This article aimed to investigate the existence and stability of Besicovitch almost periodic ($ B_{ap} $) positive solutions for a stochastic generalized Mackey-Glass hematopoietic model. To begin with, we used stochastic analysis theory, inequality techniques, and fixed point theorems to prove the existence and uniqueness of $ \mathcal{L}^p $-bounded and $ \mathcal{L}^p $-uniformly continuous positive solutions for the model under consideration. Then, we used definitions to prove that this unique positive solution is also a $ B_{ap} $ solution in finite-dimensional distributions. In addition, we established the global exponential stability of the $ B_{ap} $ positive solution using reduction to absurdity. Finally, we provided a numerical example to verify the effectiveness of our conclusions.
Citation: Xianying Huang, Yongkun Li. Besicovitch almost periodic solutions for a stochastic generalized Mackey-Glass hematopoietic model[J]. AIMS Mathematics, 2024, 9(10): 26602-26630. doi: 10.3934/math.20241294
This article aimed to investigate the existence and stability of Besicovitch almost periodic ($ B_{ap} $) positive solutions for a stochastic generalized Mackey-Glass hematopoietic model. To begin with, we used stochastic analysis theory, inequality techniques, and fixed point theorems to prove the existence and uniqueness of $ \mathcal{L}^p $-bounded and $ \mathcal{L}^p $-uniformly continuous positive solutions for the model under consideration. Then, we used definitions to prove that this unique positive solution is also a $ B_{ap} $ solution in finite-dimensional distributions. In addition, we established the global exponential stability of the $ B_{ap} $ positive solution using reduction to absurdity. Finally, we provided a numerical example to verify the effectiveness of our conclusions.
[1] | M. C. Mackey, L. Glass, Oscillation and chaos in physiological control systems, Science, 197 (1977), 287–289. https://doi.org/10.1126/science.267326 doi: 10.1126/science.267326 |
[2] | M. Khemis, A. Bouakkaz, R. Khemis, Positive periodic solutions of a leukopoiesis model with iterative terms, Bol. Soc. Mat. Mex., 30 (2024), 1. https://doi.org/10.1007/s40590-023-00576-2 doi: 10.1007/s40590-023-00576-2 |
[3] | M. Khemis, A. Bouakkaz, R. Khemis, Positive periodic solutions for a delay model of erythropoiesis with iterative terms, Appl. Anal., 103 (2023), 340–352. https://doi.org/10.1080/00036811.2023.2186862 doi: 10.1080/00036811.2023.2186862 |
[4] | S. Zhang, Y. Wang, H. Geng, W. Gao, E. Ilhan, H. M. Baskonus, On the analyzing of bifurcation properties of the one-dimensional Mackey-Glass model by using a generalized approach, Math. Meth. Appl. Sci., 2024, 1–15. https://doi.org/10.1002/mma.10381 |
[5] | C. Huang, X. Ding, Existence of traveling wave fronts for a diffusive Mackey-Glass model with two delays, Nonlinear Anal. Real World Appl., 76 (2024), 104024. https://doi.org/10.1016/j.nonrwa.2023.104024 doi: 10.1016/j.nonrwa.2023.104024 |
[6] | Y. Yan, J. Sugie, Existence regions of positive periodic solutions for a discrete hematopoiesis model with unimodal production functions, Appl. Math. Model., 68 (2019), 152–168. https://doi.org/10.1016/j.apm.2018.11.003 doi: 10.1016/j.apm.2018.11.003 |
[7] | M. Adimy, P. Amster, J. Epstein, Periodic solutions for a nonautonomous mathematical model of hematopoietic stem cell dynamics, Nonlinear Anal., 211 (2021), 112397. https://doi.org/10.1016/j.na.2021.112397 doi: 10.1016/j.na.2021.112397 |
[8] | Y. Yan, H. Zhu, Number of positive periodic solutions for feedback-driven nonlinear differential equation: Application to hematopoietic process, Monatsh. Math., 203 (2024), 523–542. https://doi.org/10.1007/s00605-023-01881-8 doi: 10.1007/s00605-023-01881-8 |
[9] | Y. Yan, Positive periodic solutions for discrete time-delay hematopoiesis model with impulses, Open Math., 21 (2023), 20230613. https://doi.org/10.1515/math-2023-0613 doi: 10.1515/math-2023-0613 |
[10] | Y. Yan, Multiplicity of positive periodic solutions for a discrete impulsive blood cell production model, AIMS Mathematics, 8 (2023), 26515–26531. https://doi.org/10.3934/math.20231354 doi: 10.3934/math.20231354 |
[11] | A. Younsi, Exponential stability of periodic solutions for a hematopoiesis model with two time delays, Stud. Eng. Exact Sci., 5 (2024), 3199–3226. https://doi.org/10.54021/seesv5n1-159 doi: 10.54021/seesv5n1-159 |
[12] | V. V. Alekseev, M. M. Preobrazhenskaia, Analysis of the asymptotic convergence of periodic solution of the Mackey-Glass equation to the solution of the limit relay equation, Theor. Math. Phys., 220 (2024), 1241–1261. https://doi.org/10.1134/S0040577924080014 doi: 10.1134/S0040577924080014 |
[13] | H. Zhou, W. Wang, L. Yang, Stage-structured hematopoiesis model with delays in an almost periodic environment, Appl. Math. Lett., 120 (2021), 107336. https://doi.org/10.1016/j.aml.2021.107336 doi: 10.1016/j.aml.2021.107336 |
[14] | H. S. Ding, Q. J. Liu, J. J. Nieto, Existence of positive almost periodic solutions to a class of hematopoiesis model, Appl. Math. Model., 40 (2016), 3289–3297. https://doi.org/10.1016/j.apm.2015.10.020 doi: 10.1016/j.apm.2015.10.020 |
[15] | Z. J. Yao, New results on existence and exponential stability of the unique positive almost periodic solution for hematopoiesis model, Appl. Math. Model., 39 (2015), 7113–7123. https://doi.org/10.1016/j.apm.2015.03.003 doi: 10.1016/j.apm.2015.03.003 |
[16] | J. Yuan, L. Liu, Y. Wu, New results on the existence and uniqueness of positive almost periodic solution for the generalized Mackey-Glass hematopoietic model, Commun. Nonlinear Sci. Numer. Simul., 126 (2023) 107487. https://doi.org/10.1016/j.cnsns.2023.107487 |
[17] | T. Diagana, H. Zhou, Existence of positive almost periodic solutions to the hematopoiesis model, Appl. Math. Comput., 274 (2016), 644–648. https://doi.org/10.1016/j.amc.2015.10.029 doi: 10.1016/j.amc.2015.10.029 |
[18] | P. Amster, R. Balderrama, On the global dynamic behaviour for a generalized haematopoiesis model with almost periodic coefficients and oscillating circulation loss rate, Math. Meth. Appl. Sci., 41 (2018), 3976–3997. https://doi.org/10.1002/mma.4880 doi: 10.1002/mma.4880 |
[19] | R. Balderrama, New results on the almost periodic solutions for a model of hematopoiesis with an oscillatory circulation loss rate, J. Fixed Point Theory Appl., 22 (2020), 42. https://doi.org/10.1007/s11784-020-00776-7 doi: 10.1007/s11784-020-00776-7 |
[20] | H. B. Fredj, F. Chérif, Positive pseudo almost periodic solutions to a class of hematopoiesis model: Oscillations and dynamics, J. Appl. Math. Comput., 63 (2020), 479–500. https://doi.org/10.1007/s12190-020-01326-7 doi: 10.1007/s12190-020-01326-7 |
[21] | A. S. Besicovitch, Almost periodic functions, New York: Dover Publication INC, 1954. |
[22] | C. Corduneanu, Almost periodic oscillations and waves, New York: Springer, 2009. https://doi.org/10.1007/978-0-387-09819-7 |
[23] | O. Mellah, P. R. de Fitte, Counterexamples to mean square almost periodicity of the solutions of some SDEs with almost periodic coefficients, Electron. J. Diff. Equ., 2013 (2013), 1–7. |
[24] | Y. Li, X. Wang, Besicovitch almost periodic stochastic processes and almost periodic solutions of Clifford-valued stochastic neural networks, Discrete Contin. Dyn. Syst. B, 28 (2023), 2154–2183. https://doi.org/10.3934/dcdsb.2022162 doi: 10.3934/dcdsb.2022162 |
[25] | A. Klenke, Probability theory: A comprehensive course, Cham: Springer, 2020. https://doi.org/10.1007/978-3-030-56402-5 |
[26] | N. Huo, Y. Li, $\mathcal{B}$-almost periodic solutions in finite-dimensional distributions for octonion-valued stochastic shunting inhibitory cellular neural networks, Math. Meth. Appl. Sci., 47 (2024), 5136–5160. https://doi.org/10.1002/mma.9858 doi: 10.1002/mma.9858 |
[27] | G. D. Prato, J. Zabczyk, Stochastic equations in infinite dimensions, Cambridge: Cambridge University Press, 1992. https://doi.org/10.1017/cbo9780511666223 |
[28] | M. Kamenskii, O. Mellah, P. R. De Fitte, Weak averaging of semilinear stochastic differential equations with almost periodic coefficients, J. Math. Anal. Appl., 427 (2015), 336–364. https://doi.org/10.1016/j.jmaa.2015.02.036 doi: 10.1016/j.jmaa.2015.02.036 |