Given a unital commutative ring $ \mathscr{R} $, $ (\mathscr{A}, \mathscr{B}) $ and $ (\mathscr{B}, \mathscr{A}) $ are bimodules of $ \mathscr{M} $ and $ \mathscr{N} $, respectively, where $ \mathscr{A}, \mathscr{B} $ are unitals $ \mathscr{R}- $algebras. The $ \mathscr{R}- $algebra $ \mathscr{G} = $ $ \mathscr{G}(\mathscr{A}, \mathscr{M}, \mathscr{N}, \mathscr{B}) $ is a generalized matrix algebra described by the Morita context $ (\mathscr{A}, \mathscr{B}, \mathscr{M}, \mathscr{N}, \zeta_{\mathscr{M}\mathscr{N}}, \chi_{\mathscr{N}\mathscr{M}}) $. The present study investigated the structure of Lie (Jordan) $ \sigma- $centralizers at the zero products on order two generalized matrix algebra and established that each Jordan $ \sigma- $centralizer at the zero products is a $ \sigma- $centralizer at the zero product on order two generalized matrix algebra. We also provided sufficient and necessary conditions under which a Lie $ \sigma- $centralizer at the zero product is proper on an order two generalized matrix algebra.
Citation: Mohd Arif Raza, Huda Eid Almehmadi. Lie (Jordan) $ \sigma- $centralizer at the zero products on generalized matrix algebra[J]. AIMS Mathematics, 2024, 9(10): 26631-26648. doi: 10.3934/math.20241295
Given a unital commutative ring $ \mathscr{R} $, $ (\mathscr{A}, \mathscr{B}) $ and $ (\mathscr{B}, \mathscr{A}) $ are bimodules of $ \mathscr{M} $ and $ \mathscr{N} $, respectively, where $ \mathscr{A}, \mathscr{B} $ are unitals $ \mathscr{R}- $algebras. The $ \mathscr{R}- $algebra $ \mathscr{G} = $ $ \mathscr{G}(\mathscr{A}, \mathscr{M}, \mathscr{N}, \mathscr{B}) $ is a generalized matrix algebra described by the Morita context $ (\mathscr{A}, \mathscr{B}, \mathscr{M}, \mathscr{N}, \zeta_{\mathscr{M}\mathscr{N}}, \chi_{\mathscr{N}\mathscr{M}}) $. The present study investigated the structure of Lie (Jordan) $ \sigma- $centralizers at the zero products on order two generalized matrix algebra and established that each Jordan $ \sigma- $centralizer at the zero products is a $ \sigma- $centralizer at the zero product on order two generalized matrix algebra. We also provided sufficient and necessary conditions under which a Lie $ \sigma- $centralizer at the zero product is proper on an order two generalized matrix algebra.
[1] | D. Alghazzawi, A. Jabeen, M. A. Raza, T. Al-Sobhi, Characterization of Lie biderivations on triangular rings, Commun. Algebra, 51 (2023), 4400–4408. https://doi.org/10.1080/00927872.2023.2209809 doi: 10.1080/00927872.2023.2209809 |
[2] | M. Ashraf, M. A. Ansari, $\sigma-$centralizers of generalized matrix algebras, Miskolc Math. Notes, 24 (2023), 579–595. https://doi.org/10.18514/MMN.2023.4038 doi: 10.18514/MMN.2023.4038 |
[3] | M. Ashraf, M. A. Ansari, $\sigma-$centralizers of triangular algebras, Ukrainian Math. J., 75 (2023), 435–446. https://doi.org/10.37863/umzh.v75i4.6924 doi: 10.37863/umzh.v75i4.6924 |
[4] | M. Ashraf, A. Jabeen, On generalized Jordan derivations of generalized matrix algebras, Commun. Korean Math. S., 35 (2020), 733–744. https://doi.org/10.4134/CKMS.c190362 doi: 10.4134/CKMS.c190362 |
[5] | Y. Q. Du, Y. Wang, Lie derivations of generalized matrix algebras, Linear Algebra Appl., 437 (2012), 2719–2726. https://doi.org/10.1016/j.laa.2012.06.013 doi: 10.1016/j.laa.2012.06.013 |
[6] | B. Fadaee, H. Ghahramani, Lie centralizers at the zero products on generalized matrix algebras, J. Algebra Appl., 21 (2022), 2250165. https://doi.org/10.1142/S0219498822501651 doi: 10.1142/S0219498822501651 |
[7] | B. Fadaee, H. Ghahramani, W. Jing, Lie triple centralizers on generalized matrix algebras, Quaest. Math., 46 (2023), 281–300. https://doi.org/10.2989/16073606.2021.2013972 doi: 10.2989/16073606.2021.2013972 |
[8] | A. Fo$\check{s}$ner, W. Jing, Lie centralizers on triangular rings and nest algebras, Adv. Oper. Theory, 4 (2019), 342–350. https://doi.org/10.15352/aot.1804-1341 doi: 10.15352/aot.1804-1341 |
[9] | F. Ghomanjani, M. A. Bahmani, A note on Lie centralizer maps, Palest. J. Math., 7 (2018), 468–471. |
[10] | A. Jabeen, Lie (Jordan) centralizers on generalized matrix algebras, Commun. Algebra, 49 (2021), 278–291. https://doi.org/10.1080/00927872.2020.1797759 doi: 10.1080/00927872.2020.1797759 |
[11] | A. Jabeen, M. Ashraf, M. Ahmad, $\sigma-$derivations on generalized matrix algebras, An. Ştiinţ. Univ. "Ovidius" Constanţa Ser. Mat., 28 (2020), 115–135. https://doi.org/10.2478/auom-2020-0022 doi: 10.2478/auom-2020-0022 |
[12] | A. Jabeen, B. Ferreira, Lie (Jordan) centralizers on alternative algebras, Proyecciones, 41 (2022), 1035–1050. https://doi.org/10.22199/issn.0717-6279-4789 doi: 10.22199/issn.0717-6279-4789 |
[13] | A. Jabeen, M. A. Raza, M. Ahmad, On triangular $n-$matrix rings having multiplicative Lie-type derivations, Filomat, 36 (2022), 6103–6122. https://doi.org/10.2298/FIL2218103J doi: 10.2298/FIL2218103J |
[14] | B. E. Johson, An introduction to the theory of centralizers, Proc. London Math. Soc., s3–14 (1964), 299–320. https://doi.org/10.1112/plms/s3-14.2.299 doi: 10.1112/plms/s3-14.2.299 |
[15] | P. A. Krylov, Isomorphism of genralized matrix rings, Algebra Logic, 47 (2008), 258–262. https://doi.org/10.1007/s10469-008-9016-y doi: 10.1007/s10469-008-9016-y |
[16] | Y. B. Li, L. V. Wyk, F. Wei, Jordan derivaitons and antiderivations of genralized matrix algebras, Oper. Matrices, 7 (2013), 399–415. https://doi.org/10.7153/oam-07-23 doi: 10.7153/oam-07-23 |
[17] | Y. B. Li, F. Wei, A. Fo$\check{s}$ner, $k-$commuting mappings of generalized matrix algebras, Period. Math. Hungar., 79 (2019), 50–77. https://doi.org/10.1007/s10998-018-0260-1 doi: 10.1007/s10998-018-0260-1 |
[18] | Y. B. Li, F. Wei, Semi-centralizing maps of genralized matrix algebras, Linear Algebra Appl., 436 (2012), 1122–1153. https://doi.org/10.1016/j.laa.2011.07.014 doi: 10.1016/j.laa.2011.07.014 |
[19] | Y. Li, Z. K. Xiao, Additivity of maps on generalized matrix algebras, Electron. J. Linear Al., 22 (2011), 743–757. https://doi.org/10.13001/1081-3810.1471 doi: 10.13001/1081-3810.1471 |
[20] | X. F. Liang, F. Wei, A. Fo$\check{s}$ner, Centralizing traces and Lie-type isomorphisms on generalized matrix algebras: A new perspective, Czech. Math. J., 69 (2019), 713–761. https://doi.org/10.21136/CMJ.2019.0507-17 doi: 10.21136/CMJ.2019.0507-17 |
[21] | L. Liu, On Jordan centralizers of triangular algebras, Banach J. Math. Anal., 10 (2016), 223–234. https://doi.org/10.1215/17358787-3492545 doi: 10.1215/17358787-3492545 |
[22] | W. S. Matindale, Lie derivations of primitive rings, Michigan Math. J., 11 (1964), 183–187. |
[23] | S. Y. Meng, F. W. Meng, H. Chi, H. N. Chen, A. P. Pang, A robust observer based on the nonlinear descriptor systems application to estimate the state of charge of lithium-ion batteries, J. Franklin I., 360 (2023), 11397–11413. https://doi.org/10.1016/j.jfranklin.2023.08.037 doi: 10.1016/j.jfranklin.2023.08.037 |
[24] | K. Morita, Duality for modules and its applications to the theory of rings with minimum condition, Sci. Rep. Tokyo Kyoiku Daigaku, Sec. A, 6 (1958), 83–142. |
[25] | M. A. Raza, A. Jabeen, T. Al-Sobhi, Lie triple derivation and Lie bi-derivation on quaternion rings, Miskolc Math. Notes, 25 (2024), 433–443. https://doi.org/10.18514/MMN.2024.4413 doi: 10.18514/MMN.2024.4413 |
[26] | M. A. Raza, A. Jabeen, A. N. Khan, H. Alhazmi, Linear maps on von Neumann algebras acting as Lie type derivation via local actions, AIMS Math., 6 (2021), 8453–8465. https://doi.org/10.3934/math.2021490 doi: 10.3934/math.2021490 |
[27] | A. D. Sands, Radicals and Morita contexts, J. Algebra, 24 (1973), 335–345. https://doi.org/10.1016/0021-8693(73)90143-9 doi: 10.1016/0021-8693(73)90143-9 |
[28] | Z. K. Xiao, F. Wei, Commuting mappings of generalized matrix algebras, Linear Algebra Appl., 433 (2010), 2178–2197. https://doi.org/10.1016/j.laa.2010.08.002 doi: 10.1016/j.laa.2010.08.002 |
[29] | H. Yuan, Z. Liu, Lie $n-$centralizers of generalized matrix algebras, AIMS Math., 8 (2023), 14609–14622. https://doi.org/10.3934/math.2023747 doi: 10.3934/math.2023747 |