Research article

Numerical investigation of systems of fractional partial differential equations by new transform iterative technique

  • Received: 09 July 2024 Revised: 23 August 2024 Accepted: 27 August 2024 Published: 13 September 2024
  • MSC : 65R10, 34A08, 35R11

  • This research introduced a new method, the Aboodh Tamimi Ansari transform method ($ (AT)^2 $ method), for solving systems of linear and nonlinear fractional partial differential equations. The method combined the Aboodh transform method and the Tamimi Ansari method, allowing for the simultaneous solution of linear and nonlinear terms without restrictions. The Caputo sense was considered for fractional derivatives. The effectiveness of the proposed method was demonstrated through numerical solutions, graphical representations, and tabular data, showing strong agreement with exact solutions. The approach was deemed precise, easy to apply, and could be extended to address further challenges in fractional-order problems. Computational tasks were carried out using Mathematica 13.

    Citation: Mariam Sultana, Muhammad Waqar, Ali Hasan Ali, Alina Alb Lupaş, F. Ghanim, Zaid Ameen Abduljabbar. Numerical investigation of systems of fractional partial differential equations by new transform iterative technique[J]. AIMS Mathematics, 2024, 9(10): 26649-26670. doi: 10.3934/math.20241296

    Related Papers:

  • This research introduced a new method, the Aboodh Tamimi Ansari transform method ($ (AT)^2 $ method), for solving systems of linear and nonlinear fractional partial differential equations. The method combined the Aboodh transform method and the Tamimi Ansari method, allowing for the simultaneous solution of linear and nonlinear terms without restrictions. The Caputo sense was considered for fractional derivatives. The effectiveness of the proposed method was demonstrated through numerical solutions, graphical representations, and tabular data, showing strong agreement with exact solutions. The approach was deemed precise, easy to apply, and could be extended to address further challenges in fractional-order problems. Computational tasks were carried out using Mathematica 13.



    加载中


    [1] N. H. Aljahdaly, S. A. El-Tantawy, On the multistage differential transformation method for analyzing damping duffing oscillator and its applications to plasma physics, Mathematics, 9 (2021), 432. https://doi.org/10.3390/math9040432 doi: 10.3390/math9040432
    [2] H. M. Fahad, A. Fernandez, Operational calculus for Caputo fractional calculus with respect to functions and the associated fractional differential equations, Appl. Math. Comput., 409 (2021), 126400. https://doi.org/10.1016/j.amc.2021.126400 doi: 10.1016/j.amc.2021.126400
    [3] X. Li, S. Li, A fast element-free Galerkin method for the fractional diffusion-wave equation, Appl. Math. Lett., 122 (2021), 107529. https://doi.org/10.1016/j.aml.2021.107529 doi: 10.1016/j.aml.2021.107529
    [4] K. Candogan, E. G. Altuntas, N. Igci, Authentication and quality assessment of meat products by Fourier-transform infrared (FTIR) spectroscopy, Food Eng. Rev., 13 (2021), 66–91. https://doi.org/10.1007/s12393-020-09251-y doi: 10.1007/s12393-020-09251-y
    [5] S. Noeiaghdam, D. Sidorov, A. M. Wazwaz, N. Sidorov, V. Sizikov, The numerical validation of the domain decomposition method for solving Volterra integral equation with discontinuous kernels using the CESTAC method, Mathematics, 9 (2021), 260. https://doi.org/10.3390/math9030260 doi: 10.3390/math9030260
    [6] O. Gonzalez-Gaxiola, A. Biswas, M. Ekici, S. Khan, Highly dispersive optical solitons with quadratic-cubic law of refractive index by the variational iteration method, J. Optics, 51 (2022), 29–36. https://doi.org/10.1007/s12596-020-00671-x doi: 10.1007/s12596-020-00671-x
    [7] S. R. Saratha, G. S. S. Krishnan, M. Bagyalakshmi, Analysis of a fractional epidemic model by fractional generalized homotopy analysis method using modified Riemann-Liouville derivative, Appl. Math. Model., 92 (2021), 525–545. https://doi.org/10.1016/j.apm.2020.11.019 doi: 10.1016/j.apm.2020.11.019
    [8] C. Li, A. Chen, Numerical methods for fractional partial differential equations, IJCM, 95 (2018), 1048–1099. https://doi.org/10.1080/00207160.2017.1343941 doi: 10.1080/00207160.2017.1343941
    [9] H. K. Jassim, J. Vahidi, A new technique of reduced differential transform method to solve local fractional PDEs in mathematical physics, IJNAA, 12 (2021), 37–44.
    [10] J. H. He, Y. O. El-Dib, Homotopy perturbation method with three expansions, J. Math. Chem., 59 (2021), 1139–1150. https://doi.org/10.1007/s10910-021-01237-3 doi: 10.1007/s10910-021-01237-3
    [11] S. S. Ray, A new approach by two-dimensional wavelets operational matrix method for solving variable-order fractional partial integro-differential equations, Numer. Meth. Part. D. E., 37 (2021), 341–359. https://doi.org/10.1002/num.22530 doi: 10.1002/num.22530
    [12] S. Momani, N. Djeddi, M. Al-Smadi, S. Al-Omari, Numerical investigation for Caputo-Fabrizio fractional Riccati and Bernoulli equations using iterative reproducing kernel method, Appl. Math., 170 (2021), 418–434. https://doi.org/10.1016/j.apnum.2021.08.005 doi: 10.1016/j.apnum.2021.08.005
    [13] T. M. Elzaki, Application of new transform "Elzaki transform" to partial differential equations, GJPAM, 7 (2011), 65-70.
    [14] S. A. Ahmed, T. M. Elzaki, M. Elbadri, M. Z. Mohamed, Solution of partial differential equations by new double integral transform (Laplace-Sumudu transform), ASEJ, 12 (2021), 4045–4049. https://doi.org/10.1016/j.asej.2021.02.032 doi: 10.1016/j.asej.2021.02.032
    [15] B. Souayeh, K. A. Abro, H. Alfannakh, M. Al Nuwairan, A. Yasin, Application of Fourier sine transform to carbon nanotubes suspended in ethylene glycol for the enhancement of heat transfer, Energies, 15 (2022), 1200. https://doi.org/10.3390/en15031200 doi: 10.3390/en15031200
    [16] K. El-Rashidy, New traveling wave solutions for the higher Sharma-Tasso-Olver equation by using extension exponential rational function method, Results Phys., 17 (2020), 103066. https://doi.org/10.1016/j.rinp.2020.103066 doi: 10.1016/j.rinp.2020.103066
    [17] K. Hosseini, P. Mayeli, D. Kumar, New exact solutions of the coupled Sine-Gordon equations in nonlinear optics using the modified Kudryashov method, J. Mod. Opt., 65 (2018), 361–364. https://doi.org/10.1080/09500340.2017.1380857 doi: 10.1080/09500340.2017.1380857
    [18] N. Srivastava, A. Singh, Y. Kumar, V. K. Singh, Efficient numerical algorithms for Riesz-space fractional partial differential equations based on finite difference/operational matrix, Appl. Math., 161 (2021), 244–274. https://doi.org/10.1016/j.apnum.2020.10.032 doi: 10.1016/j.apnum.2020.10.032
    [19] H. Temimi, A. R. Ansari, A semi-analytical iterative technique for solving nonlinear problems, Comput. Math. Appl., 61 (2011), 203–210. https://doi.org/10.1016/j.camwa.2010.10.042 doi: 10.1016/j.camwa.2010.10.042
    [20] S. J. Liao, A. T. Chwang, Application of homotopy analysis method in nonlinear oscillations, Appl. Math. Model., 22 (1998), 115–129.
    [21] H. Temimi, A. R. Ansari, A computational iterative method for solving nonlinear ordinary differential equations, LMS J. Comput. Math., 18 (2015), 730–753. https://doi.org/10.1112/S1461157015000285 doi: 10.1112/S1461157015000285
    [22] M. A. Al-Jawary, S. G. Al-Razaq, A semi-analytical iterative technique for solving Duffing equations, IJPAM, 108 (2016), 871–885. https://doi.org/10.12732/ijpam.v108i4.13 doi: 10.12732/ijpam.v108i4.13
    [23] F. Ehsani, A. Hadi, F. Ehsani, R. Mahdavi, An iterative method for solving partial differential equations and solution of Korteweg-de Vries equations for showing the capability of the iterative method, World Appl. Program., 3 (2013), 320–327.
    [24] M. A. Al-Jawary, R. K. Raham, A semi-analytical iterative technique for solving chemistry problems, J. King Saud Univ. Sci., 29 (2017), 320–332. https://doi.org/10.1016/j.jksus.2016.08.002 doi: 10.1016/j.jksus.2016.08.002
    [25] M. A. Al-Jawary, A semi-analytical iterative method for solving nonlinear thin film flow problems, Chaos, 99 (2017), 52–56. https://doi.org/10.1016/j.chaos.2017.03.045 doi: 10.1016/j.chaos.2017.03.045
    [26] M. A. Al-Jawary, G. H. Radhi, J. Ravnik, Semi-analytical method for solving Fokker-Planck's equations, J. Assoc. Arab Univ. Basic Appl. Sci., 24 (2017), 254–262. https://doi.org/10.1016/j.jaubas.2017.07.001 doi: 10.1016/j.jaubas.2017.07.001
    [27] G. O. Ojo, N. I. Mahmudov, Aboodh transform iterative method for spatial diffusion of a biological population with fractional-order, Mathematics, 9 (2021), 155. https://doi.org/10.3390/math9020155 doi: 10.3390/math9020155
    [28] H. Jafari, M. Nazari, D. Baleanu, C. M. Khalique, A new approach for solving a system of fractional partial differential equations, Comput. Math. Appl., 66 (2013), 838–843. https://doi.org/10.1016/j.camwa.2012.11.014 doi: 10.1016/j.camwa.2012.11.014
    [29] H. Tao, N. Anjum, Y. J. Yang, The Aboodh transformation-based homotopy perturbation method: New hope for fractional calculus, Front. Phys., 11 (2023), 310. https://doi.org/10.3389/fphy.2023.1168795 doi: 10.3389/fphy.2023.1168795
    [30] K. S. Aboodh, The new integral transform: Aboodh transform, GJPAST, 9 (2013), 35–43.
    [31] M. H. Cherif, D. Ziane, A new numerical technique for solving systems of nonlinear fractional partial differential equations, Int. J. Anal., 15 (2017), 188–197.
    [32] M. A. Awuya, D. Subasi, Aboodh transform iterative method for solving fractional partial differential equation with Mittag-Leffler Kernel, Symmetry, 13 (2021), 2055. https://doi.org/10.3390/sym13112055 doi: 10.3390/sym13112055
    [33] S. Alfaqeih, T. Ozis, Note on triple Aboodh transform and its application, IJEAIS, 3 (2019), 1–7.
    [34] M. A. Al-Jawary, M. M. Azeez, G. H. Radhi, Analytical and numerical solutions for the nonlinear Burgers and advection-diffusion equations by using a semi-analytical iterative method, JAMI, 76 (2018), 155–171. https://doi.org/10.1016/j.camwa.2018.04.010 doi: 10.1016/j.camwa.2018.04.010
    [35] Z. M. Odibat, A study on the convergence of variational iteration method, Comput. Model., 51 (2010), 1181–1192. https://doi.org/10.1016/j.mcm.2009.12.034 doi: 10.1016/j.mcm.2009.12.034
    [36] H. K. Jassim, Analytical solutions for a system of fractional partial differential equations by homotopy perturbation transform method, Int. J. Adv. Appl. Math. Mech., 3 (2015), 36–40.
    [37] H. Jafari, M. Nazari, D. Baleanu, C. M. Khalique, A new approach for solving a system of fractional partial differential equations, Comput. Math. Appl., 66 (2013), 838–843. https://doi.org/10.1016/j.camwa.2012.11.014 doi: 10.1016/j.camwa.2012.11.014
    [38] H. Jafari, S. Seifi, Solving a system of nonlinear fractional partial differential equations using homotopy analysis method, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 1962–1969. https://doi.org/10.1016/j.cnsns.2008.06.019 doi: 10.1016/j.cnsns.2008.06.019
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(456) PDF downloads(44) Cited by(0)

Article outline

Figures and Tables

Figures(11)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog