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1. Introduction

Partial differential equations of fractional order (FPDEs) have been widely employed and developed
in fluid mechanics, engineering, and physics domains throughout the past few decades. In contrast
to integer-order PDEs, FPDEs are better suited for representing complex phenomena and processes.
Hence, the resolution of FPDEs becomes a significant issue. Currently, various approaches exist for
solving FPDEs. Numerous analytical and numerical techniques are employed to get approximate
solutions for FPDEs. A few of these techniques are the multistep generalised differential transform
method [1], the Mikusiński operational calculus [2], the iterative Laplace transform (LT) method [3],
the Fourier transform method [4], the Adomian decomposition method [5], the variational iteration
method [6], the Homotopy analysis method [7], the spectral method with the finite difference method
and the Galerkin finite element method [8], reduce differential transform method [9], the homotopy
pertubation method [10], operational wavelet matrix method [11], iterative reproducing kernel [12],
Elzaki transform method [13], double integral transform [14], Fourier sine transform [15], and
others [16–18].

The Temimi and Ansari method (TAM), introduced in 2011, is a method that provides accurate
results in various equations [19]. The TAM technique aims to integrate the several tools available to
problem solvers, including analytical, symbolic, and numerical computation. Essentially, the method
aims to simplify the issue by transforming it into a linear form. It then employs an iterative approach
that relies on both analytical and numerical computations. It originated from the homotopy perturbation
method (HAM) [20] and has been used in solving various types of equations. TAM was also influenced
by the renowned fixed point iteration method, as utilized by the authors of [21], within the realm of
function space. This approach can be characterized as a quasi-linear iterative method that utilizes
the fixed point iteration method, implemented in function space. For details, see [21]. Al-Jawary
et al. [22] used TAM to solve the Duffing equation with damping and undamping type equations,
Tamimi et al. [21] solved coupled nonlinear differential equations, and Hussien et al. [23] solved
Korteweg–De Vries (KDV) equations. Overall, TAM’s capability to provide accurate results is evident
in its applications. For more details, see [24–26].

The Aboodh transform (AT) [27–30] is a unique integral transform, similar to well-recognized
transforms such as the LT and other integral transforms that are specified in the time domain for t ≥ 0.
The AT introduces a distinctive mathematical method that provides a different viewpoint and technique
for dealing with mathematical expressions and issues in the time domain. This transform is currently
recognized as a basic approach for solving linear differential equations but lacks the capability to handle
nonlinear equations. Combining the AT with the Tamimi Ansari method allows for the resolution of
both linear and nonlinear issues. The fractional derivative used in this study is in the Caputo scene.
Caputo fractional derivatives are valuable tools in various scientific and engineering disciplines due
to their unique advantages. These advantages include incorporating memory effects, having non-
singular kernels, offering physical interpretations in applications like viscoelasticity, being essential for
modeling fractional order systems, possessing good mathematical properties, facilitating the solution of
fractional differential equations, generalizing traditional derivatives, and finding applications in control
systems for improved performance. It makes it possible to include initial and boundary conditions in
the problem formulation. It adheres to the classical calculus condition that the constant’s derivative is
zero. The derivative does not disappear at zero.
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In order to provide an approximate solution to the system for PDEs with fractional order, Tamimi
and Ansari’s iterative methodology and the AT are used in this study. In this paper, we deal with
both linear and nonlinear fractional order systems using the method mentioned above to suggest its
potential applicability to other FPDEs. The TAM technique is a simple and effective way to find power
series solutions for FPDEs. Unlike other series solution methods, it does not require linearization,
perturbation, or discretization. The benefit of this approach is that it is easy to implement with minimal
computing work. According to the authors of this article, no one has worked on this hybrid version of
the TAM with the AT.

The research is organized as follows: The first part introduces and establishes the backdrop for the
investigation. The second portion will provide fundamental definitions and properties from fractional
calculus theory and the AT that will be used throughout the article. The third section introduces the
(AT )2 method for a system of fractional order as a basic principle for predicting solutions to FPDEs.
The fourth part discusses the convergence of the suggested approach. In Section 5, the study utilizes
the suggested approach to address linear and nonlinear systems of fractional order. Section 6 provides
a summary of the study’s findings and implications in the concluding remarks.

2. Preliminaries

Definition 2.1. The fractional order derivative of a function ρ(ζ, t) in the Caputo sense, denoted by u,
can be expressed as explained in reference [31]

Du
t ρ(ζ, t) =

1
Γ(p − u)

∫ t

0
(t − µ)p−u−1ρ(p)(ζ, µ)dµ (p − 1 < u ≤ p).

Definition 2.2. The LT of θ(t), t > 0 is [32]

L[θ(t)] = H(s) =

∫ ∞

0
e−stθ(t)dt, (2.1)

where s is real or complex.

Definition 2.3. The inverse of LT of θ(t) is described as

L−1[H(s)] = θ(t) =
1

2πi

∫ a+i∞

a−i∞
etsH(s)ds, (2.2)

where a is a real number.

Definition 2.4. The AT of a function φ(t) of exponential order over the set of functions is described
as [32]

G =
{
φ : φ(t) < Mep j |t| if t ∈ (−1) j × [0,∞), j = 1, 2; (M, p1, p2 > 0)

}
,

is written as
κ[φ(t)] = λ(ε),

and defined as

κ[φ(t)] =
1
ε

∫ ∞

0
e−εtφ(t)dt = λ(ε), p1 ≤ ε ≤ p2, (2.3)

AIMS Mathematics Volume 9, Issue 10, 26649–26670.



26652

from Eqs (2.1) and (2.3). It is clear that if s and ε are equal to unity, then (2.1) and (2.3) are identical;
otherwise, the relationship between (2.1) and (2.3) is symmetrical.

Definition 2.5. The inverse AT of φ(t), t ∈ (0,∞) is described as [32, 33]

κ−1[λ(ε)] = φ(t) =
1

2πi

∫ a+i∞

a−i∞
εeεtλ(ε)dε.

Theorem 2.6. Given that the linearity property of the AT is given by [33], let the AT of the functions
φ1(t) and φ2(t) be λ1(ε) and λ2(ε), respectively. Then, for any real numbers δ1 and δ2, we have

κ
[
δ1φ1(t) ± δ2φ2(t)

]
= κ[δ1φ1(t)] ± κ[δ2φ2(t)] = δ1λ1(ε) ± δ2λ2(ε),

where κ denotes the AT operator.

Theorem 2.7. If φ(t) belongs to G, then AT of φ(t) is λ(ε), and the LT of L[φ(t)] is θ(ε), then the
following condition will be held [32]:

λ(ε) =
1
ε
θ(ε).

Theorem 2.8. Let the AT of a function φ(t) in Caputo’s sense be given as [31]:

κ[Du
t φ(t); ε] = εuκ[φ(t)] −

n−1∑
l=0

φ(t)l|t=0

ε2−u+l , n − 1 < u ≤ n, n ∈ N,

then the AT of some elementary functions can be described as listed below in Table 1.

Table 1. AT and inverse AT of some elementary functions.

φ(t) κ[φ(t)] = λ(ε) κ−1[λ(ε)] φ(t)
1 1

ε2
1
ε2 1

t 1
ε3

1
ε3 t

tu Γ(u+1)
εu+2

Γ(u+1)
εu+2 tu

Sin(at) a
ε(ε2+a2)

a
ε(ε2+a2) Sin(at)

3. Methodology of Aboodh Tamimi Ansari transform method

In this section, we will discuss the idea of the (AT )2 method to find the general solution of the
FPDEs. The derivative is involved in the Caputo sense

Du
t φ(ζ, ω, t) + Mφ(ζ, ω, t) + Nφ(ζ, ω, t) = h(ζ, ω, t), (3.1)

where Du
t = ∂u

∂tu is the Caputo operator, M and N are linear and nonlinear differential operators, and h
is the source function. If u ∈ (0, 1], then n = 1. The initial condition is given below:

φ(ζ, ω, 0) = k(ζ, ω, 0).
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To obtain the following response, utilize the AT on Eq (3.1), followed by the application of the inverse
AT

φ(ζ, ω, t) = k(ζ, ω, 0) + κ−1
[

1
εuκ[h(ζ, ω, t)]

]
− κ−1

[
1
εu

[
κ[Mφ(ζ, ω, t) + Nφ(ζ, ω, t)]

]]
.

The solutions to the aforementioned equations can be determined using the iterative method of the
TAM technique. So, the initial approximation is:

φ0(ζ, ω, t) = k(ζ, ω, 0) + κ−1
[

1
εuκ[h(ζ, ω, t)]

]
.

Similarly, in the same manner, the remaining iteration can be calculated for n ≥ 1, and each iteration
represents the approximate solution of the problem. After a similar computation, we get

φn(ζ, ω, t) = φ0(ζ, ω, t) − κ−1
[

1
εu

[
κ[Mφn−1(ζ, ω, t) + Nφn−1(ζ, ω, t)]

]]
. (3.2)

When n→ ∞, then φn(ζ, ω, t) converges to the exact solution of Eq (3.1).

4. Convergence of the method

To show the convergence analysis of the (AT )2 method, let us begin by introducing the following
process for our proposed iterative method. We have the terms in these forms [34]

z0 = φ0(ζ, ω, t),
z1 = F [z0],
z2 = F [z0 + z1],
.

.

.

zn+1 = F [z0 + z1 + z2 + · · · + zn].

(4.1)

The operator F can be defined by

F [zk] = S k −

k−1∑
i=0

zi(ζ, ω, t), k = 1, 2 . . . (4.2)

The term S k is the solution that occurred from the (AT )2 method. From the Eq (3.2), we have
φ(ζ, ω, t) = limn→∞ φn(ζ, ω, t) =

∑∞
i=0 zn. So by using Eq (4.2), we can get the following solution in

a series form:

φ(ζ, ω, t) =

∞∑
i=0

zi(ζ, ω, t). (4.3)

According to this procedure for the (AT )2 method, the sufficient conditions for convergence of this
iterative technique are presented. The main results are stated in the following theorems.
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Theorem 4.1. Consider an operator F defined in (4.2) from a Hilbert space J to J. Then, the infinite
series solution computed by the iterative procedure defined in Eq (3.2) converges to the exact solution
of Eq (3.1), if there exists 0 < β < 1 such that ‖F [z0 + z1 + · · · + zi+1]‖ ≤ β ‖F [z0 + z1 + · · · + zi]‖ (such
that ‖zi+1‖ ≤ β ‖zi‖) ∀i = 0, 1, 2, 3 . . . , [34, 35].

This theorem is just a special case of Banach’s fixed point theorem, which is a sufficient condition
to study the convergence of the (AT)2 method.
Proof. Define the sequence {S n}

∞
n=1 as

S 0 = z0

S 1 = z0 + z1,

S 2 = z0 + z1 + z2

.

.

.

S n = z0 + z1 + z2 + · · · + zn,

(4.4)

and we show that {S n}
∞
n=1 is a Cauchy sequence in the Hilbert space J to J. For this purpose, consider

‖S n+1 − S n‖ = ‖zn+1‖ ≤ β ‖zn‖ ≤ β
2 ‖zn−1‖ ≤ · · · ≤ β

n+1 ‖z0‖ .

For every n, l ∈ N, l ≤ n,

‖S n − S l‖ = ‖(S n − S n−1) + (S n−1 − S n−2) + · · · + (S l+1 − S l)‖
≤ ‖(S n − S n−1)‖ + ‖(S n−1 − S n−2)‖ + · · · + ‖(S l+1 − S l)‖
≤βn ‖z0‖ + βn−1 ‖z0‖ + · · · + βl+1 ‖z0‖

=
1 − βn−l

1 − β
βl+1 ‖z0‖ , (4.5)

and since 0 < β < 1, we get

lim
n,l→∞

‖S n − S l‖ = 0.

Therefore, {S n}
∞
n=1 is a Cauchy sequence in the Hilbert space J and it implies that series solution

φ(ζ, ω, t) =
∑∞

i=0 zi(ζ, ω, t) is converged. This completes the proof of Theorem 4.1.

Theorem 4.2. If the series solution φ(ζ, ω, t) =
∑∞

i=0 zi(ζ, ω, t) is convergent, then this series will
represent the exact solution of the current problem [34, 35].

Proof. See [35].

Theorem 4.3. Suppose that the series solution
∑∞

i=0 zi(ζ, ω, t) computed by the iterative procedure
defined in Eq (3.2), converges to the exact solution of Eq (3.1). If the truncated series

∑l
i=0 zi(ζ, ω, t) is

used as an approximation to the solution of the current problem, then the maximum error El(ζ, ω, t) is
estimated by [34, 35].

El(ζ, ω, t) ≤
1

β − 1
βl+1 ‖z0‖ .
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Proof. From inequality (4.5), we have

‖S n − S l‖ ≤
1 − βn−l

1 − β
βl+1 ‖z0‖ ,

for l ≤ n. Now, as n→ ∞, then S n → φ(ζ, ω, t). So,

∥∥∥∥∥∥∥φ(ζ, ω, t) −
l∑

i=0

zi

∥∥∥∥∥∥∥ ≤ 1 − βn−l

1 − β
βl+1 ‖z0‖ .

Also, since 0 < β < 1, we have (1 − βn−l) < 1. Therefore, the above inequality becomes,∥∥∥∥∥∥∥φ(ζ, ω, t) −
l∑

i=0

zi

∥∥∥∥∥∥∥ ≤ 1
1 − β

βl+1 ‖z0‖ .

This completes the proof of Theorem 4.3.
In short, Theorems 4.1 and 4.2 state that the solution obtained by the (AT )2 method computed

by the iterative procedure defined in Eq (3.2) converges to the exact solution under the condition:
There exists 0 < β < 1 such that ‖F [z0 + z1 + . . . zi+1]‖ ≤ β ‖F [z0 + z1 + . . . zi]‖, that is, ‖zi+1‖ ≤

β ‖zi‖) ∀i = 0, 1, 2, . . . . In another meaning, for each i, if we define the parameters,

γk =

 ‖zk+1‖

‖zk‖
, ‖zk‖ , 0

0, ‖zk‖ = 0

then the series solution
∑∞

i=0 zi(ζ, ω, t) converges to the exact solution of (3.1), when 0 ≤

γk < 1,∀k = 0, 1, 2, . . . . Also, as in Theorem 4.3, the maximum truncation error is estimated to
be

∥∥∥φ(ζ, ω, t) −
∑l

i=0 zi

∥∥∥ ≤ 1
1−γγ

l+1 ‖z0‖, where γ = max{γk, k = 0, 1, 2, . . . , n}.

5. Implementation of the method

In this section, we discuss the efficiency of the iterative method by solving some linear and nonlinear
systems of FPDEs.
Example 5.1. Consider the nonlinear system of FPDEs [36],

Du
t φ(ζ, ω, t) − θ(ζ, ω, t)ζρ(ζ, ω, t)ω = 1,

Dv
t θ(ζ, ω, t) − ρ(ζ, ω, t)ζφ(ζ, ω, t)ω = 5, (5.1)

Dq
t ρ(ζ, ω, t) − φ(ζ, ω, t)ζθ(ζ, ω, t)ω = 5,

with the initial conditions

φ(ζ, ω, 0) = ζ + 2ω,
θ(ζ, ω, 0) = ζ − 2ω,
ρ(ζ, ω, 0) = −ζ + 2ω.
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To generate the following outcome, apply the AT to Eq (5.1), and then apply the inverse AT

φ(ζ, ω, t) = ζ + 2ω +
tu

Γ(u + 1)
+ κ−1

[
1
εu [κ[θ(ζ, ω, t)ζρ(ζ, ω, t)ω]]

]
,

θ(ζ, ω, t) = ζ − 2ω +
5tv

Γ(v + 1)
+ κ−1

[
1
εv [κ[ρ(ζ, ω, t)ζφ(ζ, ω, t)ω]]

]
,

ρ(ζ, ω, t) = −ζ + 2ω +
5tq

Γ(q + 1)
+ κ−1

[
1
εq [κ[φ(ζ, ω, t)ζθ(ζ, ω, t)ω]]

]
.

By utilizing the TAM technique, we obtain

φ0(ζ, ω, t) = ζ + 2ω +
tu

Γ(u + 1)
,

θ0(ζ, ω, t) = ζ − 2ω +
5tv

Γ(v + 1)
,

ρ0(ζ, ω, t) = −ζ + 2ω +
5tq

Γ(q + 1)
.

Similarly, in the same manner, the remaining iteration can be calculated for n ≥ 1. Each iteration
represents the approximate solution of the problem.

φn(ζ, ω, t) = ζ + 2ω +
tu

Γ(u + 1)
+ κ−1

[
1
εu [κ[θn−1(ζ, ω, t)ζρn−1(ζ, ω, t)ω]]

]
,

θn(ζ, ω, t) = ζ − 2ω +
5tv

Γ(u + 1)
+ κ−1

[
1
εv [κ[ρn−1(ζ, ω, t)ζφn−1(ζ, ω, t)ω]]

]
,

ρn(ζ, ω, t) = −ζ + 2ω +
5tq

Γ(q + 1)
+ κ−1

[
1
εq [κ[φn−1(ζ, ω, t)ζθn−1(ζ, ω, t)ω]]

]
.

When n→ ∞, then φn(ζ, ω, t), θn(ζ, ω, t), and ρn(ζ, ω, t) converge to the exact solution of Example 5.1.

φ1(ζ, ω, t) = ζ + 2ω +
3tu

Γ(u + 1)
,

θ1(ζ, ω, t) = ζ − 2ω +
3tv

Γ(v + 1)
,

ρ1(ζ, ω, t) = −ζ + 2ω +
3tq

Γ(q + 1)
,

φ2(ζ, ω, t) = 0,
θ2(ζ, ω, t) = 0,
ρ2(ζ, ω, t) = 0,

for u, v, and q = 1. The exact solution of the above system is

φ(ζ, ω, t) = ζ + 2ω + 3t,

θ(ζ, ω, t) = ζ − 2ω + 3t,

ρ(ζ, ω, t) = −ζ + 2ω + 3t.
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Example 5.2. Consider the following system of linear FPDEs, [37],

Du
t φ(ζ, t) − θ(ζ, t)ζ + θ(ζ, t) + φ(ζ, t) = 0,

Dv
t θ(ζ, t) − φ(ζ, t)ζ + θ(ζ, t) + φ(ζ, t) = 0, (5.2)

with the initial conditions,

φ(ζ, 0) = S inh(ζ),
θ(ζ, 0) = Cosh(ζ).

After applying AT and inverse AT, we get

φ(ζ, t) = S inh(ζ) − κ−1
[

1
εu [κ[−θ(ζ, t)ζ + θ(ζ, t) + φ(ζ, t)]]

]
,

θ(ζ, t) = Cosh(ζ) − κ−1
[

1
εv [κ[−φ(ζ, t)ζ + θ(ζ, t) + φ(ζ, t)]]

]
.

According to the TAM technique, the solutions to the above equations can be found using the iterative
procedure

φ0(ζ, t) = S inh(ζ),
θ0(ζ, t) = Cos(ζ).

Likewise, the remaining iteration may be determined for n ≥ 1. Each iteration corresponds to the
approximate solution of the problem, and then the nth approximate solution of the problem is given:

φn(ζ, t) = S inh(ζ) − κ−1
[

1
εu [κ[−θn−1(ζ, t)ζ + θn−1(ζ, t) + φn−1(ζ, t)]]

]
,

θn(ζ, t) = Cosh(ζ) − κ−1
[

1
εv [κ[−φn−1(ζ, t)ζ + θn−1(ζ, t) + φn−1(ζ, t)]]

]
.

When n→ ∞, the nth approximate solutions of Example 5.2 for particular values of u, v = 1, converge
to the exact solution φ(ζ, t) = S inh(ζ − t), θ(ζ, t) = Cosh(ζ − t).

φ1(ζ, t) =S inh(ζ) −
tuCosh(ζ)
Γ(1 + u)

,

θ1(ζ, t) =Cosh(ζ) −
tvS inh(ζ)
Γ(1 + v)

,

φ2(ζ, t) =S inh(ζ) +
tu+vS inh(ζ)
Γ(1 + u + v)

−
tuCosh(ζ)
Γ(1 + u)

+
t2uCosh(ζ)
Γ(1 + 2u)

−
tu+vCosh(ζ)
Γ(1 + u + v)

,

θ2(ζ, t) =Cosh(ζ) +
tu+vCosh(ζ)
Γ(1 + u + v)

−
tvS inh(ζ)
Γ(1 + v)

−
tu+vS inh(ζ)
Γ(1 + u + v)

+
2t2vS inh(ζ)
Γ(1 + 2v)

.

φ3(ζ, t) =S inh(ζ) +
tu+vS inh(ζ)
Γ(1 + u + v)

+
t2u+vS inh(ζ)
Γ(1 + 2u + v)

−
tu+2vS inh(ζ)
Γ(1 + u + 2v)

−
tuCosh(ζ)
Γ(1 + u)

+
t2uCosh(ζ)
Γ(1 + 2u)

−
t3uCosh(ζ)
Γ(1 + 3u)

−
tu+vCosh(ζ)
Γ(1 + u + v)

−
t2u+vCosh(ζ)
Γ(1 + 2u + v)

+
tu+2vCosh(ζ)
Γ(1 + u + 2v)

,
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θ3(ζ, t) =Cosh(ζ) +
tu+vCosh(ζ)
Γ(1 + u + v)

−
t2u+vCosh(ζ)
Γ(1 + 2u + v)

+
tu+2vCosh(ζ)
Γ(1 + u + 2v)

−
tvS inh(ζ)
Γ(u + v)

−
tu+vS inh(ζ)
Γ(1 + u + v)

+
t2u+vS inh(ζ)
q(1 + 2u + v)

+
t2vS inh(ζ)
Γ(1 + 2v)

−
tu+2vS inh(ζ)
Γ(1 + u + 2v)

−
t3vS inh(ζ)
Γ(1 + 3v)

.

Moreover, the remaining iteration for n ≥ 4 can be found in the same manner. So, the 3rd iteration
represents the approximate solutions of Example 5.2.
Example 5.3. Consider the following system of nonlinear FPDEs, [37],

Du
t φ(ζ, ω, t) + θ(ζ, ω, t)ζρ(ζ, ω, t)ω − θ(ζ, ω, t)ωρ(ζ, ω, t)ζ = −φ(ζ, ω, t),

Dv
t θ(ζ, ω, t) + φ(ζ, ω, t)ζρ(ζ, ω, t)ω + φ(ζ, ω, t)ωρ(ζ, ω, t)ζ = θ(ζ, ω, t), (5.3)

Dq
t ρ(ζ, ω, t) + φ(ζ, ω, t)ζθ(ζ, ω, t)ω + θ(ζ, ω, t)ωθ(ζ, ω, t)ζ = ρ(ζ, ω, t),

with the initial conditions

φ(ζ, ω, 0) = eζ+ω,

θ(ζ, ω, 0) = eζ−ω,

ρ(ζ, ω, 0) = e−ζ+ω.

Applying AT, and using the differential property of AT, and also applying inverse AT, we get

φ(ζ, ω, t) = eζ+ω + κ−1
[

1
εu [κ[−φ(ζ, ω, t) − θ(ζ, ω, t)ζρ(ζ, ω, t)ω + θ(ζ, ω, t)ωρ(ζ, ω, t)ζ]]

]
,

θ(ζ, ω, t) = eζ−ω + κ−1
[

1
εv [κ[θ(ζ, ω, t) − φ(ζ, ω, t)ζρ(ζ, ω, t)ω − φ(ζ, ω, t)ωρ(ζ, ω, t)ζ]]

]
,

ρ(ζ, ω, t) = e−ζ+ω + κ−1
[

1
εq [κ[ρ(ζ, ω, t) − φ(ζ, ω, t)ζρ(ζ, ω, t)ω − φ(ζ, ω, t)ωθ(ζ, ω, t)ζ]]

]
.

According to the TAM approach, the solution of the aforementioned system may be obtained by an
iterative procedure:

φ0(ζ, ω, t) = eζ+ω,

θ0(ζ, ω, t) = eζ−ω,

ρ0(ζ, ω, t) = e−ζ+ω.

Similarly, in the same manner, the remaining iteration can be calculated for n ≥ 1. Each iteration
represents the approximate solution of the problem

φn(ζ, ω, t) = eζ−ω+

κ−1
[

1
εuκ[−φn−1(ζ, ω, t) − θn−1(ζ, ω, t)ζρn−1(ζ, ω, t)ω + θn−1(ζ, ω, t)ωρn−1(ζ, ω, t)ζ]

]
,

θn(ζ, ω, t) = eζ−ω+

κ−1
[

1
εvκ[θn−1(ζ, ω, t) − φn−1(ζ, ω, t)ζρn−1(ζ, ω, t)ω − φn−1(ζ, ω, t)ωρn−1(ζ, ω, t)ζ]

]
,
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ρn(ζ, ω, t) = e−ζ+ω+

κ−1
[

1
εqκ[ρn−1(ζ, ω, t) − φn−1(ζ, ω, t)ζρn−1(ζ, ω, t)ω − φn−1(ζ, ω, t)ωθn−1(ζ, ω, t)ζ]

]
.

When n → ∞, the nth iterative approximate solutions of Example 5.3 converge to exact solutions for
the special case of u, v, and q = 1. φ(ζ, ω, t) = eζ+ω−t, θ(ζ, ω, t) = eζ−ω+t, and ρ(ζ, ω, t) = e−ζ+ω+t.

φ1(ζ, ω, t) = eζ+ω −
eζ+ωtu

Γ(1 + u)
,

θ1(ζ, ω, t) = eζ−ω +
eζ−ωtv

Γ(1 + v)
,

ρ1(ζ, ω, t) = e−ζ+ω +
e−ζ+ωtq

Γ(1 + q)
,

φ2(ζ, ω, t) = eζ+ω −
eζ+ωtu

Γ(1 + u)
+

eζ+ωt2u

Γ(1 + 2u)
,

θ2(ζ, ω, t) = eζ−ω +
eζ−ωtv

Γ(1 + v)
+

eζ−ωt2v

Γ(1 + 2v)
,

ρ2(ζ, ω, t) = e−ζ+ω +
e−ζ+ωtq

Γ(1 + q)
+

e−ζ+ωt2q

Γ(1 + 2q)
,

φ3(ζ, ω, t) = eζ+ω −
eζ+ωtu

Γ(1 + u)
+

eζ+ωt2u

Γ(1 + 2u)
−

eζ+ωt3u

Γ(1 + 3u)
,

θ3(ζ, ω, t) = eζ−ω +
eζ−ωtv

Γ(1 + v)
+

eζ−ωt2v

Γ(1 + 2v)
+

eζ−ωt3v

Γ(1 + 3v)
,

ρ3(ζ, ω, t) = e−ζ+ω +
e−ζ+ωtq

Γ(1 + q)
+

e−ζ+ωt2q

q(1 + 2q)
+

e−ζ+ωt3q

Γ(1 + 3q)
.

Furthermore, the remaining iteration for n ≥ 4 may be found in the same way. The 3rd iteration of the
(AT )2 method is used to illustrate the approximate answer of Example 5.3.

Figures 1 and 2 show the exact and estimated solutions of Example 5.2 in 3D graphs. The
data suggests a strong correlation between the estimated approximate solution and the exact answer.
Figures 3 and 4 show the 3D and 2D plots achieved during the 6th iteration of the fractional order
solution in Example 5.2 at various values of u and v. Plot the non-integer curve solutions in the ζ, t
plane for the 6th iterative solution of Example 5.2 at t = 0.25, varying values of u and v. These
examples demonstrate that a non-integer curve in the ζ, t plane will converge to an integer curve.
Figure 5 displays 3D error plots of φ(ζ, t) and θ(ζ, t) for ζ, t values ranging from 0 to 1. Figure 6
exhibits surface plots comparing the exact and 6th iterative estimated solutions of φ(ζ, ω, t) at u, v,
and q = 1, demonstrating the efficiency and convergence of the (AT )2 technique. Increasing the
number of iterations may improve the estimated answer’s accuracy, as seen in these graphs. Figures 6–8
display 3D surface plots comparing the exact and 6th iterative estimated solutions of φ(ζ, ω, t), θ(ζ, ω, t),
ρ(ζ, ω, t) at u, v, and q = 1. Figures 9 and 10 show the 3D and 2D plots achieved during the 6th iteration
of the fractional order solution in Example 5.3 at various values of u, v, and q. Figure 11 shows the 3D
error plot of Example 5.3. Itillustrates the efficiency and convergence of the (AT )2 approach. Table 1
displays the AT of some simple functions. The point-wise error between the analytical solution and
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the 6th iteration calculated for Examples 5.2 and 5.3 at t = 0.2 is displayed in Tables 2 and 3. A
comparison with the solution derived using the HAM is also provided. Table 4 shows some important
abbreviations which are used in this article.

(a) 3D Plot of exact solution (b) 3D approximate plot for n = 6

Figure 1. Exact and approximate solution of φ(ζ, t) by (AT )2 method.

(a) 3D Plot of exact solution (b) 3D approximate plot for n = 6

Figure 2. Exact and approximate solution of θ(ζ, t) by (AT )2 method.
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(a) 3D graph of φ(ζ, t) at different values of
u and v for n = 6

(b) 3D graph of θ(ζ, t) at different values of
u and v for n = 6

Figure 3. The non-integer 3D plots of the 6th iterative estimated solution of Example 5.2.

(a) 2D graph of φ(ζ) at different values of
u and v for n = 6

(b) 2D graph of θ(ζ) at different values of
u and v for n = 6

Figure 4. The non-integer curve solutions in ζ, t plane of the 6th iterative solution of
Example 5.2 at t=0.25 for different values of u and v. These also illustrate that a non-integer
curve in the ζ, t plane converges to an integer curve.
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(a) Error plot of φ(ζ, t) for n = 6 (b) Error plot of θ(ζ, t) for n = 6

Figure 5. The 3D error plots of φ(ζ, t), θ(ζ, t) and when ζ, t ∈ [0, 1] for Example 5.2.

(a) 3D Plot of exact solution (b) 3D approximate plot for n = 6

Figure 6. The 3D surface plots of exact and 6th iterative estimated solutions of φ(ζ, ω, t) at
u, v, and q = 1, which also shows the efficiency and convergence of the (AT )2 method.
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(a) 3D Plot of exact solution (b) 3D approximate plot for n = 6

Figure 7. The 3D surface plots of exact and 6th iterative estimated solutions of θ(ζ, ω, t) at u,
v, and q = 1, which also shows the efficiency and convergence of the (AT )2 method.

(a) 3D Plot of exact solution (b) 3D approximate plot for n = 6

Figure 8. The 3D surface plots of exact and 6th iterative estimated solutions of ρ(ζ, ω, t) at u,
v, and q = 1, which also shows the efficiency and convergence of the (AT )2 method.
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(a) 3D graph of φ(ζ, t) at different values of
u for n = 6

(b) 3D graph of θ(ζ, t) at different values of
v for n = 6

(c) 3D graph of ρ(ζ, t) at different values of
q for n = 6

Figure 9. The non-integer order surface plots of the 6th iterative estimated solution of
Example 5.3 at different values of u, v, and q.
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(a) 2D graph of φ(ζ) at different values of
u for n = 6

(b) 2D graph of θ(ζ) at different values of
v for n = 6

(c) 2D graph of ρ(ζ) at different values of q for n = 6

Figure 10. The non-integer order solutions in ζ t plane of the 6th iterative approximate
solution of Example 5.3, at t = 0.25 for different values u, v, and q. These also illustrate that
a non-integer curve in the ζ, t plane converges to an integer curve.
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(a) Error plot of φ(ζ, t) for n = 6 (b) Error plot of θ(ζ, t) for n = 6

(c) Error plot of ρ(ζ, t) for n = 6

Figure 11. The 3D error plots of Example 5.3.

Table 2. The point-wise error of the 6th iterative estimated and exact solution of Example 5.2
at t = 0.2 also shows the comparison with the solution obtained by the HAM [38].

ζ φ(ζ, t) HAM [38] θ(ζ, t) HAM [38]
0.0 2.5410 × 10−9 1.21207 × 10−8 6.3520 × 10−11 8.89524 × 10−8

0.1 2.5474 × 10−9 2.18216 × 10−8 1.9069 × 10−10 8.91432 × 10−8

0.2 2.5793 × 10−9 5.59822 × 10−8 4.4681 × 10−10 9.02258 × 10−8

0.3 2.6369 × 10−9 9.07031 × 10−8 7.0741 × 10−10 9.22116 × 10−8

0.4 2.7210 × 10−9 1.26332 × 10−8 9.7509 × 10−10 9.51202 × 10−8

0.5 2.832 × 10−9 1.63225 × 10−8 1.2525 × 10−9 9.89809 × 10−8

0.6 2.9719 × 10−9 2.01752 × 10−7 1.5425 × 10−9 1.03832 × 10−7

0.7 3.1413 × 10−9 2.42298 × 10−7 1.8474 × 10−9 1.09723 × 10−7

0.8 3.3421 × 10−9 2.85268 × 10−7 2.1718 × 10−9 1.16711 × 10−7

0.9 3.5764 × 10−9 3.31094 × 10−7 2.5174 × 10−9 1.24868 × 10−7

1.0 3.8464 × 10−9 3.80234 × 10−7 2.8882 × 10−9 1.34274 × 10−7
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Table 3. The point-wise error of the 6th iterative estimated and exact solution of Example 5.3
at t = 0.2 also shows the comparison with the solution obtained by the HAM [38].

ζ φ(ζ, t) HAM [38] θ(ζ, t) HAM [38] ρ(ζ, t) HAM [38]
0.1 7.44 × 10−9 2.59 × 10−7 1.05 × 10−10 6.40 × 10−9 2.25 × 10−7 2.48 × 10−7

0.2 8.22 × 10−9 2.86 × 10−7 1.17 × 10−9 3.71 × 10−8 5.79 × 10−9 2.03 × 10−7

0.3 9.09 × 10−9 3.17 × 10−7 1.29 × 10−9 4.11 × 10−8 5.24 × 10−9 1.84 × 10−7

0.4 1.00 × 10−8 3.50 × 10−7 1.42 × 10−9 4.54 × 10−8 4.74 × 10−9 1.66 × 10−7

0.5 1.11 × 10−8 3.87 × 10−7 1.57 × 10−9 5.02 × 10−8 4.29 × 10−9 1.50 × 10−7

0.6 1.22 × 10−8 4.27 × 10−7 1.74 × 10−9 5.54 × 10−8 3.88 × 10−9 1.36 × 10−7

0.7 1.35 × 10−8 4.73 × 10−7 1.92 × 10−9 6.13 × 10−8 3.51 × 10−9 1.23 × 10−7

0.8 1.49 × 10−8 5.22 × 10−7 2.13 × 10−9 6.77 × 10−8 3.18 × 10−9 1.11 × 10−7

0.9 1.65 × 10−8 5.77 × 10−7 2.35 × 10−9 7.49 × 10−8 2.87 × 10−9 1.01 × 10−7

1.0 1.83 × 10−8 6.38 × 10−7 2.60 × 10−9 9.14 × 10−8 8.27 × 10−8 2.6 × 10−9

Table 4. Some important abbreviations.

(AT )2 method Aboodh Tamimi Ansari transform method
FPDE Fractional Partial Differential Equation
TAM Tamimi and Ansai method
HPM Homotopy Perturbation method

LT Laplace transform
AT Aboodh transform

HAM Homotopy Analysis method

6. Conclusions

The convergence and efficiency of the new iterative technique Aboodh Tamimi Ansari Transform
Method ((AT )2 method) is shown for solving three systems of FPDEs, and the results are shown in
the form of tables and graphs. Our findings demonstrate that this approach effectively decreases the
computing workload in comparison to traditional methods while still preserving the precision of the
numerical outcomes. Furthermore, it is evident that this method possesses a distinct advantage over
the Adomian decomposition and homotopy analysis approaches in the context of solving nonlinear
problems. This advantage stems from the fact that the Aboodh Tamimi Ansari Transform Method
does not require the preliminary computation of any polynomials. Therefore, it can be inferred that
the (AT )2 method is a valuable enhancement to the current numerical methodologies and holds the
potential for extensive utilization.
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