1
4β

2
1 + 2β3β

−1
1 . Then S (p) = K.

Proof. We just give the proof of (i). The other statements can be proved analogously. For c ∈ K, we set

f (x) = p(x) − c.

It is easy to check that f (x) has no simple roots in K if and only if

f (x) = (x − α)2(x − β)2, (2.1)

where α, β ∈ K. Expanding (2.1) and comparing the coefficients of (2.1) we obtain

β1 = −2(α + β),
β2 = α2 + 4αβ + β2,

β3 = −2αβ(α + β),
c = −α2β2.

(2.2)

Suppose first that char(K) = 2 and β1 = β3 = 0. Let ω1, ω2 ∈ K be a solution of the
following equation:

x2 + β2x − c = 0.

It follows that

ω1 + ω2 = −β2,

ω1ω2 = −c.

Let γ1 ∈ K be a solution of x2 = ω1. Let γ2 ∈ K be a solution of x2 = ω2. We have

γ2
1 + γ2

2 = −β2,

γ2
1γ

2
2 = −c.

It follows that
f (x) − c = x4 + β2x2 − c = (x − γ1)2(x − γ2)2.

In view of Definition 2.1, we get that c < S (p). Hence S (p) = ∅. This proves (i). �
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3. The main result

Set K∗ = K \ {0}. Let T2(K) be the set of all 2 × 2 upper triangular matrices over K.
We give a description of the image of polynomials in one variable on 2 × 2 upper triangular matrix

algebras over an algebraically closed field.

Theorem 3.1. Let d ≥ 1 be integer. Let K be an algebraically closed field. Let

p(x) = βd xd + βd−1xd−1 + · · · + β1x,

where βi ∈ K for i = 1, . . . , d with βd , 0. We have

p(T2(K)) = T2(K) \
{(

c K∗

0 c

)
| c < S (p)

}
.

In particular, p(T2(K)) is not a vector space if S (p) , K.

Proof. For
(

a m
a

)
∈ T2(K), we claim that

p
(

a m
a

)
=

(
p(a) p′(a)m

p(a)

)
, (3.1)

where p′(x) is the derivation of p(x). Indeed, we have

p
(

a m
a

)
=

d∑
i=1

βi

(
a m

a

)i

=

d∑
i=1

βi

(
ai iai−1m

ai

)

=


d∑

i=1
βiai

d∑
i=1
βiiai−1m
d∑

i=1
βiai


=

(
p(a) p′(a)m

p(a)

)
.

For
(

a m
b

)
∈ T2(K), where a , b, we claim that

p
(

a m
b

)
=

(
p(a) p(a)−p(b)

a−b m
p(b)

)
. (3.2)

AIMS Mathematics Volume 7, Issue 6, 9884–9893.



9888

Indeed, we have

p
(

a m
b

)
=

d∑
i=1

βi

(
a m

b

)i

=

d∑
i=1

βi

 ai
i∑

s=1
ai−sbs−1m

bi


=

d∑
i=1

βi

(
ai ai−bi

a−b m
bi

)

=

 p(a)
d∑

i=1
βi

ai−bi

a−b m

p(b)


=

 p(a)

d∑
i=1
βiai−

d∑
i=1
βibi

a−b m
p(b)


=

(
p(a) p(a)−p(b)

a−b m
p(b)

)
.

For any
(

a′ m′

b′

)
∈ T2(K), where a′ , b′, we have that there exist a, b ∈ K such that

p(a) = a′ and p(b) = b′.

Note that a , b. Set

λ =

(
a′ − b′

a − b

)−1

.

Take u =

(
a λm′

b

)
. It follows from (3.2) that

p(u) =

(
p(a) p(a)−p(b)

a−b λm′

p(b)

)
=

(
a′ a′−b′

a−b λm′

b′

)
=

(
a′ m′

b′

)
.

(3.3)

This implies that {(
a′ K

b′

)
| a , b

}
⊆ p(T2(K)). (3.4)

For any
(

a′ 0
a′

)
∈ T2(K), we have that there exists a ∈ K such that p(a) = a′. Take u =

(
a 0

a

)
∈

T2(K). It follows from (3.1) that

p(u) =

(
a′ 0

a′

)
.
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This implies that
K · I2 ⊆ p(T2(K)), (3.5)

where I2 is the identity matrix of T2(K). For c ∈ S (p), we set

f (x) = p(x) − c.

In view of Definition 2.1, we have that f (x) has a simple root ω ∈ K. We have

f (ω) = p(ω) − c = 0

and
f ′(ω) = p′(ω) , 0,

where f ′ and p′ are the derivations of f and p, respectively. Set

u =

(
ω p′(ω)−1m

ω

)
for m ∈ K. It follows from (3.1) that

p(u) = p
(
ω p′(ω)−1m

ω

)
=

(
p(ω) p′(ω)p′(ω)−1m

p(ω)

)
=

(
c m

c

)
.

This implies that {(
c K

c

)
| c ∈ S (p)

}
⊆ p(T2(K)). (3.6)

We get from (3.4)–(3.6) that

T2(K) \
{(

c K∗

0 c

)
| c < S (p)

}
⊆ p(T2(K)).

For any u =

(
a m

a

)
∈ T2(K), we get from (3.1) that

p(u) =

(
p(a) p′(a)m

p(a)

)
.

Suppose first p′(a) = 0. We have
p(u) ∈ K · I2. (3.7)

Suppose next p′(a) , 0. Set
f (x) = p(x) − p(a).
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It is clear that
f (a) = 0 and f ′(a) = p′(a) , 0.

This implies that a ∈ K is a simple root of f (x).
In view of Definition 2.1, we get p(a) ∈ S (p). We have

p(u) ∈
{(

c K
c

)
| c ∈ S (p)

}
. (3.8)

For any u =

(
a m

b

)
∈ T2(K), where a , b, we get from (3.2) that

p(u) =

(
p(a) p(a)−p(b)

a−b m
p(b)

)
.

Suppose first p(a) , p(b). We have

p(u) ∈
{(

a′ K
b′

)
| a′ , b′ ∈ K

}
. (3.9)

Suppose next p(a) = p(b). We have that

p(u) ∈ K · I2. (3.10)

We get from (3.7)–(3.10) that

p(T2(K)) ⊆ T2(K) \
{(

c K∗

0 c

)
| c < S (p)

}
.

We obtain

p(T2(K)) = T2(K) \
{(

c K∗

0 c

)
| c < S (p)

}
.

Suppose S (p) , K. We claim that p(T2(K)) is not a vector space.
Take a ∈ K \ S (p). Suppose first 0 ∈ S (p). Take(

a 0
a

)
,

(
0 1

0

)
∈ p(T2(K)).

We have (
a 0

a

)
+

(
0 1

0

)
=

(
a 1

a

)
< p(T2(K)).

This implies that p(T2(K)) is not a vector space. Suppose next 0 < S (p). Take
(

1 1
0

)
,

(
−1 0

0

)
∈

p(T2(K)). We have (
1 1

0

)
+

(
−1 0

0

)
=

(
0 1

0

)
< p(T2(K)).

This implies that p(T2(K)) is not a vector space. The proof of the result is complete. �
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As a consequence, we give a concrete description of the image of polynomials of degree up to 4 in
one variable on 2 × 2 upper triangular matrix algebras over an algebraically closed field.

Corollary 3.1. Let K be an algebraically closed field. We have

(1) Let p(x) = x2 + βx, where β ∈ K. Then one of the following statements holds:

(i) Suppose char(K) , 2. Then

p(T2(K)) = T2(K) \
(
−1

4β
2 K∗

−1
4β

2

)
is not a vector space;

(ii) Suppose char(K) = 2 and β = 0. Then

p(T2(K)) = T2(K) \
{(

c K∗

c

)
| c ∈ K

}
is not a vector space;

(iii) Suppose char(K) = 2 and β , 0. Then p(T2(K)) = T2(K).

(2) Let p(x) = x3 + β1x2 + β2x, where β1, β2 ∈ K. Then one of the following statements holds:

(i) Suppose char(K) , 3 and β2
1 = 3β2. Then

p(T2(K)) = T2(K) \
(
− 1

27β
3
1 K∗

− 1
27β

3
1

)
is not a vector space;

(ii) Suppose char(K) , 3 and β2
1 , 3β2. Then p(T2(K)) = T2(K);

(iii) Suppose char(K) = 3 and β1 = β2 = 0. Then

p(T2(K)) = T2(K) \
{(

c K∗

c

)
| c ∈ K

}
is not a vector space;

(iv) Suppose char(K) = 3 and either β1 , 0 or β2 , 0. Then p(T2(K)) = T2(K).

(3) Let p(x) = x4 +β1x3 +β2x2 +β3x, where β1, β2, β3 ∈ K. Then one of the following statements holds:

(i) Suppose char(K) = 2 and β1 = β3 = 0. Then

p(T2(K)) = T2(K) \
{(

c K∗

c

)
| c ∈ K

}
is not a vector space;

(ii) Suppose char(K) = 2 and either β1 , 0 or β3 , 0. Then p(T2(K)) = T2(K);
(iii) Suppose char(K) , 2 and β1 = β3 = 0. Then

p(T2(K)) = T2(K) \
{(

c K∗

c

)
| c ∈ K

}
is not a vector space;
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(iv) Suppose char(K) , 2, β1 = 0 and β3 , 0. Then p(T2(K)) = T2(K);
(v) Suppose char(K) , 2, β1 , 0, β2 = 1

4β
2
1 + 2β3β

−1
1 . Then

p(T2(K)) = T2(K) \
(
−(β−1

1 β3)2 K∗

−(β−1
1 β3)2

)
is not a vector space;

(vi) Suppose char(K) , 2, β1 , 0, β2 ,
1
4β

2
1 + 2β3β

−1
1 . Then p(T2(K)) = T2(K).

Proof. The statement (1) follows from both Example 2.1 and Theorem 3.1. The statement (2) follows
from both Example 2.2 and Theorem 3.1. The statement (3) follows from both Example 2.3 and
Theorem 3.1. �

4. Conclusions

In this paper, we first defined the set of all single elements of polynomials in one variable. We
next gave a description of the image of polynomials in one variable on 2 × 2 upper triangular matrix
algebras over an algebraically closed field. As an application of our main result, we gave concrete
descriptions of the images of polynomials of degrees up to 4 in one variable on 2 × 2 upper triangular
matrix algebras over an algebraically closed field.
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https://doi.org/10.1007/3-7643-7447-0 11

18. J. Zhou, Y. Wang, The images of completely homogeneous polynomials on 2 × 2
upper triangular matrix algebras, Algebra. Represent. Theory, 24 (2021), 1221–1229.
https://doi.org/10.1007/s10468-020-09986-6

© 2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 7, Issue 6, 9884–9893.

http://dx.doi.org/https://doi.org/10.1080/00927872.2017.1282959
http://dx.doi.org/https://doi.org/10.1016/j.jalgebra.2021.11.008
http://dx.doi.org/https://doi.org/10.1016/j.laa.2015.11.015
http://dx.doi.org/https://doi.org/10.1142/S0219498814500042
http://dx.doi.org/https://doi.org/10.1016/j.jalgebra.2012.12.006
http://dx.doi.org/https://doi.org/10.1080/03081087.2019.1614519
http://dx.doi.org/https://doi.org/10.1080/03081087.2019.1656706
http://dx.doi.org/https://doi.org/10.1016/j.laa.2020.10.009
http://dx.doi.org/https://doi.org/10.1007/3-7643-7447-0_11
http://dx.doi.org/https://doi.org/10.1007/s10468-020-09986-6
http://creativecommons.org/licenses/by/4.0

	Introduction
	Single elements of polynomials in one variable
	The main result
	Conclusions

