Research article

Besicovitch almost periodic solutions for a stochastic generalized Mackey-Glass hematopoietic model

  • Received: 05 July 2024 Revised: 29 August 2024 Accepted: 10 September 2024 Published: 13 September 2024
  • MSC : 34K14, 34K50, 92D25

  • This article aimed to investigate the existence and stability of Besicovitch almost periodic ($ B_{ap} $) positive solutions for a stochastic generalized Mackey-Glass hematopoietic model. To begin with, we used stochastic analysis theory, inequality techniques, and fixed point theorems to prove the existence and uniqueness of $ \mathcal{L}^p $-bounded and $ \mathcal{L}^p $-uniformly continuous positive solutions for the model under consideration. Then, we used definitions to prove that this unique positive solution is also a $ B_{ap} $ solution in finite-dimensional distributions. In addition, we established the global exponential stability of the $ B_{ap} $ positive solution using reduction to absurdity. Finally, we provided a numerical example to verify the effectiveness of our conclusions.

    Citation: Xianying Huang, Yongkun Li. Besicovitch almost periodic solutions for a stochastic generalized Mackey-Glass hematopoietic model[J]. AIMS Mathematics, 2024, 9(10): 26602-26630. doi: 10.3934/math.20241294

    Related Papers:

  • This article aimed to investigate the existence and stability of Besicovitch almost periodic ($ B_{ap} $) positive solutions for a stochastic generalized Mackey-Glass hematopoietic model. To begin with, we used stochastic analysis theory, inequality techniques, and fixed point theorems to prove the existence and uniqueness of $ \mathcal{L}^p $-bounded and $ \mathcal{L}^p $-uniformly continuous positive solutions for the model under consideration. Then, we used definitions to prove that this unique positive solution is also a $ B_{ap} $ solution in finite-dimensional distributions. In addition, we established the global exponential stability of the $ B_{ap} $ positive solution using reduction to absurdity. Finally, we provided a numerical example to verify the effectiveness of our conclusions.



    加载中


    [1] M. C. Mackey, L. Glass, Oscillation and chaos in physiological control systems, Science, 197 (1977), 287–289. https://doi.org/10.1126/science.267326 doi: 10.1126/science.267326
    [2] M. Khemis, A. Bouakkaz, R. Khemis, Positive periodic solutions of a leukopoiesis model with iterative terms, Bol. Soc. Mat. Mex., 30 (2024), 1. https://doi.org/10.1007/s40590-023-00576-2 doi: 10.1007/s40590-023-00576-2
    [3] M. Khemis, A. Bouakkaz, R. Khemis, Positive periodic solutions for a delay model of erythropoiesis with iterative terms, Appl. Anal., 103 (2023), 340–352. https://doi.org/10.1080/00036811.2023.2186862 doi: 10.1080/00036811.2023.2186862
    [4] S. Zhang, Y. Wang, H. Geng, W. Gao, E. Ilhan, H. M. Baskonus, On the analyzing of bifurcation properties of the one-dimensional Mackey-Glass model by using a generalized approach, Math. Meth. Appl. Sci., 2024, 1–15. https://doi.org/10.1002/mma.10381
    [5] C. Huang, X. Ding, Existence of traveling wave fronts for a diffusive Mackey-Glass model with two delays, Nonlinear Anal. Real World Appl., 76 (2024), 104024. https://doi.org/10.1016/j.nonrwa.2023.104024 doi: 10.1016/j.nonrwa.2023.104024
    [6] Y. Yan, J. Sugie, Existence regions of positive periodic solutions for a discrete hematopoiesis model with unimodal production functions, Appl. Math. Model., 68 (2019), 152–168. https://doi.org/10.1016/j.apm.2018.11.003 doi: 10.1016/j.apm.2018.11.003
    [7] M. Adimy, P. Amster, J. Epstein, Periodic solutions for a nonautonomous mathematical model of hematopoietic stem cell dynamics, Nonlinear Anal., 211 (2021), 112397. https://doi.org/10.1016/j.na.2021.112397 doi: 10.1016/j.na.2021.112397
    [8] Y. Yan, H. Zhu, Number of positive periodic solutions for feedback-driven nonlinear differential equation: Application to hematopoietic process, Monatsh. Math., 203 (2024), 523–542. https://doi.org/10.1007/s00605-023-01881-8 doi: 10.1007/s00605-023-01881-8
    [9] Y. Yan, Positive periodic solutions for discrete time-delay hematopoiesis model with impulses, Open Math., 21 (2023), 20230613. https://doi.org/10.1515/math-2023-0613 doi: 10.1515/math-2023-0613
    [10] Y. Yan, Multiplicity of positive periodic solutions for a discrete impulsive blood cell production model, AIMS Mathematics, 8 (2023), 26515–26531. https://doi.org/10.3934/math.20231354 doi: 10.3934/math.20231354
    [11] A. Younsi, Exponential stability of periodic solutions for a hematopoiesis model with two time delays, Stud. Eng. Exact Sci., 5 (2024), 3199–3226. https://doi.org/10.54021/seesv5n1-159 doi: 10.54021/seesv5n1-159
    [12] V. V. Alekseev, M. M. Preobrazhenskaia, Analysis of the asymptotic convergence of periodic solution of the Mackey-Glass equation to the solution of the limit relay equation, Theor. Math. Phys., 220 (2024), 1241–1261. https://doi.org/10.1134/S0040577924080014 doi: 10.1134/S0040577924080014
    [13] H. Zhou, W. Wang, L. Yang, Stage-structured hematopoiesis model with delays in an almost periodic environment, Appl. Math. Lett., 120 (2021), 107336. https://doi.org/10.1016/j.aml.2021.107336 doi: 10.1016/j.aml.2021.107336
    [14] H. S. Ding, Q. J. Liu, J. J. Nieto, Existence of positive almost periodic solutions to a class of hematopoiesis model, Appl. Math. Model., 40 (2016), 3289–3297. https://doi.org/10.1016/j.apm.2015.10.020 doi: 10.1016/j.apm.2015.10.020
    [15] Z. J. Yao, New results on existence and exponential stability of the unique positive almost periodic solution for hematopoiesis model, Appl. Math. Model., 39 (2015), 7113–7123. https://doi.org/10.1016/j.apm.2015.03.003 doi: 10.1016/j.apm.2015.03.003
    [16] J. Yuan, L. Liu, Y. Wu, New results on the existence and uniqueness of positive almost periodic solution for the generalized Mackey-Glass hematopoietic model, Commun. Nonlinear Sci. Numer. Simul., 126 (2023) 107487. https://doi.org/10.1016/j.cnsns.2023.107487
    [17] T. Diagana, H. Zhou, Existence of positive almost periodic solutions to the hematopoiesis model, Appl. Math. Comput., 274 (2016), 644–648. https://doi.org/10.1016/j.amc.2015.10.029 doi: 10.1016/j.amc.2015.10.029
    [18] P. Amster, R. Balderrama, On the global dynamic behaviour for a generalized haematopoiesis model with almost periodic coefficients and oscillating circulation loss rate, Math. Meth. Appl. Sci., 41 (2018), 3976–3997. https://doi.org/10.1002/mma.4880 doi: 10.1002/mma.4880
    [19] R. Balderrama, New results on the almost periodic solutions for a model of hematopoiesis with an oscillatory circulation loss rate, J. Fixed Point Theory Appl., 22 (2020), 42. https://doi.org/10.1007/s11784-020-00776-7 doi: 10.1007/s11784-020-00776-7
    [20] H. B. Fredj, F. Chérif, Positive pseudo almost periodic solutions to a class of hematopoiesis model: Oscillations and dynamics, J. Appl. Math. Comput., 63 (2020), 479–500. https://doi.org/10.1007/s12190-020-01326-7 doi: 10.1007/s12190-020-01326-7
    [21] A. S. Besicovitch, Almost periodic functions, New York: Dover Publication INC, 1954.
    [22] C. Corduneanu, Almost periodic oscillations and waves, New York: Springer, 2009. https://doi.org/10.1007/978-0-387-09819-7
    [23] O. Mellah, P. R. de Fitte, Counterexamples to mean square almost periodicity of the solutions of some SDEs with almost periodic coefficients, Electron. J. Diff. Equ., 2013 (2013), 1–7.
    [24] Y. Li, X. Wang, Besicovitch almost periodic stochastic processes and almost periodic solutions of Clifford-valued stochastic neural networks, Discrete Contin. Dyn. Syst. B, 28 (2023), 2154–2183. https://doi.org/10.3934/dcdsb.2022162 doi: 10.3934/dcdsb.2022162
    [25] A. Klenke, Probability theory: A comprehensive course, Cham: Springer, 2020. https://doi.org/10.1007/978-3-030-56402-5
    [26] N. Huo, Y. Li, $\mathcal{B}$-almost periodic solutions in finite-dimensional distributions for octonion-valued stochastic shunting inhibitory cellular neural networks, Math. Meth. Appl. Sci., 47 (2024), 5136–5160. https://doi.org/10.1002/mma.9858 doi: 10.1002/mma.9858
    [27] G. D. Prato, J. Zabczyk, Stochastic equations in infinite dimensions, Cambridge: Cambridge University Press, 1992. https://doi.org/10.1017/cbo9780511666223
    [28] M. Kamenskii, O. Mellah, P. R. De Fitte, Weak averaging of semilinear stochastic differential equations with almost periodic coefficients, J. Math. Anal. Appl., 427 (2015), 336–364. https://doi.org/10.1016/j.jmaa.2015.02.036 doi: 10.1016/j.jmaa.2015.02.036
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(33) PDF downloads(6) Cited by(0)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog