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1. Introduction

Let A be an associative algebra over R, a commutative ring with unity. By Z(A), we denote the
center ofA. Set [x, y] = xy − yx and x ◦ y = xy + yx.

A linear map f on A is called a commuting map if [ f (x), x] = 0 for all x ∈ A. It is clear that
f (x) = λx+τ(x) is a commuting map, where λ ∈ Z(A) and τ : A → Z(A), which is said to be a proper
commuting map.

In 1991, Brešar [1] proved that a commuting map on noncommutative Lie ideals of prime rings is
always proper. In 1993, Brešsar [2] discussed centralizing mappings and derivations in prime rings.
In the same year, Brešsar [3] discussed commuting traces of biadditive mappings, commutativity-
preserving mappings and Lie mappings. In 2020, Jia and Xiao [4] discussed commuting maps on
certain incidence algebras. Results related to commuting maps are discussed in [5–7].

It should be mentioned that the study of commuting maps on rings initiated the theory of functional
identities on rings (see [8] for details).

An associative algebra A is said to be a superalgebra if A is the direct sum of two R-submodules
A0 and A1 such that AiA j ⊆ Ai+ j (modulo 2). We call A0 the even part and A1 the odd part of A.
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Elements inH = A0
⋃
A1 are called homogeneous, and we write |a| = i to mean a ∈ Ai. For a, b ∈ H ,

the supercommutator of a and b is defined to be

[a, b]s = ab − (−1)|a||b|ba.

It is clear that [a, b]s = a ◦ b if both a and b are odd, and [a, b]s = [a, b] if either a or b is even. The
definition can be extended linearly to arbitrary a, b ∈ A.

LetA = A0
⊕
A1 be a superalgebra. A linear map f : A → A is said to be supercommuting if

[ f (x), x]s = 0

for all x ∈ A.
In 2002, Beidar, Chen, Fong, and Ke [9] discussed graded polynomial identities with an

antiautomorphism. In 2003, Beidar, Bresǎr, and Chebotar [10] discussed Jordan superhomomorphisms
on superalgebras. In 2008, Wang [11] discussed skew-supercommuting maps in superalgebras.
In 2009, Wang [12] gave a description of supercentralizing superautomorphisms on prime
superalgebras. In the same year, Lee and Wang [13] gave a description of supercommuting maps of
prime superalgebras. In 2017, Fan and Dai [14] investigated Super-biderivations on Lie superalgebras.
In 2019, Cheng and Sun [15] discussed Super-biderivations and linear supercommuting maps on the
super-BMS3 algebras.

Let A be a unital algebra with an idempotent e , 0, 1. Let f denote the idempotent 1 − e. In this
case,A can be represented in the so-called Peirce decomposition form

A = eAe + eA f + fAe + fA f ,

where eAe and fA f are subalgebras with unitary elements e and f , respectively, eA f is an
(eAe, fA f )-bimodule and fAe is an ( fA f , eAe)-bimodule, which is said to be a generalized matrix
algebra (see [16] for details).

For brevity, we set

A = eAe, M = eA f , N = fAe, B = fA f .

It is clear that  AM ⊆ M,MA = 0, AN = 0,NA ⊆ N, AB = 0, BA = 0,MN ⊆ A,

BM = 0,MB ⊆ M, BN ⊆ N,NB = 0,NM ⊆ B,MM = 0,NN = 0.

In 2012, Benkovič and Širovnik [17] defined the following useful condition:a ∈ A, aM = 0 = Na⇒ a = 0;
b ∈ B, Mb = 0 = bN ⇒ b = 0.

(1.1)

Some examples of unital algebras with nontrivial idempotents having the property (1.1) are
triangular algebras, matrix algebras, and prime (and hence in particular simple) algebras with nontrivial
idempotents (see [17]).
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In 2010, Xiao and Wei [16] initiated the study of commuting mappings of generalized matrix
algebras, which generalized a typical result on commuting maps of triangular algebras (see [18] for
details). In 2019, Li, Wei, and Fošner [19] discussed k-commuting mappings of generalized matrix
algebras, which generalized a result on k-commuting maps of triangular algebras (see [20] for details).
In 2002, Du and Wang [21] gave a description of Lie derivations of generalized matrix algebras.
In 2018, Benkovič [22] discussed generalized Lie derivations of unital algebras with idempotents.
Additional results on mappings of generalized matrix algebras can be found in [23–25].

In 2024, Ghahramani and Zadeh [26] consideredA as a superalgebra by:

A = A0 ⊕A1,

where
A0 = A + B and A1 = M + N.

They determined the class of generalized matrix algebras for which every Lie superderivation is
proper (see [26, Theorem 5.1]. As a consequence, they gave some descriptions of Lie superderivations
on both matrix algebras and triangular algebras (see [26] for details).

Recently, Chen [27] discussed Jordan superderivations of unital algebras with idempotents. As a
consequence, she gave some descriptions of Jordan superderivations of matrix algebras and triangular
algebras.

In the present paper, we give a description of supercommuting maps of unital algebras with
idempotents. As a consequence, we give some descriptions of supercommuting maps of matrix
algebras and triangular algebras.

We organize the paper as follows: In Section 2, we give preliminaries and the definition of proper
supercommuting maps. In Section 3, we give a description of supercommuting maps of degree 0 on
unital algebras. In Section 4, we give a description of supercommuting maps of degree 1 on unital
algebras. In Section 5, we give the main result of the paper. In Section 6, we give a description of
supercommuting maps on matrix algebras. As a consequence, we prove that every supercommuting
map on matrix algebras over a 2-torsion free unital algebra is supercentral. In the last section, we prove
that every supercommuting map on triangular algebras is a commuting map.

2. Preliminaries

LetA = A0
⊕
A1 be a superalgebra. The supercenter ofA is the set

Z(A)s = {a ∈ A | [a, x]s = 0 for all x ∈ A}.

We set
Z(A)0 = Z(A) ∩A0 and Z(A)1 = Z(A) ∩A1.

It is easy to check that Z(A) = Z(A)0
⊕

Z(A)1 is a graded subalgebra ofA (see [4, Section 2] for
details). It is clear that Z(A)0 ⊆ Z(A)s.

We begin with the following definition.

Definition 2.1. Let A = A0
⊕
A1 be a superalgebra. We call a linear map f : A → A a proper

supercommuting map if
f (x) = λx + τ(x)
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for all x ∈ A, where λ ∈ Z(A)0 with 2λA2
1 = {0}, and τ : A → Z(A)s is a linear map. In particular, if

f (x) ∈ Z(A)s for all x ∈ A, we call f a supercentral map.

The following result shows that a proper supercommuting map is a supercommuting map.

Lemma 2.1. LetA = A0
⊕
A1 be a superalgebra. Then

f (x) = λx + τ(x)

for all x ∈ A, is a supercommuting map ofA, where λ ∈ Z(A)0 with 2λA2
1 = {0}, and τ : A → Z(A)s

is a linear map.

Proof. For any x = x0 + x1 ∈ A we get

[ f (x), x]s = [λx + τ(x), x]s

= λ[x, x]s

= λ[x0 + x1, x0 + x1]s

= λ[x0, x0] + λ[x0, x1] + λ[x1, x0] + λ[x1, x1]s

= λ[x1, x1]s

= 2λx2
1

= 0.

We obtain that f is a supercommuting map. �

Definition 2.2. LetA = A0
⊕
A1 be a superalgebra. A supercommuting map f onA is said to be a

supercommuting map of degree 0 if f (A0) ⊆ A0 and f (A1) ⊆ A1. A supercommuting map f of A is
said to be a supercommuting map of degree 1 if f (A0) ⊆ A1 and f (A1) ⊆ A0.

The following result shows that a supercommuting map is the sum of a supercommuting map of
degree 0 and a supercommuting map of degree 1.

Lemma 2.2. LetA = A0
⊕
A1 be a superalgebra. Let f be a supercommuting map ofA. Then

f = f0 + f1

where f0 is a supercommuting map of degree 0 on A and f1 is a supercommuting map of degree 1 on
A.

Proof. For i = 0 or 1, let πi be the canonical projection ofA. We set

f0 = π0 fπ0 + π1 fπ1 and f1 = π0 fπ1 + π1 fπ0.

It is easy to check that fi is a linear map ofA and f = f0+ f1, where i = 0, 1. Moreover, f0(A0) ⊆ A0,
f0(A1) ⊆ A1, f1(A0) ⊆ A1, and f1(A1) ⊆ A0. We now claim that both f0 and f1 are supercommuting
maps onA.

For i = 0, 1, and any x = x0 + x1 ∈ A, we have

0 = [ f (xi), xi]s

= [ f0(xi) + f1(xi), xi]s

= [ f0(xi), xi]s + [ f1(xi), xi]s.
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Since [ f0(xi), xi]s is even and [ f1(xi), xi]s is odd, we obtain that

[ f0(xi), xi]s = 0 and [ f1(xi), xi]s = 0. (2.1)

It follows from (2.1) and the linearity of fi, where i = 0, 1, that

[ f0(x1), x0]s + [ f0(x0), x1]s = 0 (2.2)

and
[ f1(x1), x0]s + [ f1(x0), x1]s = 0. (2.3)

For i = 0, 1, we get from (2.1), (2.2), and (2.3) that

[ fi(x), x]s = [ fi(x0) + fi(x1), x0 + x1]s

= [ fi(x0), x0]s + [ fi(x0), x1]s + [ fi(x1), x0]s + [ fi(x1), x1]s

= 0.

This implies that fi is a supercommuting map of degree i. The proof of the result is complete. �

Form now on we always assume thatA is a unital algebra with nontrivial idempotents.
The following result is essentially the same as [26, Lemma 2.1].

Lemma 2.3.
Z(A) = Z(A)s = {X ∈ Z(A0) | [X,A1] = 0} .

We define two natural projection πA : A → A and πB : A → B by

πA(a + m + n + b) = a and πB(a + m + n + b) = b.

The following result is essentially the same as [26, Lemma 2.3].

Lemma 2.4. LetA be a unital algebra with nontrivial idempotents having the property (1.1). Then

Z(A) = Z(A)s = {X ∈ A0 | [X,A1] = 0} .

Furthermore, πA(Z(A)) ⊆ Z(A), πB(Z(A)) ⊆ Z(B), and there exists a unique isomorphism ϕ from
πA(Z(A)) to πB(Z(A)) such that am = mϕ(a), mb = ϕ−1(b)m, na = ϕ(a)n, and bn = nϕ−1(b) for all
m ∈ M, n ∈ N.

3. Supercommuting maps of degree 0

We begin with the structure of supercommuting maps of degree 0.

Lemma 3.1. Let f0 be a supercommuting map of degree 0 onA . Then

f0(a + m + n + b) = α1(a) + α4(b) + α1(1)m − mβ1(1) + nα1(1) − β1(1)n + β1(a) + β4(b)

for all a ∈ A, m ∈ M, n ∈ N, and b ∈ B, where α1 : A → A, α4 : B → Z(A), β1 : A → Z(B), and
β4 : B→ B are linear maps satisfying the following conditions:
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(i) α1 and β4 are commuting mappings of A and B, respectively. In particular, α1(1) ∈ Z(A), β4(1) ∈
Z(B);

(ii) α1(a)m − mβ1(a) = a(α1(1)m − mβ1(1)), β1(a)n − nα1(a) = (nα1(1) − β1(1)n)a;
(iii) α4(b)m − mβ4(b) = (mβ1(1) − α1(1)m)b, β4(b)n − nα4(b) = b(nα1(1) − β1(1)n);
(iv) 2α1(1)mn = 2mβ1(1)n and 2nα1(1)m = 2β1(1)nm.

Proof. Since f0(A0) ⊆ A0 and f0(A1) ⊆ A1, we can write

f0(a + m + n + b) = α1(a) + α4(b) + µ2(m) + µ3(n) + ν2(m) + ν3(n) + β1(a) + β4(b) (3.1)

for all a ∈ A, m ∈ M, n ∈ N, and b ∈ B, where α1 : A → A, α4 : B → A, µ2 : M → M, µ3 : N → M,
ν2 : M → N, ν3 : N → N, β1 : A→ B, and β4 : B→ B are linear maps.

Linearizing [ f0(X), X]s = 0 leads to

[ f0(X),Y]s + [ f0(Y), X]s = 0 (3.2)

for all X,Y ∈ A. For any m ∈ M, taking X = 1A and Y = m in (3.2) yields

[ f0(1A),m] + [ f0(m), 1A] = 0.

That is
[α1(1A) + β1(1A),m] + [µ2(m) + ν2(m), 1A] = 0.

This implies that v2(m) = 0 and µ2(m) = α1(1)m − mβ1(1) for all m ∈ M. Similarly, if we choose
X = 1A and Y = n in (3.2), then we arrive at µ3(n) = 0 and ν3(n) = nα1(1) − β1(1)n for all n ∈ N.
Therefore (3.1) becomes

f0(a + m + n + b)
= α1(a) + α4(b) + α1(1)m − mβ1(1) + nα1(1) − β1(1)n + β1(a) + β4(b)

(3.3)

for all a ∈ A, m ∈ M, n ∈ N, and b ∈ B. For any a ∈ A and b ∈ B, taking X = a and Y = b into (3.3)
yields

[ f0(a), b] + [ f0(b), a] = 0.

That is
[α1(a) + β1(a), b] + [α4(b) + β4(b), a] = 0.

Then [α4(b), a] = 0 and [β1(a), b] = 0 for all a ∈ A and b ∈ B. This implies that α4(B) ⊆ Z(A) and
β1(A) ⊆ Z(B). By (3.3) we obtain

0 = [ f0(a + b), a + b] = [α1(a), a] + [β4(b), b].

Then [α1(a), a] = 0 for all a ∈ A and [β4(b), b] = 0 for all b ∈ B. This implies that α1 and β4 are
commuting mappings of A and B, respectively. It is easy to check that α1(1) ∈ Z(A) and β4(1) ∈ Z(B).
This proves the statement (i).

By (3.3) we get
[ f0(a),m + n] = α1(a)m − mβ1(a) + β1(a)n − nα1(a)
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and
[ f0(m + n), a] = a(mβ1(1) − α1(1)m) + (β1(1)n − nα1(1)a.

Note that
[ f0(a),m + n] + [ f0(m + n), a] = 0.

The above three relations imply that α1(a)m − mβ1(a) = a(α1(1)m − mβ1(1)) and β1(a)n − nα1(a) =

(nα1(1) − β1(1)n)a for all a ∈ A, m ∈ M, and n ∈ N. This proves the statement (ii). Similarly,
taking X = b and Y = m + n in (3.2) we can obtain that α4(b)m − mβ4(b) = (mβ1(1) − α1(1)m)b and
β4(b)n − nα4(b) = b(nα1(1) − β1(1)n) for all b ∈ B, m ∈ M, and n ∈ N. This proves the statement (iii).

Since [ f0(m + n),m + n]s = 0 for all m ∈ M, n ∈ N, we get from (3.3) that

[a(mβ1(1) − α1(1)m) + a1(1)n − nα1(1))a,m + n]s = 0.

That is

(a(mβ1(1) − α1(1)m) + a1(1)n − nα1(1))a)(m + n)
+ (m + n)(a(mβ1(1) − α1(1)m) + a1(1)n − nα1(1))a) = 0

for all m ∈ M and n ∈ N. This implies that

2α1(1)mn = 2mβ1(1)n and 2nα1(1)m = 2β1(1)nm

for all m ∈ M, n ∈ N. This proves the statement (iv). We complete the proof of the result. �

The idea of proving the following result is taken from [18, Lemma 1].

Lemma 3.2. Let A be a unital algebra with nontrivial idempotents having the property (1.1). Let
f0 be a supercommuting map of degree 0 on A. With notations as above, then β−1

1 (πB(Z(A))) and
α−1

4 (πA(Z(A))) are ideals of A and B, respectively. Furthermore, [A, A] ⊆ β−1
1 (πB(Z(A))) and [B, B] ⊆

α−1
4 (πA(Z(A))).

Proof. We prove the part of the statement related to β1. The part related to α4 can be proved
analogously. For any a, a′ ∈ A, m ∈ M, and n ∈ N we get from Lemma 3.1(ii) that

a′a(α1(1)m − mβ1(1)) = α1(a′a)m − mβ1(a′a) (3.4)
a′a(α1(1)m − mβ1(1)) = a′(α1(a)m − mβ1(a)) (3.5)
aa′(α1(1)m − mβ1(1)) = α1(aa′)m − mβ1(aa′) (3.6)

a(α1(1)a′m − a′mβ1(1)) = α1(a)a′m − a′mβ1(a). (3.7)

From (3.4) and (3.5), we have

α1(a′a)m − mβ1(a′a) − a′(α1(a)m − mβ1(a)) = 0, (3.8)

and from (3.6) and (3.7), we have

α1(aa′)m − mβ1(aa′) − α1(a)a′m + a′mβ1(a) = 0. (3.9)

AIMS Mathematics Volume 9, Issue 9, 24636–24653.



24643

Taking the difference of (3.8) and (3.9), we have

(α1([a, a′]) − [α1(a), a′])m = mβ1([a, a′]). (3.10)

For any a, a′ ∈ A and n ∈ N, we get from Lemma 3.1(ii) that

(nα1(1) − β1(1)n)a′a = β1(a′a)n − nα1(a′a) (3.11)
(nα1(1) − β1(1)n)a′a = (β1(a′)n − nα1(a′))a (3.12)
(nα1(1) − β1(1)n)aa′ = β1(aa′)n − nα1(aa′) (3.13)

(naα1(1) − β1(1)na)a′ = β1(a′)na − naα1(a′). (3.14)

From (3.11) and (3.12), we have

β1(a′a)n − nα1(a′a) − β1(a′)na + nα1(a′)a = 0, (3.15)

and from (3.13) and (3.14), we have

β1(aa′)n − nα1(aa′) − β1(a′)na + naα1(a′) = 0. (3.16)

Taking the difference of (3.15) and (3.16), we have

β1([a, a′])n = n(α1(([a, a′]) − [a, α1(a′)]). (3.17)

Since α1 is commuting map of A, we get that [a, α1(a′)] = [α1(a), a′]. Thus, we get from (3.17) that

β1([a, a′])n = n(α1(([a, a′]) − [α1(a), a′]). (3.18)

In view of Lemma 2.4 we get from both (3.10) and (3.18) that β1([a, a′]) ∈ πB(Z(A)). Hence [A, A] ⊆
β−1

1 (πB(Z(A))).
Suppose that a ∈ β−1

1 (πB(Z(A))). From both (3.8) and (3.15) we have

mβ1(a′a) = (α1(a′a) − a′α1(a) + a′ϕ−1(β1(a)))m;
β1(a′a)n = n(α1(a′a) − a′α1(a) + a′ϕ−1(β1(a))).

By Lemma 2.4 we get that β1(a′a) ∈ πB(Z(A))). Hence a′a ∈ β−1
1 (πB(Z(A))). Similarly, from both (3.9)

and (3.16) we have

mβ1(aa′) = (α1(aa′) − α1(a)a′ + a′ϕ−1(β1(a)))m;
β1(aa′)n = n(α1(aa′) − α1(a)a′ + a′ϕ−1(β1(a))).

By Lemma 2.4 we get that β1(aa′) ∈ πB(Z(A))). Hence aa′ ∈ β−1
1 (πB(Z(A))). As a result,

β−1
1 (πB(Z(A))) is an ideal of A containing [A, A]. This proves the result. �

Now we obtain necessary and sufficient conditions for a supercommuting map of degree 0 onA to
be proper. The idea of proving the following result is taken from [18, Theorem 1].
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Lemma 3.3. Let A be a unital algebra with nontrivial idempotents having the property (1.1). Let f0

be a supercommuting map of degree 0 onA such that

f0(a + m + n + b) = α1(a) + α4(b) + α1(1)m − mβ1(1) + nα1(1) − β1(1)n + β1(a) + β4(b).

Then, the following three conditions are equivalent:

(i) f0 is proper;
(ii) β1(A) ⊆ πB(Z(A)) and α4(B) ⊆ πA(Z(A));

(iii) α1(1) ∈ πA(Z(A)) and β1(1) ∈ πB(Z(A)).

Proof. (ii)⇒ (iii). β1(1) ∈ β1(A) ⊆ πB(Z(A)). Taking b = 1 in Lemma 3.1(iii), we get

α1(1)m = m(β4(1) + β1(1) − ϕ(α4(1)))
nα1(1) = (β4(1) + β1(1) − ϕ(α4(1)))n

for all m ∈ M and n ∈ N. By Lemma 2.4 we get that α1(1) ∈ πA(Z(A)).
(iii) ⇒ (ii). Since β1(1) ∈ πB(Z(A)), the ideal β−1

1 (πB(Z(A))) of A contains 1. Hence A =

β−1
1 (πB(Z(A))). We have that β1(A) ⊆ πB(Z(A)). By Lemma 3.1(iii), we have α4(b)m − mβ4(b) =

(mβ1(1) − α1(1)m)b, which implies

α4(b)m = m(β4(b) + β1(1)b − ϕ(α1(1))b) (3.19)

for all m ∈ M and b ∈ B. By Lemma 3.1(iii) again, we have β4(b)n − nα4(b) = b(nα1(1) − β1(1)n),
which implies

nα4(b) = (β4(b) + β1(1)b − ϕ(α1(1))b)n (3.20)

for all n ∈ N and b ∈ B. In view of Lemma 2.4 we get from both (3.19) and (3.20) that α4(b) ∈ πA(Z(A))
for all b ∈ B.

(iii)⇒ (i). We set
τ(X) = f0(X) − λX

for all X ∈ A, where λ = α1(1) − ϕ−1(β1(1)) + ϕ(α1(1)) − β1(1) ∈ Z(A). We claim that τ(A) ⊆ Z(A).
Indeed, we have

τ(a + m + n + b) = f0(a + m + n + b) − λ(a + m + n + b)
= (α1(a) + α4(b) + α1(1)m − mβ1(1) + nα1(1) − β1(1)n + β1(a) + β4(b)
− (α1(1) − ϕ−1(β1(1)) + ϕ(α1(1)) − β1(1)))(a + m + n + b)

= α1(a) − (α1(1) − ϕ−1(β1(1))) + β1(a) + α4(b) + β4(b) − (ϕ(α1(1)) − β1(1))b.

By Lemma 3.1(ii) we have

(α1(a) − (α1(1) − ϕ−1(β1(1)))a)m = mβ1(a)
n(α1(a) − (α1(1) − ϕ−1(β1(1)))a) = β1(a)n

for all a ∈ A, m ∈ M, and n ∈ N. By Lemma 2.4 we get that

α1(a) − (α1(1) − ϕ−1(β1(1)))a + β1(a) ∈ Z(A)

AIMS Mathematics Volume 9, Issue 9, 24636–24653.



24645

for all a ∈ A. Similarly, we get from Lemma 3.1(iii) that

α4(b)m = m(β4(b) − (ϕ(α1(1)) − β1(1))b);
nα4(b) = (β4(b) − (ϕ(α1(1)) − β1(1))b)n

for all m ∈ M, n ∈ N, and b ∈ B. By Lemma 2.4 we get that

α4(b) + β4(b) − (ϕ(α1(1)) − β1(1))b ∈ Z(A)

for all b ∈ B. We obtain that τ(a + m + n + b) ∈ Z(A) for all a ∈ A, m ∈ M, n ∈ N, and b ∈ B as desired.
We next claim that 2λA2

1 = {0}.
For any m ∈ M and n ∈ N, by Lemma 3.1(iv) we have

2πA(λ)mn = 2(α1(1) − ϕ−1(β1(1)))mn

= 2α1(1)mn − 2mβ1(1)n = 0

and

2πB(λ)nm = 2(ϕ(α1(1)) − β1(1))nm

= 2nα1(1)m − 2β1(1)nm = 0.

It follows that

2λ(m + n)(m′ + n′) = 2λ(mn′ + nm′)
= 2πA(λ)mn′ + 2πB(λ)nm′

= 0

for all m,m′ ∈ M, n, n′ ∈ N. This implies that 2λA2
1 = {0}.

(i)⇒ (iii). Suppose that f0(X) = λX + τ(X) for all X ∈ A, where λ ∈ Z(A) with 2λA2
1 = {0} and

τ : A → Z(A) is a linear map. For any m ∈ M and n ∈ N, we have

f0(m + n) = (πA(λ) + πB(λ))(m + n) + τ(m + n).

By Lemma 3.1 we get that

α1(1)m − mβ1(1) + nα1(1) − β1(1)n = πA(λ)m + πB(λ)n + τ(m + n).

We get from the last relation that

α1(1)m − mβ1(1) = πA(λ)m;
nα1(1) − β1(1)n = πB(λ)n.

This implies that

(α1(1) − πA(λ))m = mβ1(1);
n(α1(1) − πA(λ)) = β1(1)n.

By Lemma 2.4 we get that α1(1) − πA(λ) ∈ πA(Z(A)) and β1(1) ∈ πB(Z(A)). Hence, α1(1) ∈ πA(Z(A))
and β1(1) ∈ πB(Z(A)) as desired. The proof of the result is complete. �

AIMS Mathematics Volume 9, Issue 9, 24636–24653.



24646

We now give sufficient conditions for every supercommuting map of degree 0 on A to be proper.
The idea of proving the following result is taken from [18, Theorem 2].

Theorem 3.1. Let A be a unital algebra with nontrivial idempotents having the property (1.1).
Suppose that the following two conditions are satisfied:

(i) Z(B) = πB(Z(A)), or A = [A, A];
(ii) Z(A) = πA(Z(A)), or B = [B, B].

Then every supercommuting map of degree 0 onA is proper.

Proof. Let f0 be a supercommuting mapping of degree 0 on A. With notations as above, we note
that α4(B) ⊆ Z(A) and β1(A) ⊆ Z(B). By the condition (i) we note that either Z(B) = πB(Z(A))
or A = [A, A]. Suppose first that Z(B) = πB(Z(A)). We get that β1(A) ⊆ πB(Z(A)). Suppose next
that A = [A, A]. In view of Lemma 3.2 we note that [A, A] ⊆ β−1

1 (πB(Z(A))). This implies that
β1(A) ⊆ πB(Z(A)).

By the condition (ii) we note that either Z(A) = πA(Z(A)) or B = [B, B]. Suppose first that Z(A) =

πA(Z(A)). We get that α4(B) ⊆ πA(Z(A)). Suppose next that B = [B, B]. In view of Lemma 3.2 we
note that [B, B] ⊆ α−1

4 (πA(Z(A))). We obtain that α4(B) ⊆ πA(Z(A)). By Lemma 3.3 we obtain that f0

is proper. This proves the result. �

4. Supercommuting maps of degree 1

We first give the structure of supercommuting map of degree 1 onA.

Lemma 4.1. Let A be a unital algebra with nontrivial idempotents. Let f1 be a commuting mapping
of degree 1 onA. Then f1 is of the form

f1(a + m + n + b) = α2(m) + α3(n) + β2(m) + β3(n)

for all a ∈ A, m ∈ M, n ∈ N, and b ∈ B, where α2 : M → Z(A), α3 : N → Z(A), β2 : M → Z(B), and
β3 : N → Z(B) are linear maps satisfying the following conditions:

(i) (α2(m) + α3(n))m = m(β2(m) + β3(n));
(ii) n(α2(m) + α3(n)) = (β2(m) + β3(n))n

for all m ∈ M, n ∈ N.

Proof. Note that f1(A0) ⊆ A1 and f1(A1) ⊆ A0. So f1 is of the form

f1(a + m + n + b) = α2(m) + α3(n) + µ1(a) + µ4(b) + ν1(a) + ν4(b) + β2(m) + β3(m) (4.1)

for all a ∈ A, m ∈ M, n ∈ N, and b ∈ B, where α2 : M → A, α3 : N → A, µ1 : A → M, µ4 : B → M,
ν1 : A→ N, ν4 : B→ N, β2 : M → B, and β3 : N → B are linear maps. Note that

[ f1(1A), 1A] = 0.

We get that
[µ1(1) + ν1(1), 1A] = 0.
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This implies that µ1(1) = 0 = ν1(1). Linearizing [ f1(X), X]s = 0 leads to

[ f1(X),Y]s + [ f1(Y), X]s = 0 (4.2)

for all X,Y ∈ A. For any a ∈ A and b ∈ B, taking X = a + b and Y = 1A into (4.2) yields

[ f1(a + b), 1A] + [ f1(1A), a + b] = 0.

That is
[µ1(a) + µ4(b) + ν1(a) + ν4(b), 1A] + [0, a + b] = 0.

This implies that µ1(a)+µ4(b) = 0 and ν1(a)+ν4(b) = 0 for all a ∈ A and b ∈ B. We get that µ1 = µ4 = 0
and ν1 = ν4 = 0. Thus, the relation (4.1) becomes

f1(a + m + n + b) = α2(m) + α3(n) + β2(m) + β3(m) (4.3)

for all a ∈ A, m ∈ M, n ∈ N, and b ∈ B. For any a ∈ A and b ∈ B, m ∈ M, and n ∈ N, taking X = a + b
and Y = m + n in (4.3) yields

[ f1(a + b),m + n] + [ f1(m + n), a + b] = 0.

It follows from (4.3) that

[α2(m) + α3(n) + β2(m) + β3(n), a + b] = 0.

This implies that [α2(m) + α3(n), a] = 0 and [β2(m) + β3(n), b] = 0 for all a ∈ A and b ∈ B, m ∈ M,
and n ∈ N. We get that [α2(m), a] = 0, [α3(n), a] = 0, [β2(m), b] = 0, and [β3(n), b] = 0 for all a ∈ A
and b ∈ B, m ∈ M, and n ∈ N. That is, α2(m), α3(n) ∈ Z(A) and β2(m), β3(n) ∈ Z(B) for all m ∈ M and
n ∈ N.

For any m ∈ M and n ∈ N, we have that

[ f1(m + n),m + n] = 0.

It follows from (4.3) that

[α2(m) + α3(n) + β2(m) + β3(n),m + n] = 0.

This implies that (α2(m) + α3(n))m = m(β2(m) + β3(n)) and n(α2(m) + α3(n)) = (β2(m) + β3(n))n for all
m ∈ M and n ∈ N. We complete the proof of the result. �

We now give a sufficient condition for every supercommuting map of degree 1 on A to be
supercentral.

Theorem 4.1. Let f1 be a supercommuting mapping of degree 1 on A. Suppose that there exists
Y1 ∈ A1 such that

Z(A) = {X ∈ Z(A0) | [X,Y1] = 0} .

Then f1(A) ⊆ Z(A).
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Proof. We set
Y1 = m0 + n0.

By Lemma 4.1 we note that

f1(a + m + n + b) = α2(m) + α3(n) + β2(m) + β3(m) (4.4)

for all a ∈ A, m ∈ M, n ∈ N, and b ∈ B, where α2 : M → Z(A), α3 : N → Z(A), β2 : M → Z(B), and
β3 : N → Z(B). Moreover,

(α2(m) + α3(n))m = m(β2(m) + β3(n))
n(α2(m) + α3(n)) = (β2(m) + β3(n))n

for all m ∈ M and n ∈ N. We set

δ(m, n) = α2(m) + α3(n) + β2(m) + β3(n)

for all m ∈ M and n ∈ N. It is easy to check that

Z(A0) = Z(A) + Z(B).

It follows that δ(m, n) ∈ Z(A0) for all m ∈ M, n ∈ N. Since

[ f1(a + m + n + b), a + m + n + b]s = 0

for all a ∈ A, m ∈ M, n ∈ N, and b ∈ B we get from (4.4) that

[δ(m, n),m + n] = 0

for all m ∈ M and n ∈ N. In particular, [δ(m0, n0),Y1] = 0. By assumption we have that δ(m0, n0) ∈
Z(A). Note that

[δ(m + m0, n + n0),m + m0 + n + n0] = 0 (4.5)

for all m ∈ M and n ∈ N. It is clear that

δ(m + m0, n + n0) = δ(m, n) + δ(m0, n0)

for all m ∈ M and n ∈ N. We get from (4.5) that

[δ(m, n),m + n] + [δ(m, n),m0 + n0] + [δ(m0, n0),m + n] + [δ(m0, n0),m0 + n0] = 0

for all m ∈ M and n ∈ N. This implies that

[δ(m, n),m0 + n0] = 0

for all m ∈ M and n ∈ N. By assumption again we obtain that δ(m, n) ∈ Z(A) for all m ∈ M and n ∈ N.
It follows from (4.4) that f1(A) ⊆ Z(A). This proves the result. �
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5. The main results

We are in a position to give the main result of the paper.

Theorem 5.1. LetA be a unital algebra with nontrivial idempotents satisfying (1.1). Suppose that

(i) Z(B) = πB(Z(A)), or A = [A, A];
(ii) Z(A) = πA(Z(A)), or B = [B, B];

(iii) there exists Y1 ∈ A1 such that

Z(A) = {X ∈ Z(A0) | [X,Y1] = 0} .

Then, every supercommuting map ofA is proper.

Proof. Let f is a supercommuting map of A. By Lemma 2.2 we have that f = f0 + f1, where fi is a
supercommuting map of degree i onA, i = 0, 1. By Theorem 3.1 we have that

f0(X) = λX + τ0(X)

for all X ∈ A, where λ ∈ Z(A) with 2λA2
1 = {0} and τ0 : A → Z(A) is a linear map. By Theorem 4.1

we have that f1(A) ⊆ Z(A). We set τ = τ0 + f1. Then

f (X) = λX + τ(X)

for all X ∈ A. This proves the result. �

6. Supercommuting maps of matrix algebras

Let S be a unital algebra over R. Let Mn(S ) be the set of all n× n matrices over S , where n ≥ 2. We
can view Mn(S ) as a unital algebra with nontrivial idempotents:

Mn(S ) = A + M + N + B,

where A = Ms(S ), M = Ms,t(S ), N = Mt,s(S ), B = Mt(S ), where s+t = n. Thus, Mn(S ) is a generalized
matrix algebra (see [16] for details). We set

Mn(S )0 = A + B and Mn(S )1 = M + N.

It is easy to check that Mn(S ) = Mn(S )0
⊕

Mn(S )1 is a superalgebra (see [26] for details).
Applying Theorem 3.1, we give a description of supercommuting maps of matrix algebras, which

is different from the result on commuting maps of matrix algebras (see [16, Corollary 4.1] for details).

Theorem 6.1. Let S be a unital algebra. Let Mn(S ) be the n × n matrix algebra. Then every
supercommuting map on Mn(R) is the form X → λX + τ(X), where λ ∈ Z(S ) with 2λ = 0, and
τ : Mn(S )→ Z(S ) · 1 is a linear map.
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Proof. Note that Mn(S ) satisfies the condition (1.1) (see [17, Section 1]). It is easy to check that
Z(Mn(S )) = Z(S ) · 1. This implies that the conditions (i) and (ii) in Theorem 5.1 are satisfied. We now
claim that the condition (iii) in Theorem 5.1 is satisfied.

We set
W = {X ∈ Z(A0) | [X, e1,s+1] = 0}.

It is clear that Z(S ) · 1 ⊆ W. Note that

Z(A0) = Z(A) + Z(B).

For any X ∈ W, we may assume that

X = λ1 · 1A + λ2 · 1B,

where λ1, λ2 ∈ Z(S ). We have that

[λ1 · 1A + λ2 · 1B, e1,s+1] = 0.

This implies that (λ1 − λ2)e1,s+1 = 0. Hence, λ1 = λ2. It follows that X ∈ Z(S ) · 1. Thus,W ⊆ Z(S ) · 1.
Hence,W = Z(S ) · 1, as desired. We obtain that Mn(S ) satisfies all conditions in Theorem 5.1.

Let f be a supercommuting map of Mn(S ). By Theorem 5.1 we have that there exist λ ∈ Z(S ) with
2λMn(S )2

1 = 0, and a supercentral map τ : Mn(S )→ Z(S ) · 1 such that

f (X) = λX + τ(X)

for all X ∈ Mn(S ). It suffices to prove that 2λ = 0. It is clear that e1,s+1 + es+1,1 ∈ Mn(S )1. It follows
that

2λ(e11 + es+1,s+1) = 2λ(e1,s+1 + es+1,1)2 = 0.

Hence, 2λ = 0. This proves the result. �

As a consequence of theorem 6.1 we have the following interesting result.

Corollary 6.1. Let S be a 2-torsion free unital algebra. Let Mn(S ) be the n × n matrix algebra with
n ≥ 2. Then every supercommuting map on Mn(R) is supercentral.

Proof. Let f is a supercommuting map on Mn(S ). By Theorem 6.1 we have that f (X) = λX + τ(X),
where λ ∈ Z(S ) with 2λ = 0, and τ : Mn(S ) → Z(S ) · 1. Since S is 2-torsion free we get that λ = 0.
This implies that f (Mn(S )) ⊆ Z(S ) · 1. This proves the result. �

We conclude the section with an example, which implies that a commuting map is not a
supercommuting map in general.

Example 6.1. Let S be a 2-torsion free unital algebra. Let Mn(S ) be the n × n matrix algebra with
n ≥ 2. We defined a linear map f : Mn(S )→ Mn(S ) by

f (x) = x

for all x ∈ Mn(S ). Then f is a commuting map on Mn(S ), but f is not a supercommuting map on
Mn(S ).

Proof. It is clear that f is a commuting map. Assume that f is a supercommuting map. By
Corollary 6.1 we get that f (x) = x ∈ Z(S ) · 1 for all x ∈ Mn(S ). In particular, we have that

f (e12) = e12 ∈ Z(S ) · 1,

which is a contradiction. Hence, f is not a supercommuting map. �
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7. Supercommuting maps of triangular algebras

LetA be a unital algebra with a nontrivial idempotent e satisfying (1.1). If fAe = 0, we have that

A = eAe + eA f + fA f ,

where M is a faithful (A, B)-bimodule. In this case,A is said to be a triangular algebra (see [18,28] for
details). Upper triangular matrix algebras and nest algebras are the two usual examples of triangular
algebras (see [18] for details).

In 2001, Cheung [18] initiated the study of commuting maps on triangular algebra. He determined
the class of triangular algebras for which every commuting map is proper (see [18, Theorem 8].
In 2003, Cheung [28] gave a description of Lie derivations of triangular algebras. In 2012, Du and
Wang [20] discussed k-commuting maps of triangular algebras, where k ≥ 1.

We set
A0 = eAe + fA f and A1 = eA f .

Note thatA = A0
⊕
A1 is a superalgebra (see [26] for details).

We begin with the following result, which shows that a supercommutator is a commutator in
triangular algebras.

Proposition 7.1. LetA be a triangular algebra. Then [x, y]s = [x, y] for all x, y ∈ A.

Proof. For any a, a′ ∈ eAe, m,m′ ∈ eA f , and b, b′ ∈ fA f , we note that

[m,m′]s = 0 = [m,m′].

We get that

[a + m + b, a′ + m′ + b′]s = [a + b, a′ + b′] + [a + b,m′] + [m, a′ + b′] + [m,m′]s

= [a + b, a′ + b′] + [a + b,m′] + [m, a′ + b′] + [m,m′]
= [a + b, a′ + b′ + m′] + [m, a′ + b′ + m′]
= [a + b + m, a′ + b′ + m′].

We obtain that [x, y]s = [x, y] for all x, y ∈ A. This proves the result. �

As a consequence of Proposition 7.1, we have the following interesting result.

Corollary 7.1. Every supercommuting map is the same as a commuting map on triangular algebras.

8. Conclusions

Let A be a unital algebra with nontrivial idempotents. We consider A as a generalized matrix
algebra according to Ghahramani and Zadeh’s method. We give a description of supercommuting maps
on generalized matrix algebras. As a consequence, we give a description of supercommuting maps on
matrix algebras, which is different from the result on commuting maps of matrix algebras. We finally
prove that every supercommuting map is the same as a commuting map on triangular algebras.
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8. M. Brešar, M. A. Chebotar, W. S. Martindale, Functional identities, Basel: Birkhäuser, 2007.
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