

AIMS Mathematics, 9(9): 24636–24653. DOI:10.3934/math.20241200 Received: 29 June 2024 Revised: 10 August 2024 Accepted: 13 August 2024 Published: 22 August 2024

https://www.aimspress.com/journal/Math

Research article

Supercommuting maps on unital algebras with idempotents

Yingyu Luo¹ and Yu Wang^{2,*}

¹ College of Mathematics, Changchun Normal University, Changchun 130032, China

² Department of Mathematics, Shanghai Normal University, Shanghai 200234, China

* Correspondence: Email: ywang2004@126.com.

Abstract: Let \mathcal{A} be a unital algebra with nontrivial idempotents. We considered \mathcal{A} as a superalgebra according to Ghahramani and Zadeh's method. We provided a description of supercommuting maps on \mathcal{A} . As a consequence, we gave a description of supercommuting maps on matrix algebras, which is different from the result on commuting maps of matrix algebras. Finally, we proved that every supercommuting map on triangular algebras is a commuting map.

Keywords: supercommuting map; commuting map; generalized matrix algebra; matrix algebra; triangular algebra

Mathematics Subject Classification: 15A78, 16W25, 17A70

1. Introduction

Let \mathcal{A} be an associative algebra over R, a commutative ring with unity. By $Z(\mathcal{A})$, we denote the center of \mathcal{A} . Set [x, y] = xy - yx and $x \circ y = xy + yx$.

A linear map f on \mathcal{A} is called a *commuting map* if [f(x), x] = 0 for all $x \in \mathcal{A}$. It is clear that $f(x) = \lambda x + \tau(x)$ is a commuting map, where $\lambda \in Z(\mathcal{A})$ and $\tau : \mathcal{A} \to Z(\mathcal{A})$, which is said to be a *proper commuting map*.

In 1991, Brešar [1] proved that a commuting map on noncommutative Lie ideals of prime rings is always proper. In 1993, Brešsar [2] discussed centralizing mappings and derivations in prime rings. In the same year, Brešsar [3] discussed commuting traces of biadditive mappings, commutativity-preserving mappings and Lie mappings. In 2020, Jia and Xiao [4] discussed commuting maps on certain incidence algebras. Results related to commuting maps are discussed in [5–7].

It should be mentioned that the study of commuting maps on rings initiated the theory of functional identities on rings (see [8] for details).

An associative algebra \mathcal{A} is said to be a *superalgebra* if \mathcal{A} is the direct sum of two *R*-submodules \mathcal{A}_0 and \mathcal{A}_1 such that $\mathcal{A}_i \mathcal{A}_j \subseteq \mathcal{A}_{i+j}$ (modulo 2). We call \mathcal{A}_0 the even part and \mathcal{A}_1 the odd part of \mathcal{A} .

Elements in $\mathcal{H} = \mathcal{A}_0 \bigcup \mathcal{A}_1$ are called homogeneous, and we write |a| = i to mean $a \in \mathcal{A}_i$. For $a, b \in \mathcal{H}$, the supercommutator of *a* and *b* is defined to be

$$[a,b]_s = ab - (-1)^{|a||b|} ba.$$

It is clear that $[a, b]_s = a \circ b$ if both *a* and *b* are odd, and $[a, b]_s = [a, b]$ if either *a* or *b* is even. The definition can be extended linearly to arbitrary $a, b \in \mathcal{A}$.

Let $\mathcal{A} = \mathcal{A}_0 \bigoplus \mathcal{A}_1$ be a superalgebra. A linear map $f : \mathcal{A} \to \mathcal{A}$ is said to be *supercommuting* if

$$[f(x), x]_s = 0$$

for all $x \in \mathcal{A}$.

In 2002, Beidar, Chen, Fong, and Ke [9] discussed graded polynomial identities with an antiautomorphism. In 2003, Beidar, Bresăr, and Chebotar [10] discussed Jordan superhomomorphisms on superalgebras. In 2008, Wang [11] discussed skew-supercommuting maps in superalgebras. In 2009, Wang [12] gave a description of supercentralizing superautomorphisms on prime superalgebras. In the same year, Lee and Wang [13] gave a description of supercommuting maps of prime superalgebras. In 2017, Fan and Dai [14] investigated Super-biderivations on Lie superalgebras. In 2019, Cheng and Sun [15] discussed Super-biderivations and linear supercommuting maps on the super-BMS3 algebras.

Let \mathcal{A} be a unital algebra with an idempotent $e \neq 0, 1$. Let f denote the idempotent 1 - e. In this case, \mathcal{A} can be represented in the so-called Peirce decomposition form

$$\mathcal{A} = e\mathcal{A}e + e\mathcal{A}f + f\mathcal{A}e + f\mathcal{A}f,$$

where $e\mathcal{A}e$ and $f\mathcal{A}f$ are subalgebras with unitary elements e and f, respectively, $e\mathcal{A}f$ is an $(e\mathcal{A}e, f\mathcal{A}f)$ -bimodule and $f\mathcal{A}e$ is an $(f\mathcal{A}f, e\mathcal{A}e)$ -bimodule, which is said to be a *generalized matrix algebra* (see [16] for details).

For brevity, we set

$$A = e\mathcal{A}e, \quad M = e\mathcal{A}f, \quad N = f\mathcal{A}e, \quad B = f\mathcal{A}f.$$

It is clear that

$$\begin{cases} AM \subseteq M, MA = 0, AN = 0, NA \subseteq N, AB = 0, BA = 0, MN \subseteq A, \\ BM = 0, MB \subseteq M, BN \subseteq N, NB = 0, NM \subseteq B, MM = 0, NN = 0. \end{cases}$$

In 2012, Benkovič and Širovnik [17] defined the following useful condition:

$$\begin{cases} a \in A, & aM = 0 = Na \Rightarrow a = 0; \\ b \in B, & Mb = 0 = bN \Rightarrow b = 0. \end{cases}$$
(1.1)

Some examples of unital algebras with nontrivial idempotents having the property (1.1) are triangular algebras, matrix algebras, and prime (and hence in particular simple) algebras with nontrivial idempotents (see [17]).

In 2010, Xiao and Wei [16] initiated the study of commuting mappings of generalized matrix algebras, which generalized a typical result on commuting maps of triangular algebras (see [18] for details). In 2019, Li, Wei, and Fošner [19] discussed *k*-commuting mappings of generalized matrix algebras, which generalized a result on *k*-commuting maps of triangular algebras (see [20] for details). In 2002, Du and Wang [21] gave a description of Lie derivations of generalized matrix algebras. In 2018, Benkovič [22] discussed generalized Lie derivations of unital algebras with idempotents. Additional results on mappings of generalized matrix algebras can be found in [23–25].

In 2024, Ghahramani and Zadeh [26] considered \mathcal{A} as a superalgebra by:

$$\mathcal{A} = \mathcal{A}_0 \oplus \mathcal{A}_1,$$

where

$$\mathcal{A}_0 = A + B$$
 and $\mathcal{A}_1 = M + N$.

They determined the class of generalized matrix algebras for which every Lie superderivation is proper (see [26, Theorem 5.1]. As a consequence, they gave some descriptions of Lie superderivations on both matrix algebras and triangular algebras (see [26] for details).

Recently, Chen [27] discussed Jordan superderivations of unital algebras with idempotents. As a consequence, she gave some descriptions of Jordan superderivations of matrix algebras and triangular algebras.

In the present paper, we give a description of supercommuting maps of unital algebras with idempotents. As a consequence, we give some descriptions of supercommuting maps of matrix algebras and triangular algebras.

We organize the paper as follows: In Section 2, we give preliminaries and the definition of proper supercommuting maps. In Section 3, we give a description of supercommuting maps of degree 0 on unital algebras. In Section 4, we give a description of supercommuting maps of degree 1 on unital algebras. In Section 5, we give the main result of the paper. In Section 6, we give a description of supercommuting maps on matrix algebras. As a consequence, we prove that every supercommuting map on matrix algebras over a 2-torsion free unital algebra is supercentral. In the last section, we prove that every supercommuting map on triangular algebras is a commuting map.

2. Preliminaries

Let $\mathcal{A} = \mathcal{A}_0 \bigoplus \mathcal{A}_1$ be a superalgebra. The supercenter of \mathcal{A} is the set

$$Z(\mathcal{A})_s = \{a \in \mathcal{A} \mid [a, x]_s = 0 \text{ for all } x \in \mathcal{A}\}.$$

We set

 $Z(\mathcal{A})_0 = Z(\mathcal{A}) \cap \mathcal{A}_0$ and $Z(\mathcal{A})_1 = Z(\mathcal{A}) \cap \mathcal{A}_1$.

It is easy to check that $Z(\mathcal{A}) = Z(\mathcal{A})_0 \bigoplus Z(\mathcal{A})_1$ is a graded subalgebra of \mathcal{A} (see [4, Section 2] for details). It is clear that $Z(\mathcal{A})_0 \subseteq Z(\mathcal{A})_s$.

We begin with the following definition.

Definition 2.1. Let $\mathcal{A} = \mathcal{A}_0 \bigoplus \mathcal{A}_1$ be a superalgebra. We call a linear map $f : \mathcal{A} \to \mathcal{A}$ a proper supercommuting map if

$$f(x) = \lambda x + \tau(x)$$

AIMS Mathematics

for all $x \in \mathcal{A}$, where $\lambda \in Z(\mathcal{A})_0$ with $2\lambda \mathcal{A}_1^2 = \{0\}$, and $\tau : \mathcal{A} \to Z(\mathcal{A})_s$ is a linear map. In particular, if $f(x) \in Z(\mathcal{A})_s$ for all $x \in \mathcal{A}$, we call f a supercentral map.

The following result shows that a proper supercommuting map is a supercommuting map.

Lemma 2.1. Let $\mathcal{A} = \mathcal{A}_0 \bigoplus \mathcal{A}_1$ be a superalgebra. Then

$$f(x) = \lambda x + \tau(x)$$

for all $x \in \mathcal{A}$, is a supercommuting map of \mathcal{A} , where $\lambda \in Z(\mathcal{A})_0$ with $2\lambda \mathcal{A}_1^2 = \{0\}$, and $\tau : \mathcal{A} \to Z(\mathcal{A})_s$ is a linear map.

Proof. For any $x = x_0 + x_1 \in \mathcal{A}$ we get

$$[f(x), x]_{s} = [\lambda x + \tau(x), x]_{s}$$

= $\lambda [x, x]_{s}$
= $\lambda [x_{0} + x_{1}, x_{0} + x_{1}]_{s}$
= $\lambda [x_{0}, x_{0}] + \lambda [x_{0}, x_{1}] + \lambda [x_{1}, x_{0}] + \lambda [x_{1}, x_{1}]_{s}$
= $\lambda [x_{1}, x_{1}]_{s}$
= $2\lambda x_{1}^{2}$
= 0.

We obtain that f is a supercommuting map.

Definition 2.2. Let $\mathcal{A} = \mathcal{A}_0 \bigoplus \mathcal{A}_1$ be a superalgebra. A supercommuting map f on \mathcal{A} is said to be a supercommuting map of degree 0 if $f(\mathcal{A}_0) \subseteq \mathcal{A}_0$ and $f(\mathcal{A}_1) \subseteq \mathcal{A}_1$. A supercommuting map f of \mathcal{A} is said to be a supercommuting map of degree 1 if $f(\mathcal{A}_0) \subseteq \mathcal{A}_1$ and $f(\mathcal{A}_1) \subseteq \mathcal{A}_0$.

The following result shows that a supercommuting map is the sum of a supercommuting map of degree 0 and a supercommuting map of degree 1.

Lemma 2.2. Let $\mathcal{A} = \mathcal{A}_0 \bigoplus \mathcal{A}_1$ be a superalgebra. Let f be a supercommuting map of \mathcal{A} . Then

$$f = f_0 + f_1$$

where f_0 is a supercommuting map of degree 0 on \mathcal{A} and f_1 is a supercommuting map of degree 1 on \mathcal{A} .

Proof. For i = 0 or 1, let π_i be the canonical projection of \mathcal{A} . We set

$$f_0 = \pi_0 f \pi_0 + \pi_1 f \pi_1$$
 and $f_1 = \pi_0 f \pi_1 + \pi_1 f \pi_0$.

It is easy to check that f_i is a linear map of \mathcal{A} and $f = f_0 + f_1$, where i = 0, 1. Moreover, $f_0(\mathcal{A}_0) \subseteq \mathcal{A}_0$, $f_0(\mathcal{A}_1) \subseteq \mathcal{A}_1$, $f_1(\mathcal{A}_0) \subseteq \mathcal{A}_1$, and $f_1(\mathcal{A}_1) \subseteq \mathcal{A}_0$. We now claim that both f_0 and f_1 are supercommuting maps on \mathcal{A} .

For i = 0, 1, and any $x = x_0 + x_1 \in \mathcal{A}$, we have

$$0 = [f(x_i), x_i]_s$$

= $[f_0(x_i) + f_1(x_i), x_i]_s$
= $[f_0(x_i), x_i]_s + [f_1(x_i), x_i]_s$

AIMS Mathematics

Volume 9, Issue 9, 24636–24653.

Since $[f_0(x_i), x_i]_s$ is even and $[f_1(x_i), x_i]_s$ is odd, we obtain that

$$[f_0(x_i), x_i]_s = 0$$
 and $[f_1(x_i), x_i]_s = 0.$ (2.1)

It follows from (2.1) and the linearity of f_i , where i = 0, 1, that

$$[f_0(x_1), x_0]_s + [f_0(x_0), x_1]_s = 0$$
(2.2)

and

$$[f_1(x_1), x_0]_s + [f_1(x_0), x_1]_s = 0.$$
(2.3)

For i = 0, 1, we get from (2.1), (2.2), and (2.3) that

$$[f_i(x), x]_s = [f_i(x_0) + f_i(x_1), x_0 + x_1]_s$$

= $[f_i(x_0), x_0]_s + [f_i(x_0), x_1]_s + [f_i(x_1), x_0]_s + [f_i(x_1), x_1]_s$
= 0.

This implies that f_i is a supercommuting map of degree *i*. The proof of the result is complete. \Box

Form now on we always assume that \mathcal{A} is a unital algebra with nontrivial idempotents. The following result is essentially the same as [26, Lemma 2.1].

Lemma 2.3.

$$Z(\mathcal{A}) = Z(\mathcal{A})_s = \{X \in Z(\mathcal{A}_0) \mid [X, \mathcal{A}_1] = 0\}.$$

We define two natural projection $\pi_A : \mathcal{A} \to A$ and $\pi_B : \mathcal{A} \to B$ by

$$\pi_A(a + m + n + b) = a$$
 and $\pi_B(a + m + n + b) = b$.

The following result is essentially the same as [26, Lemma 2.3].

Lemma 2.4. Let A be a unital algebra with nontrivial idempotents having the property (1.1). Then

$$Z(\mathcal{A}) = Z(\mathcal{A})_s = \{X \in \mathcal{A}_0 \mid [X, \mathcal{A}_1] = 0\}.$$

Furthermore, $\pi_A(Z(\mathcal{A})) \subseteq Z(A)$, $\pi_B(Z(\mathcal{A})) \subseteq Z(B)$, and there exists a unique isomorphism φ from $\pi_A(Z(\mathcal{A}))$ to $\pi_B(Z(\mathcal{A}))$ such that $am = m\varphi(a)$, $mb = \varphi^{-1}(b)m$, $na = \varphi(a)n$, and $bn = n\varphi^{-1}(b)$ for all $m \in M, n \in N$.

3. Supercommuting maps of degree 0

We begin with the structure of supercommuting maps of degree 0.

Lemma 3.1. Let f_0 be a supercommuting map of degree 0 on \mathcal{A} . Then

$$f_0(a + m + n + b) = \alpha_1(a) + \alpha_4(b) + \alpha_1(1)m - m\beta_1(1) + n\alpha_1(1) - \beta_1(1)n + \beta_1(a) + \beta_4(b)$$

for all $a \in A$, $m \in M$, $n \in N$, and $b \in B$, where $\alpha_1 : A \to A$, $\alpha_4 : B \to Z(A)$, $\beta_1 : A \to Z(B)$, and $\beta_4 : B \to B$ are linear maps satisfying the following conditions:

- (*i*) α_1 and β_4 are commuting mappings of A and B, respectively. In particular, $\alpha_1(1) \in Z(A), \beta_4(1) \in Z(B)$;
- (*ii*) $\alpha_1(a)m m\beta_1(a) = a(\alpha_1(1)m m\beta_1(1)), \beta_1(a)n n\alpha_1(a) = (n\alpha_1(1) \beta_1(1)n)a;$
- (*iii*) $\alpha_4(b)m m\beta_4(b) = (m\beta_1(1) \alpha_1(1)m)b, \beta_4(b)n n\alpha_4(b) = b(n\alpha_1(1) \beta_1(1)n);$
- (*iv*) $2\alpha_1(1)mn = 2m\beta_1(1)n$ and $2n\alpha_1(1)m = 2\beta_1(1)nm$.

Proof. Since $f_0(\mathcal{A}_0) \subseteq \mathcal{A}_0$ and $f_0(\mathcal{A}_1) \subseteq \mathcal{A}_1$, we can write

$$f_0(a+m+n+b) = \alpha_1(a) + \alpha_4(b) + \mu_2(m) + \mu_3(n) + \nu_2(m) + \nu_3(n) + \beta_1(a) + \beta_4(b)$$
(3.1)

for all $a \in A$, $m \in M$, $n \in N$, and $b \in B$, where $\alpha_1 : A \to A$, $\alpha_4 : B \to A$, $\mu_2 : M \to M$, $\mu_3 : N \to M$, $\nu_2 : M \to N$, $\nu_3 : N \to N$, $\beta_1 : A \to B$, and $\beta_4 : B \to B$ are linear maps.

Linearizing $[f_0(X), X]_s = 0$ leads to

$$[f_0(X), Y]_s + [f_0(Y), X]_s = 0$$
(3.2)

for all $X, Y \in \mathcal{A}$. For any $m \in M$, taking $X = 1_A$ and Y = m in (3.2) yields

$$[f_0(1_A), m] + [f_0(m), 1_A] = 0.$$

That is

$$[\alpha_1(1_A) + \beta_1(1_A), m] + [\mu_2(m) + \nu_2(m), 1_A] = 0.$$

This implies that $v_2(m) = 0$ and $\mu_2(m) = \alpha_1(1)m - m\beta_1(1)$ for all $m \in M$. Similarly, if we choose $X = 1_A$ and Y = n in (3.2), then we arrive at $\mu_3(n) = 0$ and $v_3(n) = n\alpha_1(1) - \beta_1(1)n$ for all $n \in N$. Therefore (3.1) becomes

$$f_0(a + m + n + b) = \alpha_1(a) + \alpha_4(b) + \alpha_1(1)m - m\beta_1(1) + n\alpha_1(1) - \beta_1(1)n + \beta_1(a) + \beta_4(b)$$
(3.3)

for all $a \in A$, $m \in M$, $n \in N$, and $b \in B$. For any $a \in A$ and $b \in B$, taking X = a and Y = b into (3.3) yields

$$[f_0(a), b] + [f_0(b), a] = 0.$$

That is

$$[\alpha_1(a) + \beta_1(a), b] + [\alpha_4(b) + \beta_4(b), a] = 0.$$

Then $[\alpha_4(b), a] = 0$ and $[\beta_1(a), b] = 0$ for all $a \in A$ and $b \in B$. This implies that $\alpha_4(B) \subseteq Z(A)$ and $\beta_1(A) \subseteq Z(B)$. By (3.3) we obtain

$$0 = [f_0(a+b), a+b] = [\alpha_1(a), a] + [\beta_4(b), b].$$

Then $[\alpha_1(a), a] = 0$ for all $a \in A$ and $[\beta_4(b), b] = 0$ for all $b \in B$. This implies that α_1 and β_4 are commuting mappings of A and B, respectively. It is easy to check that $\alpha_1(1) \in Z(A)$ and $\beta_4(1) \in Z(B)$. This proves the statement (i).

By (3.3) we get

$$[f_0(a), m+n] = \alpha_1(a)m - m\beta_1(a) + \beta_1(a)n - n\alpha_1(a)$$

AIMS Mathematics

and

$$[f_0(m+n), a] = a(m\beta_1(1) - \alpha_1(1)m) + (\beta_1(1)n - n\alpha_1(1)a).$$

Note that

$$[f_0(a), m+n] + [f_0(m+n), a] = 0.$$

The above three relations imply that $\alpha_1(a)m - m\beta_1(a) = a(\alpha_1(1)m - m\beta_1(1))$ and $\beta_1(a)n - n\alpha_1(a) = (n\alpha_1(1) - \beta_1(1)n)a$ for all $a \in A$, $m \in M$, and $n \in N$. This proves the statement (ii). Similarly, taking X = b and Y = m + n in (3.2) we can obtain that $\alpha_4(b)m - m\beta_4(b) = (m\beta_1(1) - \alpha_1(1)m)b$ and $\beta_4(b)n - n\alpha_4(b) = b(n\alpha_1(1) - \beta_1(1)n)$ for all $b \in B$, $m \in M$, and $n \in N$. This proves the statement (iii). Since $[f_0(m + n), m + n]_s = 0$ for all $m \in M$, $n \in N$, we get from (3.3) that

$$[a(m\beta_1(1) - \alpha_1(1)m) + a_1(1)n - n\alpha_1(1))a, m + n]_s = 0.$$

That is

$$(a(m\beta_1(1) - \alpha_1(1)m) + a_1(1)n - n\alpha_1(1))a)(m+n) + (m+n)(a(m\beta_1(1) - \alpha_1(1)m) + a_1(1)n - n\alpha_1(1))a) = 0$$

for all $m \in M$ and $n \in N$. This implies that

$$2\alpha_1(1)mn = 2m\beta_1(1)n$$
 and $2n\alpha_1(1)m = 2\beta_1(1)nm$

for all $m \in M$, $n \in N$. This proves the statement (iv). We complete the proof of the result.

The idea of proving the following result is taken from [18, Lemma 1].

Lemma 3.2. Let \mathcal{A} be a unital algebra with nontrivial idempotents having the property (1.1). Let f_0 be a supercommuting map of degree 0 on \mathcal{A} . With notations as above, then $\beta_1^{-1}(\pi_B(Z(\mathcal{A})))$ and $\alpha_4^{-1}(\pi_A(Z(\mathcal{A})))$ are ideals of A and B, respectively. Furthermore, $[A, A] \subseteq \beta_1^{-1}(\pi_B(Z(\mathcal{A})))$ and $[B, B] \subseteq \alpha_4^{-1}(\pi_A(Z(\mathcal{A})))$.

Proof. We prove the part of the statement related to β_1 . The part related to α_4 can be proved analogously. For any $a, a' \in A, m \in M$, and $n \in N$ we get from Lemma 3.1(ii) that

$$a'a(\alpha_1(1)m - m\beta_1(1)) = \alpha_1(a'a)m - m\beta_1(a'a)$$
(3.4)

$$a'a(\alpha_1(1)m - m\beta_1(1)) = a'(\alpha_1(a)m - m\beta_1(a))$$
(3.5)

$$aa'(\alpha_1(1)m - m\beta_1(1)) = \alpha_1(aa')m - m\beta_1(aa')$$
(3.6)

$$a(\alpha_1(1)a'm - a'm\beta_1(1)) = \alpha_1(a)a'm - a'm\beta_1(a).$$
(3.7)

From (3.4) and (3.5), we have

$$\alpha_1(a'a)m - m\beta_1(a'a) - a'(\alpha_1(a)m - m\beta_1(a)) = 0,$$
(3.8)

and from (3.6) and (3.7), we have

$$\alpha_1(aa')m - m\beta_1(aa') - \alpha_1(a)a'm + a'm\beta_1(a) = 0.$$
(3.9)

AIMS Mathematics

Taking the difference of (3.8) and (3.9), we have

$$(\alpha_1([a,a']) - [\alpha_1(a),a'])m = m\beta_1([a,a']).$$
(3.10)

For any $a, a' \in A$ and $n \in N$, we get from Lemma 3.1(ii) that

$$(n\alpha_1(1) - \beta_1(1)n)a'a = \beta_1(a'a)n - n\alpha_1(a'a)$$
(3.11)

$$(n\alpha_1(1) - \beta_1(1)n)a'a = (\beta_1(a')n - n\alpha_1(a'))a$$
(3.12)

$$(n\alpha_1(1) - \beta_1(1)n)aa' = \beta_1(aa')n - n\alpha_1(aa')$$
(3.13)

$$(na\alpha_1(1) - \beta_1(1)na)a' = \beta_1(a')na - na\alpha_1(a').$$
(3.14)

From (3.11) and (3.12), we have

$$\beta_1(a'a)n - n\alpha_1(a'a) - \beta_1(a')na + n\alpha_1(a')a = 0, \qquad (3.15)$$

and from (3.13) and (3.14), we have

$$\beta_1(aa')n - n\alpha_1(aa') - \beta_1(a')na + na\alpha_1(a') = 0.$$
(3.16)

Taking the difference of (3.15) and (3.16), we have

$$\beta_1([a,a'])n = n(\alpha_1(([a,a']) - [a,\alpha_1(a')]).$$
(3.17)

Since α_1 is commuting map of A, we get that $[a, \alpha_1(a')] = [\alpha_1(a), a']$. Thus, we get from (3.17) that

$$\beta_1([a,a'])n = n(\alpha_1(([a,a']) - [\alpha_1(a),a']).$$
(3.18)

In view of Lemma 2.4 we get from both (3.10) and (3.18) that $\beta_1([a, a']) \in \pi_B(Z(\mathcal{A}))$. Hence $[A, A] \subseteq \beta_1^{-1}(\pi_B(Z(\mathcal{A})))$.

Suppose that $a \in \beta_1^{-1}(\pi_B(Z(\mathcal{A})))$. From both (3.8) and (3.15) we have

$$m\beta_1(a'a) = (\alpha_1(a'a) - a'\alpha_1(a) + a'\varphi^{-1}(\beta_1(a)))m;$$

$$\beta_1(a'a)n = n(\alpha_1(a'a) - a'\alpha_1(a) + a'\varphi^{-1}(\beta_1(a))).$$

By Lemma 2.4 we get that $\beta_1(a'a) \in \pi_B(Z(\mathcal{A}))$. Hence $a'a \in \beta_1^{-1}(\pi_B(Z(\mathcal{A})))$. Similarly, from both (3.9) and (3.16) we have

$$m\beta_1(aa') = (\alpha_1(aa') - \alpha_1(a)a' + a'\varphi^{-1}(\beta_1(a)))m;$$

$$\beta_1(aa')n = n(\alpha_1(aa') - \alpha_1(a)a' + a'\varphi^{-1}(\beta_1(a))).$$

By Lemma 2.4 we get that $\beta_1(aa') \in \pi_B(Z(\mathcal{A}))$. Hence $aa' \in \beta_1^{-1}(\pi_B(Z(\mathcal{A})))$. As a result, $\beta_1^{-1}(\pi_B(Z(\mathcal{A})))$ is an ideal of *A* containing [*A*, *A*]. This proves the result.

Now we obtain necessary and sufficient conditions for a supercommuting map of degree 0 on \mathcal{A} to be proper. The idea of proving the following result is taken from [18, Theorem 1].

Lemma 3.3. Let \mathcal{A} be a unital algebra with nontrivial idempotents having the property (1.1). Let f_0 be a supercommuting map of degree 0 on \mathcal{A} such that

 $f_0(a + m + n + b) = \alpha_1(a) + \alpha_4(b) + \alpha_1(1)m - m\beta_1(1) + n\alpha_1(1) - \beta_1(1)n + \beta_1(a) + \beta_4(b).$

Then, the following three conditions are equivalent:

- (i) f_0 is proper;
- (*ii*) $\beta_1(A) \subseteq \pi_B(Z(\mathcal{A}))$ and $\alpha_4(B) \subseteq \pi_A(Z(\mathcal{A}))$;
- (*iii*) $\alpha_1(1) \in \pi_A(Z(\mathcal{A}))$ and $\beta_1(1) \in \pi_B(Z(\mathcal{A}))$.

Proof. (ii) \Rightarrow (iii). $\beta_1(1) \in \beta_1(A) \subseteq \pi_B(Z(\mathcal{A}))$. Taking b = 1 in Lemma 3.1(iii), we get

$$\alpha_1(1)m = m(\beta_4(1) + \beta_1(1) - \varphi(\alpha_4(1)))$$

$$n\alpha_1(1) = (\beta_4(1) + \beta_1(1) - \varphi(\alpha_4(1)))n$$

for all $m \in M$ and $n \in N$. By Lemma 2.4 we get that $\alpha_1(1) \in \pi_A(Z(\mathcal{A}))$.

(iii) \Rightarrow (ii). Since $\beta_1(1) \in \pi_B(Z(\mathcal{A}))$, the ideal $\beta_1^{-1}(\pi_B(Z(\mathcal{A})))$ of *A* contains 1. Hence $A = \beta_1^{-1}(\pi_B(Z(\mathcal{A})))$. We have that $\beta_1(A) \subseteq \pi_B(Z(\mathcal{A}))$. By Lemma 3.1(iii), we have $\alpha_4(b)m - m\beta_4(b) = (m\beta_1(1) - \alpha_1(1)m)b$, which implies

$$\alpha_4(b)m = m(\beta_4(b) + \beta_1(1)b - \varphi(\alpha_1(1))b)$$
(3.19)

for all $m \in M$ and $b \in B$. By Lemma 3.1(iii) again, we have $\beta_4(b)n - n\alpha_4(b) = b(n\alpha_1(1) - \beta_1(1)n)$, which implies

$$n\alpha_4(b) = (\beta_4(b) + \beta_1(1)b - \varphi(\alpha_1(1))b)n$$
(3.20)

for all $n \in N$ and $b \in B$. In view of Lemma 2.4 we get from both (3.19) and (3.20) that $\alpha_4(b) \in \pi_A(Z(\mathcal{A}))$ for all $b \in B$.

(iii) \Rightarrow (i). We set

$$\tau(X) = f_0(X) - \lambda X$$

for all $X \in \mathcal{A}$, where $\lambda = \alpha_1(1) - \varphi^{-1}(\beta_1(1)) + \varphi(\alpha_1(1)) - \beta_1(1) \in Z(\mathcal{A})$. We claim that $\tau(\mathcal{A}) \subseteq Z(\mathcal{A})$. Indeed, we have

$$\begin{aligned} \tau(a+m+n+b) &= f_0(a+m+n+b) - \lambda(a+m+n+b) \\ &= (\alpha_1(a) + \alpha_4(b) + \alpha_1(1)m - m\beta_1(1) + n\alpha_1(1) - \beta_1(1)n + \beta_1(a) + \beta_4(b) \\ &- (\alpha_1(1) - \varphi^{-1}(\beta_1(1)) + \varphi(\alpha_1(1)) - \beta_1(1)))(a+m+n+b) \\ &= \alpha_1(a) - (\alpha_1(1) - \varphi^{-1}(\beta_1(1))) + \beta_1(a) + \alpha_4(b) + \beta_4(b) - (\varphi(\alpha_1(1)) - \beta_1(1))b. \end{aligned}$$

By Lemma 3.1(ii) we have

$$(\alpha_1(a) - (\alpha_1(1) - \varphi^{-1}(\beta_1(1)))a)m = m\beta_1(a)$$

$$n(\alpha_1(a) - (\alpha_1(1) - \varphi^{-1}(\beta_1(1)))a) = \beta_1(a)n$$

for all $a \in A$, $m \in M$, and $n \in N$. By Lemma 2.4 we get that

$$\alpha_1(a) - (\alpha_1(1) - \varphi^{-1}(\beta_1(1)))a + \beta_1(a) \in Z(\mathcal{A})$$

AIMS Mathematics

for all $a \in A$. Similarly, we get from Lemma 3.1(iii) that

$$\alpha_4(b)m = m(\beta_4(b) - (\varphi(\alpha_1(1)) - \beta_1(1))b);$$

$$n\alpha_4(b) = (\beta_4(b) - (\varphi(\alpha_1(1)) - \beta_1(1))b)n$$

for all $m \in M$, $n \in N$, and $b \in B$. By Lemma 2.4 we get that

$$\alpha_4(b) + \beta_4(b) - (\varphi(\alpha_1(1)) - \beta_1(1))b \in Z(\mathcal{A})$$

for all $b \in B$. We obtain that $\tau(a + m + n + b) \in Z(\mathcal{A})$ for all $a \in A, m \in M, n \in N$, and $b \in B$ as desired. We next claim that $2\lambda \mathcal{A}_1^2 = \{0\}$.

For any $m \in M$ and $n \in N$, by Lemma 3.1(iv) we have

$$2\pi_A(\lambda)mn = 2(\alpha_1(1) - \varphi^{-1}(\beta_1(1)))mn$$
$$= 2\alpha_1(1)mn - 2m\beta_1(1)n = 0$$

and

$$2\pi_B(\lambda)nm = 2(\varphi(\alpha_1(1)) - \beta_1(1))nm$$
$$= 2n\alpha_1(1)m - 2\beta_1(1)nm = 0$$

It follows that

$$2\lambda(m+n)(m'+n') = 2\lambda(mn'+nm')$$
$$= 2\pi_A(\lambda)mn' + 2\pi_B(\lambda)nm'$$
$$= 0$$

for all $m, m' \in M$, $n, n' \in N$. This implies that $2\lambda \mathcal{R}_1^2 = \{0\}$.

(i) \Rightarrow (iii). Suppose that $f_0(X) = \lambda X + \tau(X)$ for all $X \in \mathcal{A}$, where $\lambda \in Z(\mathcal{A})$ with $2\lambda \mathcal{A}_1^2 = \{0\}$ and $\tau : \mathcal{A} \to Z(\mathcal{A})$ is a linear map. For any $m \in M$ and $n \in N$, we have

$$f_0(m+n) = (\pi_A(\lambda) + \pi_B(\lambda))(m+n) + \tau(m+n).$$

By Lemma 3.1 we get that

$$\alpha_1(1)m - m\beta_1(1) + n\alpha_1(1) - \beta_1(1)n = \pi_A(\lambda)m + \pi_B(\lambda)n + \tau(m+n).$$

We get from the last relation that

$$\alpha_1(1)m - m\beta_1(1) = \pi_A(\lambda)m;$$

$$n\alpha_1(1) - \beta_1(1)n = \pi_B(\lambda)n.$$

This implies that

$$(\alpha_1(1) - \pi_A(\lambda))m = m\beta_1(1);$$

$$n(\alpha_1(1) - \pi_A(\lambda)) = \beta_1(1)n.$$

By Lemma 2.4 we get that $\alpha_1(1) - \pi_A(\lambda) \in \pi_A(Z(\mathcal{A}))$ and $\beta_1(1) \in \pi_B(Z(\mathcal{A}))$. Hence, $\alpha_1(1) \in \pi_A(Z(\mathcal{A}))$ and $\beta_1(1) \in \pi_B(Z(\mathcal{A}))$ as desired. The proof of the result is complete.

AIMS Mathematics

We now give sufficient conditions for every supercommuting map of degree 0 on \mathcal{A} to be proper. The idea of proving the following result is taken from [18, Theorem 2].

Theorem 3.1. Let \mathcal{A} be a unital algebra with nontrivial idempotents having the property (1.1). Suppose that the following two conditions are satisfied:

(*i*) $Z(B) = \pi_B(Z(\mathcal{A})), \text{ or } A = [A, A];$

(*ii*) $Z(A) = \pi_A(Z(\mathcal{A})), \text{ or } B = [B, B].$

Then every supercommuting map of degree 0 on A is proper.

Proof. Let f_0 be a supercommuting mapping of degree 0 on \mathcal{A} . With notations as above, we note that $\alpha_4(B) \subseteq Z(A)$ and $\beta_1(A) \subseteq Z(B)$. By the condition (i) we note that either $Z(B) = \pi_B(Z(\mathcal{A}))$ or A = [A, A]. Suppose first that $Z(B) = \pi_B(Z(\mathcal{A}))$. We get that $\beta_1(A) \subseteq \pi_B(Z(\mathcal{A}))$. Suppose next that A = [A, A]. In view of Lemma 3.2 we note that $[A, A] \subseteq \beta_1^{-1}(\pi_B(Z(\mathcal{A})))$. This implies that $\beta_1(A) \subseteq \pi_B(Z(\mathcal{A}))$.

By the condition (ii) we note that either $Z(A) = \pi_A(Z(\mathcal{A}))$ or B = [B, B]. Suppose first that $Z(A) = \pi_A(Z(\mathcal{A}))$. We get that $\alpha_4(B) \subseteq \pi_A(Z(\mathcal{A}))$. Suppose next that B = [B, B]. In view of Lemma 3.2 we note that $[B, B] \subseteq \alpha_4^{-1}(\pi_A(Z(\mathcal{A})))$. We obtain that $\alpha_4(B) \subseteq \pi_A(Z(\mathcal{A}))$. By Lemma 3.3 we obtain that f_0 is proper. This proves the result.

4. Supercommuting maps of degree 1

We first give the structure of supercommuting map of degree 1 on \mathcal{A} .

Lemma 4.1. Let \mathcal{A} be a unital algebra with nontrivial idempotents. Let f_1 be a commuting mapping of degree 1 on \mathcal{A} . Then f_1 is of the form

$$f_1(a + m + n + b) = \alpha_2(m) + \alpha_3(n) + \beta_2(m) + \beta_3(n)$$

for all $a \in A$, $m \in M$, $n \in N$, and $b \in B$, where $\alpha_2 : M \to Z(A)$, $\alpha_3 : N \to Z(A)$, $\beta_2 : M \to Z(B)$, and $\beta_3 : N \to Z(B)$ are linear maps satisfying the following conditions:

- (*i*) $(\alpha_2(m) + \alpha_3(n))m = m(\beta_2(m) + \beta_3(n));$
- (*ii*) $n(\alpha_2(m) + \alpha_3(n)) = (\beta_2(m) + \beta_3(n))n$

for all $m \in M$, $n \in N$.

Proof. Note that $f_1(\mathcal{A}_0) \subseteq \mathcal{A}_1$ and $f_1(\mathcal{A}_1) \subseteq \mathcal{A}_0$. So f_1 is of the form

$$f_1(a+m+n+b) = \alpha_2(m) + \alpha_3(n) + \mu_1(a) + \mu_4(b) + \nu_1(a) + \nu_4(b) + \beta_2(m) + \beta_3(m)$$
(4.1)

for all $a \in A$, $m \in M$, $n \in N$, and $b \in B$, where $\alpha_2 : M \to A$, $\alpha_3 : N \to A$, $\mu_1 : A \to M$, $\mu_4 : B \to M$, $\nu_1 : A \to N$, $\nu_4 : B \to N$, $\beta_2 : M \to B$, and $\beta_3 : N \to B$ are linear maps. Note that

$$[f_1(1_A), 1_A] = 0.$$

We get that

$$[\mu_1(1) + \nu_1(1), 1_A] = 0.$$

AIMS Mathematics

This implies that $\mu_1(1) = 0 = \nu_1(1)$. Linearizing $[f_1(X), X]_s = 0$ leads to

$$[f_1(X), Y]_s + [f_1(Y), X]_s = 0 (4.2)$$

for all $X, Y \in \mathcal{A}$. For any $a \in A$ and $b \in B$, taking X = a + b and $Y = 1_A$ into (4.2) yields

$$[f_1(a+b), 1_A] + [f_1(1_A), a+b] = 0.$$

That is

$$[\mu_1(a) + \mu_4(b) + \nu_1(a) + \nu_4(b), 1_A] + [0, a + b] = 0.$$

This implies that $\mu_1(a) + \mu_4(b) = 0$ and $\nu_1(a) + \nu_4(b) = 0$ for all $a \in A$ and $b \in B$. We get that $\mu_1 = \mu_4 = 0$ and $\nu_1 = \nu_4 = 0$. Thus, the relation (4.1) becomes

$$f_1(a + m + n + b) = \alpha_2(m) + \alpha_3(n) + \beta_2(m) + \beta_3(m)$$
(4.3)

for all $a \in A$, $m \in M$, $n \in N$, and $b \in B$. For any $a \in A$ and $b \in B$, $m \in M$, and $n \in N$, taking X = a + b and Y = m + n in (4.3) yields

$$[f_1(a+b), m+n] + [f_1(m+n), a+b] = 0.$$

It follows from (4.3) that

$$[\alpha_2(m) + \alpha_3(n) + \beta_2(m) + \beta_3(n), a + b] = 0.$$

This implies that $[\alpha_2(m) + \alpha_3(n), a] = 0$ and $[\beta_2(m) + \beta_3(n), b] = 0$ for all $a \in A$ and $b \in B$, $m \in M$, and $n \in N$. We get that $[\alpha_2(m), a] = 0$, $[\alpha_3(n), a] = 0$, $[\beta_2(m), b] = 0$, and $[\beta_3(n), b] = 0$ for all $a \in A$ and $b \in B$, $m \in M$, and $n \in N$. That is, $\alpha_2(m), \alpha_3(n) \in Z(A)$ and $\beta_2(m), \beta_3(n) \in Z(B)$ for all $m \in M$ and $n \in N$.

For any $m \in M$ and $n \in N$, we have that

$$[f_1(m+n), m+n] = 0.$$

It follows from (4.3) that

$$[\alpha_2(m) + \alpha_3(n) + \beta_2(m) + \beta_3(n), m + n] = 0.$$

This implies that $(\alpha_2(m) + \alpha_3(n))m = m(\beta_2(m) + \beta_3(n))$ and $n(\alpha_2(m) + \alpha_3(n)) = (\beta_2(m) + \beta_3(n))n$ for all $m \in M$ and $n \in N$. We complete the proof of the result.

We now give a sufficient condition for every supercommuting map of degree 1 on \mathcal{A} to be supercentral.

Theorem 4.1. Let f_1 be a supercommuting mapping of degree 1 on \mathcal{A} . Suppose that there exists $Y_1 \in \mathcal{A}_1$ such that

$$Z(\mathcal{A}) = \{X \in Z(\mathcal{A}_0) \mid [X, Y_1] = 0\}.$$

Then $f_1(\mathcal{A}) \subseteq Z(\mathcal{A})$.

AIMS Mathematics

Proof. We set

$$Y_1 = m_0 + n_0.$$

By Lemma 4.1 we note that

$$f_1(a + m + n + b) = \alpha_2(m) + \alpha_3(n) + \beta_2(m) + \beta_3(m)$$
(4.4)

for all $a \in A$, $m \in M$, $n \in N$, and $b \in B$, where $\alpha_2 : M \to Z(A)$, $\alpha_3 : N \to Z(A)$, $\beta_2 : M \to Z(B)$, and $\beta_3 : N \to Z(B)$. Moreover,

$$(\alpha_2(m) + \alpha_3(n))m = m(\beta_2(m) + \beta_3(n))$$
$$n(\alpha_2(m) + \alpha_3(n)) = (\beta_2(m) + \beta_3(n))n$$

for all $m \in M$ and $n \in N$. We set

$$\delta(m,n) = \alpha_2(m) + \alpha_3(n) + \beta_2(m) + \beta_3(n)$$

for all $m \in M$ and $n \in N$. It is easy to check that

$$Z(\mathcal{A}_0) = Z(A) + Z(B).$$

It follows that $\delta(m, n) \in Z(\mathcal{A}_0)$ for all $m \in M$, $n \in N$. Since

$$[f_1(a + m + n + b), a + m + n + b]_s = 0$$

for all $a \in A$, $m \in M$, $n \in N$, and $b \in B$ we get from (4.4) that

$$[\delta(m, n), m + n] = 0$$

for all $m \in M$ and $n \in N$. In particular, $[\delta(m_0, n_0), Y_1] = 0$. By assumption we have that $\delta(m_0, n_0) \in Z(\mathcal{A})$. Note that

$$[\delta(m+m_0, n+n_0), m+m_0+n+n_0] = 0 \tag{4.5}$$

for all $m \in M$ and $n \in N$. It is clear that

$$\delta(m+m_0, n+n_0) = \delta(m, n) + \delta(m_0, n_0)$$

for all $m \in M$ and $n \in N$. We get from (4.5) that

$$[\delta(m,n), m+n] + [\delta(m,n), m_0 + n_0] + [\delta(m_0, n_0), m+n] + [\delta(m_0, n_0), m_0 + n_0] = 0$$

for all $m \in M$ and $n \in N$. This implies that

$$[\delta(m, n), m_0 + n_0] = 0$$

for all $m \in M$ and $n \in N$. By assumption again we obtain that $\delta(m, n) \in Z(\mathcal{A})$ for all $m \in M$ and $n \in N$. It follows from (4.4) that $f_1(\mathcal{A}) \subseteq Z(\mathcal{A})$. This proves the result.

AIMS Mathematics

5. The main results

We are in a position to give the main result of the paper.

Theorem 5.1. Let A be a unital algebra with nontrivial idempotents satisfying (1.1). Suppose that

(*i*) $Z(B) = \pi_B(Z(\mathcal{A}))$, or A = [A, A]; (*ii*) $Z(A) = \pi_A(Z(\mathcal{A}))$, or B = [B, B]; (*iii*) there exists $Y_1 \in \mathcal{A}_1$ such that

$$Z(\mathcal{A}) = \{ X \in Z(\mathcal{A}_0) \mid [X, Y_1] = 0 \}.$$

Then, every supercommuting map of A is proper.

Proof. Let f is a supercommuting map of \mathcal{A} . By Lemma 2.2 we have that $f = f_0 + f_1$, where f_i is a supercommuting map of degree i on \mathcal{A} , i = 0, 1. By Theorem 3.1 we have that

$$f_0(X) = \lambda X + \tau_0(X)$$

for all $X \in \mathcal{A}$, where $\lambda \in Z(\mathcal{A})$ with $2\lambda \mathcal{A}_1^2 = \{0\}$ and $\tau_0 : \mathcal{A} \to Z(\mathcal{A})$ is a linear map. By Theorem 4.1 we have that $f_1(\mathcal{A}) \subseteq Z(\mathcal{A})$. We set $\tau = \tau_0 + f_1$. Then

$$f(X) = \lambda X + \tau(X)$$

for all $X \in \mathcal{A}$. This proves the result.

6. Supercommuting maps of matrix algebras

Let *S* be a unital algebra over *R*. Let $M_n(S)$ be the set of all $n \times n$ matrices over *S*, where $n \ge 2$. We can view $M_n(S)$ as a unital algebra with nontrivial idempotents:

$$M_n(S) = A + M + N + B,$$

where $A = M_s(S)$, $M = M_{s,t}(S)$, $N = M_{t,s}(S)$, $B = M_t(S)$, where s+t = n. Thus, $M_n(S)$ is a generalized matrix algebra (see [16] for details). We set

$$M_n(S)_0 = A + B$$
 and $M_n(S)_1 = M + N$.

It is easy to check that $M_n(S) = M_n(S)_0 \bigoplus M_n(S)_1$ is a superalgebra (see [26] for details).

Applying Theorem 3.1, we give a description of supercommuting maps of matrix algebras, which is different from the result on commuting maps of matrix algebras (see [16, Corollary 4.1] for details).

Theorem 6.1. Let *S* be a unital algebra. Let $M_n(S)$ be the $n \times n$ matrix algebra. Then every supercommuting map on $M_n(R)$ is the form $X \to \lambda X + \tau(X)$, where $\lambda \in Z(S)$ with $2\lambda = 0$, and $\tau : M_n(S) \to Z(S) \cdot 1$ is a linear map.

AIMS Mathematics

Proof. Note that $M_n(S)$ satisfies the condition (1.1) (see [17, Section 1]). It is easy to check that $Z(M_n(S)) = Z(S) \cdot 1$. This implies that the conditions (i) and (ii) in Theorem 5.1 are satisfied. We now claim that the condition (iii) in Theorem 5.1 is satisfied.

We set

$$\mathcal{W} = \{ X \in Z(\mathcal{A}_0) \mid [X, e_{1,s+1}] = 0 \}.$$

It is clear that $Z(S) \cdot 1 \subseteq W$. Note that

$$Z(\mathcal{A}_0) = Z(A) + Z(B).$$

For any $X \in \mathcal{W}$, we may assume that

$$X = \lambda_1 \cdot 1_A + \lambda_2 \cdot 1_B,$$

where $\lambda_1, \lambda_2 \in Z(S)$. We have that

$$[\lambda_1 \cdot 1_A + \lambda_2 \cdot 1_B, e_{1,s+1}] = 0.$$

This implies that $(\lambda_1 - \lambda_2)e_{1,s+1} = 0$. Hence, $\lambda_1 = \lambda_2$. It follows that $X \in Z(S) \cdot 1$. Thus, $W \subseteq Z(S) \cdot 1$. Hence, $W = Z(S) \cdot 1$, as desired. We obtain that $M_n(S)$ satisfies all conditions in Theorem 5.1.

Let *f* be a supercommuting map of $M_n(S)$. By Theorem 5.1 we have that there exist $\lambda \in Z(S)$ with $2\lambda M_n(S)_1^2 = 0$, and a supercentral map $\tau : M_n(S) \to Z(S) \cdot 1$ such that

$$f(X) = \lambda X + \tau(X)$$

for all $X \in M_n(S)$. It suffices to prove that $2\lambda = 0$. It is clear that $e_{1,s+1} + e_{s+1,1} \in M_n(S)_1$. It follows that

$$2\lambda(e_{11} + e_{s+1,s+1}) = 2\lambda(e_{1,s+1} + e_{s+1,1})^2 = 0.$$

Hence, $2\lambda = 0$. This proves the result.

As a consequence of theorem 6.1 we have the following interesting result.

Corollary 6.1. Let *S* be a 2-torsion free unital algebra. Let $M_n(S)$ be the $n \times n$ matrix algebra with $n \ge 2$. Then every supercommuting map on $M_n(R)$ is supercentral.

Proof. Let *f* is a supercommuting map on $M_n(S)$. By Theorem 6.1 we have that $f(X) = \lambda X + \tau(X)$, where $\lambda \in Z(S)$ with $2\lambda = 0$, and $\tau : M_n(S) \to Z(S) \cdot 1$. Since *S* is 2-torsion free we get that $\lambda = 0$. This implies that $f(M_n(S)) \subseteq Z(S) \cdot 1$. This proves the result.

We conclude the section with an example, which implies that a commuting map is not a supercommuting map in general.

Example 6.1. Let *S* be a 2-torsion free unital algebra. Let $M_n(S)$ be the $n \times n$ matrix algebra with $n \ge 2$. We defined a linear map $f : M_n(S) \to M_n(S)$ by

$$f(x) = x$$

for all $x \in M_n(S)$. Then f is a commuting map on $M_n(S)$, but f is not a supercommuting map on $M_n(S)$.

Proof. It is clear that f is a commuting map. Assume that f is a supercommuting map. By Corollary 6.1 we get that $f(x) = x \in Z(S) \cdot 1$ for all $x \in M_n(S)$. In particular, we have that

$$f(e_{12}) = e_{12} \in Z(S) \cdot 1,$$

which is a contradiction. Hence, f is not a supercommuting map.

AIMS Mathematics

Volume 9, Issue 9, 24636–24653.

7. Supercommuting maps of triangular algebras

Let \mathcal{A} be a unital algebra with a nontrivial idempotent *e* satisfying (1.1). If $f\mathcal{A}e = 0$, we have that

$$\mathcal{A} = e\mathcal{A}e + e\mathcal{A}f + f\mathcal{A}f,$$

where *M* is a faithful (*A*, *B*)-bimodule. In this case, \mathcal{A} is said to be a *triangular algebra* (see [18,28] for details). Upper triangular matrix algebras and nest algebras are the two usual examples of triangular algebras (see [18] for details).

In 2001, Cheung [18] initiated the study of commuting maps on triangular algebra. He determined the class of triangular algebras for which every commuting map is proper (see [18, Theorem 8]. In 2003, Cheung [28] gave a description of Lie derivations of triangular algebras. In 2012, Du and Wang [20] discussed *k*-commuting maps of triangular algebras, where $k \ge 1$.

We set

$$\mathcal{A}_0 = e\mathcal{A}e + f\mathcal{A}f$$
 and $\mathcal{A}_1 = e\mathcal{A}f$.

Note that $\mathcal{A} = \mathcal{A}_0 \bigoplus \mathcal{A}_1$ is a superalgebra (see [26] for details).

We begin with the following result, which shows that a supercommutator is a commutator in triangular algebras.

Proposition 7.1. Let \mathcal{A} be a triangular algebra. Then $[x, y]_s = [x, y]$ for all $x, y \in \mathcal{A}$.

Proof. For any $a, a' \in e\mathcal{A}e, m, m' \in e\mathcal{A}f$, and $b, b' \in f\mathcal{A}f$, we note that

$$[m, m']_s = 0 = [m, m'].$$

We get that

$$[a + m + b, a' + m' + b']_s = [a + b, a' + b'] + [a + b, m'] + [m, a' + b'] + [m, m']_s$$

= $[a + b, a' + b'] + [a + b, m'] + [m, a' + b'] + [m, m']$
= $[a + b, a' + b' + m'] + [m, a' + b' + m']$
= $[a + b + m, a' + b' + m'].$

We obtain that $[x, y]_s = [x, y]$ for all $x, y \in \mathcal{A}$. This proves the result.

As a consequence of Proposition 7.1, we have the following interesting result.

Corollary 7.1. Every supercommuting map is the same as a commuting map on triangular algebras.

8. Conclusions

Let \mathcal{A} be a unital algebra with nontrivial idempotents. We consider \mathcal{A} as a generalized matrix algebra according to Ghahramani and Zadeh's method. We give a description of supercommuting maps on generalized matrix algebras. As a consequence, we give a description of supercommuting maps on matrix algebras, which is different from the result on commuting maps of matrix algebras. We finally prove that every supercommuting map is the same as a commuting map on triangular algebras.

Author contributions

Yingyu Luo: Writing-riginal draft, Funding acquisition; Yu Wang: Validation, Writing-review & editing.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

The first author is supported by Scientific Research Foundation of Jilin Province Education Department (JJKH20241000KJ) and Doctoral research start-up fund project of Changchun Normal University.

Conflict of interest

The authors declare no conflict of interest.

References

- 1. M. Brešar, Centralizing mappings on von Neumann algebras, *Proc. Amer. Math. Soc.*, **111** (1991), 501–510. https://doi.org/10.1090/s0002-9939-1991-1028283-2
- 2. M. Brešar, Centralizing mappings and derivations in prime rings, *J. Algebra*, **156** (1993), 385–394. https://doi.org/10.1006/jabr.1993.1080
- M. Brešar, Commuting traces of biadditive mappings, commutativity-preserving mappings and Lie mappings, *Trans. Amer. Math. Soc.*, 335 (1993), 525–546. https://doi.org/10.1090/S0002-9947-1993-1069746-X
- 4. H. Y. Jia, Z. K. Xiao, Commuting maps on certain incidence algebras, *Bull. Iran. Math. Soc.*, **46** (2020), 755–765. https://doi.org/10.1007/s41980-019-00289-1
- 5. M. Brešar, Commuting maps: a survey, *Taiwanese J. Math.*, **8** (2004), 361–397. https://doi.org/10.11650/twjm/1500407660
- Q. Ding, Commuting Toeplitz operators and *H*-Toeplitz operators on Bergman space, *AIMS Math.*,
 9 (2024), 2530–2548. https://doi.org/10.3934/math.2024125
- 7. B. L. M. Ferreira, I. Kaygorodov, Commuting maps on alternative rings, *Ricerche Mate.*, **71** (2022), 67–78. https://doi.org/10.1007/S11587-020-00547-Z
- 8. M. Brešar, M. A. Chebotar, W. S. Martindale, *Functional identities*, Basel: Birkhäuser, 2007. https://doi.org/10.1007/978-3-7643-7796-0
- K. I. Beidar, T. S. Chen, Y. Fong, W. F. Ke, On graded polynomial identities with an antiautomorphism, J. Algebra, 256 (2002), 542–555. https://doi.org/10.1016/S0021-8693(02)00140-0

- K. I. Beidar, M. Brešar, M. A. Chebotar, Jordan superhomomorphism, *Commun. Algebra*, **31** (2003), 633–644. https://doi.org/10.1081/AGB-120017336
- 11. Y. Wang, On skew-supercommuting maps in superalgebras, *Bull. Austral. Math. Soc.*, **78** (2008), 397–409. https://doi.org/10.1017/S0004972708000762
- 12. Y. Wang, Supercentralizing superautomorphisms on prime superalgebras, *Taiwanese J. Math.*, **13** (2009), 1441–1449. https://doi.org/10.11650/twjm/1500405551
- 13. P. H. Lee, Y. Wang, Supercentralizing maps on prime superalgebras, *Commun. Algebra*, **37** (2009), 840–854. https://doi.org/10.1080/00927870802271672
- 14. G. Z. Fan, X. S. Dai, Super-biderivations of Lie superalgebras, *Linear Multilinear A.*, **65** (2017), 58–66. https://doi.org/10.1080/03081087.2016.1167815
- 15. X. Cheng, J. C. Sun, Super-biderivations and linear super-commuting maps on the super-BMS3 algebra, *São Paulo J. Math. Sci.*, **13** (2019), 615–627. https://doi.org/10.1007/s40863-018-0106-z
- Z. K. Xiao, F. Wei, Commuting mappings of generalized matrix algebras, *Linear Algebra Appl.*, 433 (2010), 2178–2197. https://doi.org/10.1016/j.laa.2010.08.002
- 17. D. Benkovič, Lie triple derivations of unital algebras with idempotents, *Linear Multilinear A.*, **63** (2015), 141–165. https://doi.org/10.1080/03081087.2013.851200
- 18. W.-S. Cheung, Commuting maps of triangular algebras, *J. Lond. Math. Soc.*, **63** (2001), 117–127. https://doi.org/10.1112/S0024610700001642
- 19. Y. B. Li, F. Wei, A. Fošner, *k*-commuting mappings of generalized matrix algebras, *Period. Math. Hung.*, **79** (2019), 50–77. https://doi.org/10.1007/s10998-018-0260-1
- 20. Y. Q. Du, Y. Wang, *k*-commuting maps on triangular algebras, *Linear Algebra Appl.*, **436** (2012), 1367–1375. https://doi.org/10.1016/j.laa.2011.08.024
- 21. Y. Q. Du, Y. Wang, Lie derivations of generalized matrix algebras, *Linear Algebra Appl.*, **437** (2012), 2719–2726. https://doi.org/10.1016/j.laa.2012.06.013
- 22. D. Benkovič, Generalized Lie derivations of unital algebras with idempotents, *Oper. Matrices*, **12** (2018), 357–367. https://doi.org/10.7153/OAM-2018-12-23
- 23. P. A. Krylov, Isomorphism of generalized matrix rings, *Algebra Logic.*, **47** (2008), 258–262. https://doi.org/10.1007/s10469-008-9016-y
- 24. D. Liu, J. H. Zhang, M. L. Song, Local Lie derivations of generalized matrix algebras, *AIMS Math.*, 8 (2023), 6900–6912. https://doi.org/10.3934/math.2023349
- 25. Y. Wang, Y. Wang, Multiplicative Lie *n*-derivations of generalized matrix algebras, *Linear Algebra Appl.*, **438** (2013), 2599–2616. https://doi.org/10.1016/j.laa.2012.10.052
- 26. H. Ghahramani, L. H. Zadeh, Lie superderivations on unital algebras with idempotents, *Commun. Algebra*, in press. https://doi.org/10.1080/00927872.2024.2360174
- 27. Q. Chen, Jordan superderivations on unital algebras with idempotents, unpublished work.
- 28. W.-S. Cheung, Lie derivations of triangular algebras, *Linear Multilinear A.*, **51** (2003), 299–310. https://doi.org/10.1080/0308108031000096993

© 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0)