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N , respectively, where A,B are unitals R−algebras. The R−algebra G = G(A,M,N ,B) is a
generalized matrix algebra described by the Morita context (A,B,M,N , ζMN , χNM). The present
study investigated the structure of Lie (Jordan) σ−centralizers at the zero products on order two
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and necessary conditions under which a Lie σ−centralizer at the zero product is proper on an order
two generalized matrix algebra.
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1. Brief historical development and motivation

Since the mid−20th century, the researchers have shifted their interest from classical matrix
algebra to more general algebraic structure. They started exploring the properties of matrices in
terms of general algebraic structures such as nonassociative algebras and rings. This resulted in the
establishment of generalized matrix algebras with a binary operation (zero product) instead of the
usual matrix multiplication. The study of Lie (Jordan) centralizers at zero products in generalized
matrix algebras has its roots in the broader field of matrix theory and algebraic structures, as well as
Lie algebras, operator theory, and nonassociative algebras.

The zero product operation introduces new challenges in understanding matrix behavior, leading the
researchers to extend the concept of Lie (Jordan) centralizers to generalized matrix algebras, operator
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algebras, and alternative algebras. The motivation behind the study of Lie (Jordan) centralizers at zero
products reflects the broader evolution of algebraic structures and their applications. The exploration
of these centralizers has contributed to a deeper understanding of generalized matrix algebra. The
analysis of centralizers and related concepts is essential for knowing the structure and properties of
noncommutative multiplication, while Lie (Jordan) centralizers play a role in characterizing certain
types of sub-algebras and their properties (see [22, 23, 28, 29]). The Lie (Jordan) centralizer at zero
products provides a framework for studying the algebraic properties and structures of matrices in
generalized matrix algebras (see [16–19]).

Numerous researchers have been diligently investigating over the past few years the behavior of Lie
(Jordan) centralizers for matrix algebras, triangular rings, nest algebras, and alternating algebras (see
[1, 11–14, 26]). In 2021, Jabeen [10] investigated Lie centralizers on generalized matrix algebra and
obtained the necessary and sufficient criteria for suitable Lie centralizers. Fošner and Xing [8] explored
the relevancy of Lie centralizers on nest algebras and triangular rings. Liu [21] introduced nonlinear
Lie centralizers for a particular class of generalized matrix algebra. Recently, many algebraists [4,5,25]
examined certain specific Lie centralizers/σ−centralizers on generalized matrix algebras and triangular
algebras. In 2023, Fadaee et al. [7] derived Jabeen’s ideas to Lie triple centralizers on generalized
matrix algebras. In 2023, Ashraf and Ansari [2] described Lee (Jordan) σ−centralizers of generalized
matrix algebra. They demonstrated that each Lie σ−centralizer of a generalized matrix algebra
can be expressed as a sum of centralizers and center-valued mappings under particular situations.
Furthermore, in 2023, Ashraf and Ansari [3] argued that any Jordan σ−centralizer of a triangular
algebra is a centralizer.

Motivated by recent works, the key objective of this manuscript is to investigate the structure of Lie
(Jordan) σ−centralizers on generalized matrix algebra at zero products and to present the relationship
between Lie (Jordan) σ−centralizers and generalized matrix algebra’s centralizers.

2. Key content and notations

Let’s keep in mind that R be a unital commutative ring, A be R−algebra and Z(A) be the center
of A. Readers are referred to basic definitions and related characteristics [6, 15, 20]. Let us review
numerous definitions and properties utilized throughout the article. A Morita context consists of
two R−algebras A and B, two bimodules AMB and BNA, and two bimodule homomorphisms
called the pairings ζMN : M

⊗
B N → A and χNM : N

⊗
A M → B satisfying the following

commutative diagrams:

M ⊗
B

N ⊗
A

M A ⊗
A

M

M ⊗
B

B M

ζMN⊗IM

IM⊗χNM �

�

,

and
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N ⊗
A

M ⊗
B

N B ⊗
B

N

N ⊗
A

A N

χNM⊗IN

IN⊗ζMN �

�

.

Let’s call this Morita context (A,B,M,N , ζMN , χNM). For additional information on Morita
contexts, look through [24]. If (A,B,M,N , ζMN , χNM) is a Morita context, then the collection(

A M
N B

)
=

{ (
a m
n b

)
m ∈M, n ∈ N , a ∈ A, b ∈ B

}
is an algebra when standard matrix operations are applied. An R−algebra of this type is known as a
generalized matrix algebra of order two, and it is represented by G = G(A,M,N ,B). G is referred
to be a trivial generalized matrix algebra if ζMN and χNM are zero. Such a form of the algebra was
initially proposed by Sands in [27]. Whenever M = 0 or N = 0, G immediately reduces to the
identified triangular algebra. Generalized matrix algebras are isomorphic to all associative algebras
with nontrivial idempotents. Natural generalized matrix algebra, semi-hereditary algebra, complete
matrix algebra, and nested algebra are some typical examples of generalized matrix algebra [8]. A
generalized matrix algebra is a unit algebra A over all matrices of rank n × n [9]. In case N = 0,

G is referred to as triangular algebra and denoted by Tri(A,M,B) =

[
A M
0 B

]
. Additionally, G =

G(A,M,N ,B) has unity if and only if R−algebra of A and B has unity 1A and 1B, respectively.
Therefore, (A,B)−bimodule M is unital such that 1Am = m = m1B for every m ∈M, and in the same
manner, (B,A)−bimodule N is also unital [9]. Thus, the identity of generalized matrix algebra G is

I=
[
1A 0
0 1B

]
. On the other hand, it is easy to show that the triangular algebra is unital if and only if

R−algebra of A and B are unital as well as the (A,B)−bimodule M is unital [9]. The center of G

is Z( G)=
{[

a 0
0 b

]∣∣∣∣∣∣ na = bn, am = mb, for every a ∈ Z(A), b ∈ Z(B),m ∈M, n ∈ N

}
, where G is

of order two.

Remark 2.1. Consider two projections πB : G → B and πA : G → A, which is defined as

πB

([
a m
n b

])
= b and πA

([
a m
n b

])
= a. Additionally, πB(Z( G)) ⊆ Z(B), πA(Z( G)) ⊆ Z(A), and

there is one, and only one, algebraic isomorphism τ : πA(Z( G)) → πB(Z( G)) in which am = mτ(a),
na = τ(a)n for every a ∈ πA(Z( G)),m ∈M, and n ∈ N .

3. Lie (Jordan) σ−centralizers at the zero products

Theorem 3.1. Suppose Φc : G → G is a linear mapping satisfying Φc(xy) = Φc(x)σ(y) = σ(x)Φc(y)
for every x, y ∈ G, then

Φc

([
a m
n b

])
=

[
Θ1(a) Θ1(a)m0 +f2(m) − m0U4(b)

n0Θ1(a) + V3(n) − U4(b)n0 U4(b)

]
,
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where Θ1 : A → A, f2 : M → M, U4 : B → B, and V3 : N → N are linear mappings such that
Θ1(mn) = f2(m)ν(n) and U4(nm) = V3(n)µ(m) are satisfied.

Proof. Assume the map Φc on G takes the form

Φc

([
a m
n b

])
=

[
Θ1(a) + Θ2(m) + Θ3(n) + Θ4(b) f1(a) +f2(m) +f3(n) +f4(b)
V1(a) + V2(m) + V3(n) + V4(b) U1(a) + U2(m) + U3(n) + U4(b)

]
,

where f1 : A → M, f2 : M → M, f3 : N → M, f4 : B → M, Θ1 : A → A, Θ2 : M →

A, Θ3 : N → A, Θ4 : B → A, V1 : A → N , V2 : M → N , V3 : N → N , V4 : B → N , and
U1 : A → B, U2 : M → B, U3 : N → B, U4 : B→ B are all linear mappings with automorphism σ.

If a and b are in A and B, respectively, then
[
a 0
0 0

] [
0 0
0 b

]
= 0. Additonally,

0 = Φc

([
a 0
0 0

])
σ

([
0 0
0 b

])
= σ

([
a 0
0 0

])
Φc

([
0 0
0 b

])
. (3.1)

This equation implies

0 =

[
Θ1(a) f1(a)
V1(a) U1(a)

] [
0 −m0δ(b)

−δ(b)n0 δ(b)

]
=

[
−f1(a)δ(b)n0 −Θ1(a)m0δ(b) +f1(a)δ(b)
−U1(a)δ(b)n0 −V1(a)m0δ(b) + U1(a)δ(b)

]
,

and, hence,

0 = −f1(a)δ(b)n0,

0 = −Θ1(a)m0δ(b) +f1(a)δ(b),
0 = −U1(a)δ(b)n0,

0 = −V1(a)m0δ(b) + U1(a)δ(b).

If we set b = 1B, then f1(a)n0 = 0, f1(a) = Θ1(a)m0, and U1(a) = V1(a)m0. Again by (3.1), we have

0 =

[
γ(a) γ(a)m0

n0γ(a) 0

] [
Θ4(b) f4(b)
V4(b) U4(b)

]
=

[
γ(a)Θ4(b) + γ(a)m0V4(b) γ(a)f4(b) + γ(a)m0U4(b)

n0γ(a)Θ4(b) n0γ(a)f4(b)

]
.

Now taking a = 1A in the above, we obtain Θ4(b) = −m0V4(b), f4(b) = −m0U4(b), and n0f4(b) = 0.
Again, applying a similar calculative procedure with

0 = Φc

([
0 0
0 b

])
σ

([
a 0
0 0

])
= σ

([
0 0
0 b

])
Φc

([
a 0
0 0

])
, (3.2)

we get Θ4(b) = −f4(b)n0, V4(b) = −U4(b)n0, V4(b)m0 = 0, m0V1(a) = 0, V1(a) = n0Θ1(a), and
U1(a) = −n0f1(a). Therefore, by (3.1), (3.2), and [4, Proposition 2.1], we get U1(a) = 0 and Θ4(b) = 0.
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If a1, a2 ∈ A with a1a2 = 0, we have
[
a1 0
0 0

] [
a2 0
0 0

]
= 0. Thus,

0 = Φc

([
a1 0
0 0

])
σ

([
a2 0
0 0

])
= σ

([
a1 0
0 0

])
Φc

([
a2 0
0 0

])
. (3.3)

Then, Θ1(a1a2) = 0 = Θ1(a1)γ(a2) + f1(a1)n0γ(a2) = γ(a1)Θ1(a2) + γ(a1)m0V1(a2). Hence, by (3.1)
and (3.2), we have Θ1(a1a2) = 0 = Θ1(a1)γ(a2) = γ(a1)Θ1(a2). Therefore, Θ1 is a σ−centralizer at the
zero product on A.

Similarly, if b1, b2 ∈ B with b1b2 = 0, we have
[
0 0
0 b1

] [
0 0
0 b2

]
= 0. Then, we get U4(b1b2) = 0 =

−V4(b1)m0δ(b2) + U4(b1)δ(b2) = −δ(b1)n0f4(b2) + δ(b1) + δ(b1)U4. Hence, by (3.1) and (3.2), we have
U4(b1b2) = 0 = U4(b1)δ(b2) = δ(b1)+δ(b1)U4. Therefore, U4 is a σ−centralizer at the zero product on B.

If m and a are in M and A, respectively, then
[
0 m
0 0

] [
a 0
0 0

]
= 0. Furthermore,

0 = Φc

([
0 m
0 0

])
σ

([
a 0
0 0

])
= σ

([
0 m
0 0

])
Φc

([
a 0
0 0

])
. (3.4)

This leads to

0 = Θ2(m)γ(a) +f2(m)n0γ(a) = µ(m)V1(a),
0 = Θ2(m)γ(a)m0 = µ(m)U1(a),
0 = V2(m)γ(a) + U2(m)n0γ(a),
0 = V2(m)γ(a)m0.

Put a = 1A, and we have Θ2(m) = −f2(m)n0 and V2(m) = −U2(m)n0. Similarly,
[
0 0
0 b

] [
0 m
0 0

]
= 0.

Then,

0 = Φc

([
0 0
0 b

])
σ

([
0 m
0 0

])
= σ

([
0 0
0 b

])
Φc

([
0 m
0 0

])
. (3.5)

From the above, we find that V2(m) = n0δ2(m) and U2(m) = n0f2(m).

We recognize that
[
−1A m

0 0

] [
0 m
0 1B

]
= 0 for every m ∈M. Therefore,

0 = Φc

([
−1A m

0 0

])
σ

([
0 m
0 1B

])
= σ

([
−1A m

0 0

])
Φc

([
0 m
0 1B

])
. (3.6)

The above equation implies that

0 = Φc

([
−1A m

0 0

])
σ

([
0 m
0 1B

])
=

[
−Θ1(1A) + Θ2(m) −f1(1A) +f2(m)
−V1(1A) + V2(m) U2(m)

] [
0 −m0 + µ(m)
−n0 −1B

]
.
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Hence, we get f2(m)n0 = 0, f2(m) = Θ1(1A)µ(m) − Θ2(m)µ(m), and U2(m)n0 = 0. By (3.4) and
concerning that m ∈M, we get Θ2(m) = 0 and V2(m) = 0. Also since we know Θ1 is a σ−centralizer at
the zero product on A, then f2(am) = Θ1(1A)µ(am) = Θ1(1A)γ(a)µ(m) = Θ1(a)µ(m) for any m ∈M
with a = 0. Therefore, M is a left faithful A−module.

Again by (3.6), we have 0 =

[
−1A −m0 + µ(m)
−n0 0

] [
0 f2(m) +f4(B)

V4(1B) U2(m) + U4(1B)

]
. Then, we find

f2(m) = µ(m)U4(1B) and n0f2(m) = 0. Hence, by (3.4) and concerning that m ∈ M, we have
U2(m) = 0. Also, by (3.3) we have that U4 is a σ−centralizer at the zero product on B, then
f2(mb) = µ(mb)U4(1B) = µ(m)δ(b)U4(1B) = µ(m)U4(b) for every m ∈ M, where b = 0 implies

that M is a right faithful B−module. Since
[
a 0
0 0

] [
0 0
n 0

]
= 0, for any a ∈ A and n ∈ N , we have

0 = Φc

([
a 0
0 0

])
σ

([
0 0
n 0

])
= σ

([
a 0
0 0

])
Φc

([
0 0
n 0

])
. (3.7)

By (3.5), we deduce that

0 =

[
f1(a)ν(n) 0
U1(a)ν(n) 0

]
=

[
γ(a)Θ3(n) + γ(a)m0V3(n) γ(a)f3(n) + γ(a)m0U3(n)

n0γ(a)Θ3(n) n0γ(a)f3(n)

]
.

So, we get

0 = f1(a)ν(n) = γ(a)Θ3(n) + γ(a)m0V3(n),
0 = γ(a)f3(n) + γ(a)m0U3(n),
0 = U1(a)ν(n) = n0γ(a)Θ3(n),
0 = n0γ(a)f3(n).

Put a = 1A, and we find that Θ3(n) = −m0V3(n) and f3(n) = −m0U3(n). Similarly,
[
0 0
n 0

] [
0 0
0 b

]
= 0,

for every n ∈ N and b ∈ B, we have

0 = Φc

([
0 0
n 0

])
σ

([
0 0
0 b

])
= σ

([
0 0
n 0

])
Φc

([
0 0
0 b

])
. (3.8)

Hence, we find that f3(n) = Θ3(n)m0 and U3(n) = V3(n)m0. For any n ∈ N ,
[
0 0
n 1B

] [
−1A 0

n 0

]
= 0,

we have

0 = Φc

([
0 0
n 1B

])
σ

([
−1A 0

n 0

])
= σ

([
0 0
n 1B

])
Φc

([
−1A 0

n 0

])
. (3.9)

Therefore, for any n ∈ N , we find these results: Θ3(n)m0 = 0, V3(n)m0 = 0, m0V3(n) = 0, V3(n) =

U4(1B)ν(n), and V3(n) = ν(n)Θ1(1A). Hence, from (3.7) and (3.8), we get f3(n) = 0, U3(n) = 0, and
Θ3(n) = 0. Also, in the case of Θ1 and U4 are σ−centralizers on A and B, respectively, we have the
(B,A)−bimodule N as a faithful (B,A)−bimodule.

If m and n are in M and N , respectively, then
[
mn m
0 b

] [
−1 0
n 0

]
= 0. Then,

0 = Φc

([
mn m
0 0

])
σ

([
−1 0
n 0

])
= σ

([
mn m
0 0

])
Φc

([
−1 0
n 0

])
. (3.10)
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By (3.10), we obtain

0 =

[
Θ1(mn) f1(mn) +f2(m)
V1(mn) 0

] [
−1 −m0

−n0 + ν(n) 0

]
=

[
γ(mn) γ(mn)m0 + µ(m)

n0γ(mn) 0

] [
Θ1(−1) 1(−1)

V1(−1) + V3(n) 0

]
.

This equation leads to Θ1(mn) = f2(m)ν(n). Similarly, with
[
0 0
n nm

] [
0 m
0 −1

]
= 0, we

have V3(n)µ(m) = U4(nm). �

Theorem 3.2. Suppose G is a generalized matrix algebra of 2−torsion free and a linear mapping ΦJc:
G→ G satisfies Φc(x ◦ y) = Φc(x) ◦ σ(y) = σ(x) ◦ Φc(y) for every x, y ∈ G, such that

ΦJc

([
a m
n b

])
=

[
ρ1(a) ρ1(a)m0 + r2(m) − m0g4(b)

n0ρ1(a) + s3(n) − g4(b)n0 g4(b)

]
,

where ρ1 : A → A, r2 : M →M, s3 : N → N , and g4 : B→ B are linear mappings that hold

(i) r2(am) = γ(a)r2(m) = ρ1(a)µ(m) and r2(mb) = r2(m)δ(b) = µ(m)g4(b).
(ii) s3(na) = s3(n)γ(a) = ν(n)ρ1(a) and s3(bn) = δ(b)s3(n) = g4(b)ν(n).

(iii) ρ1(mn) = µ(m)s3(n) = r2(m)ν(n) and g4(nm) = s3(n)µ(m) = ν(n)r2(m).

Proof. Assume the map ΦJc on G takes the form

ΦJc

([
a m
n b

])
=

[
ρ1(a) + ρ2(m) + ρ3(n) + ρ4(b) r1(a) + r2(m) + r3(n) + r4(b)
s1(a) + s2(m) + s3(n) + s4(b) g1(a) + g2(m) + g3(n) + g4(b)

]
,

where ρ1 : A → A, ρ2 : M → A, ρ3 : N → A, ρ4 : B → A, r1 : A → M, r2 : M →

M, r3 : N → M, r4 : B → M, s1 : A → N , s2 : M → N , s3 : N → N , s4 : B → N , and
g1 : A → B, g2 : M → B, g3 : N → B, g4 : B→ B are all linear mappings with automorphism σ.

If a and b are in A and B, respectively, then
[
a 0
0 0

] [
0 0
0 b

]
= 0. Moreover,

0 = ΦJc

([
a 0
0 0

])
◦ σ

([
0 0
0 b

])
= σ

([
a 0
0 0

])
◦ ΦJc

([
0 0
0 b

])
. (3.11)

This implies that

0 =

[
ρ1(a) r1(a)
s1(a) g1(a)

]
◦

[
0 −m0δ(b)

−δ(b)n0 δ(b)

]
,

which is rewritten as[
−r1(a)δ(b)n0 − m0δ(b)s1(a) −ρ1(a)m0δ(b) + r1(a)δ(b) − m0δ(b)g1(a)

−g1(a)δ(b)n0 − δ(b)n0ρ1(a) + δ(b)s1(a) −s1(a)m0δ(b) + g1(a)δ(b) − δ(b)n0r1(a) + δ(b)g1(a)

]
,

and gives

0 = −r1(a)δ(b)n0 − m0δ(b)s1(a),

AIMS Mathematics Volume 9, Issue 10, 26631–26648.
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0 = −ρ1(a)m0δ(b) + r1(a)δ(b) − m0δ(b)g1(a),
0 = −g1(a)δ(b)n0 − δ(b)n0ρ1(a) + δ(b)s1(a),
0 = −s1(a)m0δ(b) + g1(a)δ(b) − δ(b)n0r1(a) + δ(b)g1(a).

If we set b = 1B, then r1(a) = ρ1(a)m0, s1(a) = n0ρ1(a), and g1(a) = 0. Again with (3.9), the
following matrix[
γ(a)ρ4(b) + γ(a)m0s4(b) + ρ4(b)γ(a) + r4(b)n0γ(a) γ(a)r4(b) + γ(a)m0g4(b) + ρ4(b)γ(a)m0

n0γ(a)ρ4(b) + s4(b)γ(a) + g4(b)n0γ(a) n0γ(a)r4(b) + s4(b)γ(a)m0

]
,

is equal to zero. Evaluating with a = 1A, we obtain ρ4(b) = 0, r4(b) = −m0g4(b), and s4(b) = −g4(b)n0.

If m and a are in M and A, respectively, then
[
0 m
0 0

] [
a 0
0 0

]
= 0. Therefore,

ΦJc

([
0 am
0 0

])
= ΦJc

([
0 m
0 0

])
◦ σ

([
a 0
0 0

])
= σ

([
0 m
0 0

])
◦ ΦJc

([
a 0
0 0

])
. (3.12)

This implies that[
ρ2(am) r2(am)
s2(am) g2(am)

]
=

[
ρ2(m) r2(m)
s2(m) g2(m)

]
◦

[
γ(a) γ(a)m0

n0γ(a) 0

]
=

[
0 µ(m)
0 0

]
◦

[
ρ1(a) r1(a)
s1(a) g1(a)

]
,

and, hence,

ρ2(am) = ρ2(m)γ(a) + r2(m)n0γ(a) + γ(a)ρ2(m) + γ(a)m0s2(m) = µ(m)s1(a),
r2(am) = ρ2(m)γ(a)m0 + γ(a)r2(m) + γ(a)m0g2(m) = ρ1(a)µ(m) + µ(m)g1(a),
s2(am) = s2(m)γ(a) + g2(m)n0γ(a) + n0γ(a)ρ2(m) = 0,
g2(am) = s2(m)γ(a)m0 + n0γ(a)r2(m) = s1(a)µ(m).

On taking a = 1A in the above, we see that ρ2(m) = 0, s2(m) = 0, g2(m) = 0, and r2(am) = γ(a)r2(m).

Similar with
[
0 0
0 b

] [
0 m
0 0

]
= 0, we find that r2(mb) = ρ4(b)µ(m) + µ(m)g4(b) = r2(m)δ(b).

Since for any a ∈ A and n ∈ N ,
[
a 0
0 0

] [
0 0
n 0

]
= 0, we obtain

ΦJc

([
0 0

na 0

])
= ΦJc

([
a 0
0 0

])
◦ σ

([
0 0
n 0

])
= σ

([
a 0
0 0

])
◦ ΦJc

([
0 0
n 0

])
. (3.13)

By (3.12), we deduce that[
ρ3(na) r3(na)
s3(na) g3(na)

]
=

[
r1(a)ν(n) 0

g1(a)ν(n) + ν(n)ρ1(a) ν(n)r1(a)

]
,
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which is rewritten as[
γ(a)ρ3(n) + γ(a)m0s3(n) + ρ3(n)γ(a) + r3(n)n0γ(a) γ(a)r3(n) + γ(a)m0g3(n) + ρ3(n)γ(a)m0

n0γ(a)ρ3(n) + s3(n)γ(a) + g3(n)n0γ(a) n0γ(a)r3(n) + s3(n)γ(a)m0

]
.

This leads to

ρ3(na) = r1(a)ν(n) = γ(a)ρ3(n) + γ(a)m0s3(n) + ρ3(n)γ(a) + r3(n)n0γ(a),
r3(na) = 0 = γ(a)r3(n) + γ(a)m0g3(n) + ρ3(n)γ(a)m0,

s3(na) = g1(a)ν(n) + ν(n)ρ1(a) = n0γ(a)ρ3(n) + s3(n)γ(a) + g3(n)n0γ(a),
g3(na) = ν(n)r1(a) = n0γ(a)r3(n) + s3(n)γ(a)m0.

Set a = 1A, and we find ρ3(n) = 0, r3(n) = 0, g3(n) = 0, and s3(na) = g1(a)ν(n) + ν(n)ρ1(a) =

s3(n)γ(a). Follow the similar steps with
[
0 0
n 0

] [
0 0
0 b

]
= 0, and we get s3(bn) = δ(b)s3(n) = ν(n)ρ4(b)+

g4(b)ν(n).

For any m ∈M and n ∈ N ,

[
mn m
0 0

] [
−1 0
n 0

]
= 0, and we have

ΦJc

([
−mn −m
nmn nm

])
= ΦJc

([
mn m
0 0

])
◦ σ

([
−1 0
n 0

])
= σ

([
mn m
0 0

])
◦ ΦJc

([
−1 0
n 0

])
. (3.14)

By (3.14), we obtain[
−ρ1(mn) − ρ2(m) + ρ3(nmn) + ρ4(nm) −r1(mn) − r2(m) + r3(nmn) + r4(nm)
−s1(mn) − s2(m) + s3(nmn) + s4(nm) −g1(mn) − g2(m) + g3(nmn) + g4(nm)

]
=

[
ρ1(mn) + ρ2(m) r1(mn) + r2(m)
s1(mn) + s2(m) g1(mn) + g2(m)

]
◦

[
−1 −m0

−n0 + ν(n) 0

]
.

This equation gives ρ1(mn) = r2(m)ν(n) and g4(nm) = ν(n)r2(m). Similarly for
[
0 0
n nm

] [
0 m
0 −1

]
= 0,

we have ρ1(mn) = µ(m)s3(n) and g4(nm) = s3(n)µ(m). �

From the above two results it is easy to conclude that:

Theorem 3.3. Every Jordan σ−centralizer is a σ−centralizer at zero products on generalized
matrix algebras.

Theorem 3.4. Suppose Φlc : G → G is a linear mapping satisfying Φlc([x, y]) = [Φlc(x), σ(y)] =

[σ(x),Φlc(y)], then

Φlc

([
a m
n b

])
=

[
ρ1(a) + ρ4(b) r1(a) + r2(m) + r4(b)

s1(a) + s3(n) + s4(b) g1(a) + g4(b)

]
,

where ρ1 : A → A, ρ4 : B → A, r1 : A → M. r2 : M → M, r4 : B → M, s1 : A → N , s3 :
N → N , s4 : B→ N , g1 : A → B and g4 : B→ B are linear mappings such that
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(i) r1(a) = ρ1(a)m0 − m0g1(a) and r4(b) = −m0g4(b) + ρ4(b)m0.
(ii) s1(a) = −g1(a)n0 + n0ρ1(a) and s4(b) = n0ρ4(b) − g4(b)n0.

(iii) r2(am) = γ(a)r2(m) = ρ1(a)µ(m) − µ(m)g1(a) and r2(mb) = µ(m)g4(b) − ρ4(b)µ(m) = r2(m)δ(b).
(iv) s3(na) = ν(n)ρ1(a) − g1(a)ν(n) = s3(n)γ(a) and s3(bn) = δ(b)s3(n) = g4(b)ν(n) − ν(n)ρ4(b).
(v) ρ1(mn) − ρ4(nm) = µ(m)s3(n) = r2(m)ν(n) and g1(mn) − g4(nm) = −s3(n)µ(m) = −ν(n)r2(m).

Proof. Assume the map Φc on G takes the form

Φlc

([
a m
n b

])
=

[
ρ1(a) + ρ2(m) + ρ3(n) + ρ4(b) r1(a) + r2(m) + r3(n) + r4(b)
s1(a) + s2(m) + s3(n) + s4(b) g1(a) + g2(m) + g3(n) + g4(b)

]
,

where ρ1 : A → A, ρ2 : M → A, ρ3 : N → A, ρ4 : B → A, r1 : A → M, r2 : M →

M, r3 : N → M, r4 : B → M, s1 : A → N , s2 : M → N , s3 : N → N , s4 : B → N , and
g1 : A → B, g2 : M → B, g3 : N → B, g4 : B→ B are all linear mappings with automorphism σ.

If a and b are in A and B, respectively, then
[
a 0
0 0

] [
0 0
0 b

]
= 0. Therefore,

0 =

[
Φlc

([
a 0
0 0

])
, σ

([
0 0
0 b

]) ]
=

[
σ

([
a 0
0 0

])
,Φlc

([
0 0
0 b

]) ]
. (3.15)

This equation implies

0 =

[ [
ρ1(a) r1(a)
s1(a) g1(a)

]
,

[
0 −m0δ(b)

−δ(b)n0 δ(b)

] ]
,

which is rewritten as[
−r1(a)δ(b)n0 + m0δ(b)s1(a) −ρ1(a)m0δ(b) + r1(a)δ(b) + m0δ(b)g1(a)

−g1(a)δ(b)n0 + δ(b)n0ρ1(a) − δ(b)s1(a) −s1(a)m0δ(b) + g1(a)δ(b) + δ(b)n0r1(a) − δ(b)g1(a)

]
,

and gives

0 = −r1(a)δ(b)n0 + m0δ(b)s1(a),
0 = −ρ1(a)m0δ(b) + r1(a)δ(b) + m0δ(b)g1(a),
0 = −g1(a)δ(b)n0 + δ(b)n0ρ1(a) − δ(b)s1(a),
0 = −s1(a)m0δ(b) + g1(a)δ(b) + δ(b)n0r1(a) − δ(b)g1(a).

If we set b = 1B, then

r1(a) = ρ1(a)m0 − m0g1(a),
s1(a) = −g1(a)n0 + n0ρ1(a).

Again, by the other part of (3.15), we have

r4(b) = −m0g4(b) + ρ4(b)m0,

s4(b) = n0ρ4(b) − g4(b)n0.
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If m and a are in M and A, respectively, then
[
0 m
0 0

] [
a 0
0 0

]
= 0. Additionally,

Φlc

([
0 −am
0 0

])
=

[
Φlc

([
0 m
0 0

])
, σ

([
a 0
0 0

]) ]
=

[
σ

([
0 m
0 0

])
,ΦJc

([
a 0
0 0

]) ]
. (3.16)

This implies that [
−ρ2(am) −r2(am)
−s2(am) −g2(am)

]
=

[ [
ρ2(m) r2(m)
s2(m) g2(m)

]
,

[
γ(a) γ(a)m0

n0γ(a) 0

] ]
=

[ [
0 µ(m)
0 0

]
,

[
ρ1(a) r1(a)
s1(a) g1(a)

] ]
.

It follows that

ρ2(am) = −ρ2(m)γ(a) − r2(m)n0γ(a) + γ(a)ρ2(m) + γ(a)m0s2(m) = −µ(m)s1(a),
r2(am) = −ρ2(m)γ(a)m0 + γ(a)r2(m) + γ(a)m0g2(m) = −µ(m)g1(a) + ρ1(a)µ(m),
s2(am) = −s2(m)γ(a) − g2(m)n0γ(a) + n0γ(a)ρ2(m) = 0,
g2(am) = −s2(m)γ(a)m0 + n0γ(a)r2(m) = s1(a)µ(m).

Taking a = 1A in the above, we see that ρ2(m) = 0, s2(m) = 0, g2(m) = 0, and r2(am) = γ(a)r2(m) =

−µ(m)g1(a)+ρ1(a)µ(m). Likewise with
[
0 0
0 b

] [
0 m
0 0

]
= 0,we have r2(mb) = −ρ4(b)µ(m)+µ(m)g4(b) =

r2(m)δ(b).

If a and n are in A and N , respectively, then
[
a 0
0 0

] [
0 0
n 0

]
= 0, and we have

Φlc

([
0 0
−na 0

])
=

[
Φlc

([
a 0
0 0

])
, σ

([
0 0
n 0

]) ]
=

[
σ

([
a 0
0 0

])
,Φlc

([
0 0
n 0

]) ]
. (3.17)

By (3.17), we deduce that[
ρ3(na) r3(na)
s3(na) g3(na)

]
=

[
−r1(a)ν(n) 0

−g1(a)ν(n) + ν(n)ρ1(a) ν(n)r1(a)

]
,

which is rewritten as[
−γ(a)ρ3(n) − γ(a)m0s3(n) + ρ3(n)γ(a) + r3(n)n0γ(a) −γ(a)r3(n) − γ(a)m0g3(n) + ρ3(n)γ(a)m0

−n0γ(a)ρ3(n) + s3(n)γ(a) + g3(n)n0γ(a) −n0γ(a)r3(n) + s3(n)γ(a)m0

]
,

and gives

ρ3(na) = −r1(a)ν(n) = −γ(a)ρ3(n) − γ(a)m0s3(n) + ρ3(n)γ(a) + r3(n)n0γ(a),
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r3(na) = 0 = −γ(a)r3(n) − γ(a)m0g3(n) + ρ3(n)γ(a)m0,

s3(na) = −g1(a)ν(n) + ν(n)ρ1(a) = −n0γ(a)ρ3(n) + s3(n)γ(a) + g3(n)n0γ(a),
g3(na) = ν(n)r1(a) = −n0γ(a)r3(n) + s3(n)γ(a)m0.

Set a = 1A, and we find ρ3(n) = 0, r3(n) = 0, g3(n) = 0, and s3(na) = −g1(a)ν(n) + ν(n)ρ1(a) =

s3(n)γ(a). Similar with
[
0 0
n 0

] [
0 0
0 b

]
= 0, we have s3(bn) = δ(b)s3(n) = −ν(n)ρ4(b) + g4(b)ν(n).

Next, if m and n are in M and N , respectively, then
[
mn m
0 0

] [
−1 0
n 0

]
= 0. Therefore,

Φlc

([
mn m
−nmn −nm

])
=

[
Φlc

([
mn m
0 0

])
, σ

([
−1 0
n 0

]) ]
=

[
σ

([
mn m
0 0

])
,Φlc

([
−1 0
n 0

]) ]
. (3.18)

By (3.18), we obtain[
ρ1(mn) + ρ2(m) − ρ3(nmn) − ρ4(nm) r1(mn) + r2(m) − r3(nmn) − r4(nm)
s1(mn) + s2(m) − s3(nmn) − s4(nm) g1(mn) + g2(m) − g3(nmn) − g4(nm)

]
=

[ [
ρ1(mn) + ρ2(m) r1(mn) + r2(m)
s1(mn) + s2(m) g1(mn) + g2(m)

]
,

[
−1 −m0

−n0 + ν(n) 0

] ]
.

This equation gives ρ1(mn) − ρ4(nm) = r2(m)ν(n) and g1(mn) − g4(nm) = −ν(n)r2(m). Likewise, for

any m ∈M and n ∈ N , we have
[
0 0
n nm

] [
0 m
0 −1

]
= 0. Thus,

Φlc

([
−mn −mnm

n nm

])
=

[
Φlc

([
0 0
n nm

])
, σ

([
0 m
0 −1

]) ]
=

[
σ

([
0 0
n nm

])
,Φlc

([
0 m
0 −1

]) ]
. (3.19)

By (3.19), we deduce that ρ1(mn) − ρ4(nm) = µ(m)s3(n) and g1(mn) − g4(nm) = −s3(n)µ(m). �

The next theorem provides sufficient and necessary conditions under which a Lie σ−centralizer at
the zero product is proper on an order two generalized matrix algebra.

Theorem 3.5. Let (B,A)−bimodule N and (A,B)−bimodule M on generalized matrix algebra G
have the weaker condition as follows:

a ∈ A, Na = 0 and aM = 0⇒ a = 0

b ∈ B, bN = 0 and Mb = 0⇒ b = 0

and let Φlc : G → G be a Lie σ−centralizer at the zero product on G such that Φlc

([
a 0
0 0

])
=[

∗ ∗

∗ g1(a)

]
and Φlc

([
0 0
0 b

])
=

[
ρ4(b) ∗
∗ ∗

]
for every a ∈ A and b ∈ B. Then, the following arguments

are identical:
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(i) φlc(S ) = λσ(S ) + τ(S ) for any S ⊂ G, where λ ∈ Z( G) and τ : G → Z( G) is a linear map in
which τ([G1,G2]) = 0, for any G1,G2 ∈ G with G1G2 = 0.

(ii) g1(A) ⊆ πB(Z(σ( G))) and ρ4(B) ⊆ πA(Z(σ( G))).
(iii) g1(1A) ∈ πB(Z(σ( G))) and ρ4(1B) ∈ πA(Z(σ( G))).

Proof. By Theorem 3.4, the form of φlc is as follows

Φlc

([
a m
n b

])
=

[
ρ1(a) + ρ4(b) r1(a) + r2(m) + r4(b)

s1(a) + s3(n) + s4(b) g1(a) + g4(b)

]
,

where ρ1, ρ4, r1, r2, r3, s1, s3, s4, g1, and g4 are all linear maps and have properties in Theorem 3.4.

(i)⇒ (ii) Let m ∈M, n ∈ N , and a ∈ A be arbitrary elements. Take G1 =

[
0 am

na 0

]
, and we have

σ(G1) =

[
0 γ(a)µ(m)

ν(n)γ(a) 0

]
and

φlc(G1) =

[
0 r2(am)

s3(na) 0

]
=

[
0 ρ1(a)µ(m) − µ(m)g1(a)

ν(n)ρ1(a) − g1(a)ν(n) 0

]
.

Let λ =

[
a1 0
0 η(a1)

]
, where a1 ∈ πA(Z(σ( G))), τ(G1) =

[
a2 0
0 η(a2)

]
, and a2 ∈ πA(Z(σ( G))). By

assumption, we get

φlc(G1) = λσ(G1) + τ(G1) =

[
a1 0
0 η(a1)

] [
0 γ(a)µ(m)

ν(n)γ(a) 0

]
+

[
a2 0
0 η(a2)

]

=

[
a2 a1γ(a)µ(m)

η(a1)ν(n)γ(a) η(a2)

]
,

and comparing the last two results of φlc, we get

ρ1(a)µ(m) − µ(m)g1(a) = a1γ(a)µ(m),

ν(n)ρ1(a) − g1(a)ν(n) = η(a1)ν(n)γ(a) = ν(n)a1γ(a).

Therefore,

(ρ1(a) − a1γ(a))µ(m) = µ(m)g1(a),

ν(n)(ρ1(a) − a1γ(a)) = g1(a)ν(n).

As m ∈ M, n ∈ N are arbitrary, focusing on Remark 2.1, we get g1(a) ∈ πB(Z(σ( G))) for each
a ∈ A. Now, we will use the same argument for arbitrary elements b ∈ B, m ∈M, and n ∈ N . Upon
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taking λ =

[
a1 0
0 η(a1)

]
, G2 =

[
0 mb
bn 0

]
, and τ(G2) =

[
a2 0
0 η(a2)

]
, we can conclude from hypothesis

and Theorem 3.4 that

φlc(G2) =

[
0 r2(mb)

s3(bn) 0

]
=

[
0 µ(m)g4(b) − ρ4(b)µ(m)

g4(b)ν(n) − ν(n)ρ4(b) 0

]
,

and

φlc(G2) = λσ(G2) + τ(G2) =

[
a1 0
0 η(a1)

] [
0 µ(m)δ(b)

δ(b)ν(n) 0

]
+

[
a2 0
0 η(a2)

]

=

[
a2 a1µ(m)δ(b)

η(a1)δ(b)ν(n) η(a2)

]
.

From the last two relations, we get

µ(m)g4(b) − ρ4(b)µ(m) = a1µ(m)δ(b) = µ(m)η(a1)δ(b),

g4(b)ν(n) − ν(n)ρ4(b)) = η(a1)δ(b)ν(n).

Hence,

µ(m)(g4(b) − η(a1)δ(b)) = ρ4(b)µ(m),

(g4(b) − η(a1)δ(b))ν(n) = ν(n)ρ4(b)).

Now, for b ∈ B, m ∈M, and n ∈ N , in view of Remark 2.1, we obtain ρ4(b) ∈ πA(Z(σ( G))).
(ii)⇒ (i). We can define the following well-defined functions based on the hypothesis:

p′ : A → A; p′(a) = ρ1(a) − η−1(g1(a)),

q′ : B→ B; q′(b) = g4(b) − η(ρ4(b)),

where the maps p′ and q′ are linear. Applied to Theorem 3.4 (iii), we obtain

r2(am) = γ(a)r2(m) = p′(a)µ(m),

and

r2(mb) = r2(m)δ(b) = µ(m)q′(b),

for every m ∈M, a ∈ A, and b ∈ B. Therefore,

r2(m) = p′(1A)µ(m) = µ(m)q′(1B),
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for every m ∈M.
Now, consider a ∈ A, b ∈ B, n ∈ N , and by Theorem 3.4 (iii), we get

s3(na) = s3(n)γ(a) = ν(n)p′(a),

s3(bn) = δ(b)s3(n) = q′(b)ν(n),

and

s3(n) = ν(n)p′(1A) = q′(1B)ν(n).

By Remark 2.1, we find p′(1A) ∈ πA(Z(σ( G))), q′(1B) ∈ πB(Z(σ( G))), and η(p′(1A)) = q′(1B).
Next, consider a, a′ ∈ A, m ∈M, n ∈ N , and by Theorem 3.4 (iii) and (iv), we have

r2(aa′m) = γ(a)r2(a′m) = γ(a)γ(a′)r2(m) = p′(aa′)µ(m),

and

r2(aa′m) = γ(a)r2(a′m) = γ(a)p′(a′)µ(m).

Therefore, (p′(aa′) − γ(a)p′(a′))µ(m) = 0 and, hence, (p′(aa′) − γ(a)p′(a′))M = 0. Also, s3(naa′) =

ν(n)p′(aa′) and r2(aa′m) = ν(m)γ(a)p′(a′). Thus, ν(n)(p′(aa′) − γ(a)p′(a′)) = 0. Since ν is an
isomorphism, we have N(p′(aa′) − γ(a)p′(a′)) = 0. Now, by assumption we get p′(aa′) = γ(a)p(a′)
for any a, a′ ∈ A. So, p′(a) = p′(a1A) = γ(a)p′(1A), and since p′(1A) ∈ πA(Z(σ( G))), it follows that
p′(a) = γ(a)p′(1A) = p′(1A)γ(a) for any a ∈ A. Similarly, it follows q′(b) = q′(1B)δ(b) = δ(b)q′(1B)
for any b ∈ B.

If m and n are in M and N , respectively, then ρ1(mn) − ρ4(nm) = r2(m)ν(n) = p′(1A)µ(m)ν(n) =

p′(mn) = ρ1(mn) − η−1(g1(mn)). Moreover, ρ4(nm) = η−1(g1(mn)) and ρ1(mn) − η−1(g1(mn)) =

r2(m)ν(n). Thus, p′(mn) = r2(m)ν(n) for any m ∈M and n ∈ N . Using the same procedures as above

and Theorem 3.4, we arrive to the conclusion that q′(nm) = s3(n)µ(m). Set λ =

[
p′(1A) 0

0 q′(1B)

]
, since

η(p′1A) = q′(1B); consequently, λ ∈ Z(σ( G)).
Now, consider the linear map τ : G → G such that

τ

([
a m
n b

])
=

[
η−1(g1(mn)) + ρ4(b) 0

0 g1(a) + η(ρ4(b))

]
.

We can conclude from our hypothesis τ(G) ∈ Z(σ( G)) for every G ∈ Z(σ( G)).

Now, for any G =

[
a m
n b

]
∈ G, we obtain φlc(G) = λσ(G) + τ(G). Finally, by using Lie σ-

centralizer at the zero product and the above results for any G1,G2 ∈ G where G1G2 = 0, we have
τ([G1,G2]) = φlc([G1,G2]) − λσ([G1,G2]) = 0. Next, (ii)⇒ (iii) is obvious.

(iii) ⇒ (ii) Let a0 = ρ1(1A) − η−1(g1(1A)) and b0 = g4(1B) − η−1(P4(1B)). By assumption and
Theorem 3.4 for any a ∈ A, m ∈ M, and n ∈ N , we have r2(m) = a0µ(m). Therefore, γ(a)r2(m) =

γ(a)a0µ(m) = ρ1(a)µ(m) − µ(m)g1(a). So, (ρ1(a) − γ(a)a0)µ(m) = µ(m)g1(a). Similarly, s3(m) = ν(n)a0

and s3(n)γ(a) = ν(n)a0γ(a) = ν(n)ρ1(a) − g1(a)ν(n). Hence, ν(n)(ρ1(a) − a0γ(a)) = g1(a)ν(n). From
Remark 2.1, we get g1(a) ∈ πB(Z(σ( G))) and η−1(g1(a)) = ρ1(a) − a0γ(a), for any a ∈ A. Similarly,
by using the same argument and Theorem 3.4 for any b ∈ B, m ∈ M, and n ∈ N , we see that
µ(m)(g4(b) − b0δ(b)) = ρ4(b)µ(m). Also, (g4(b) − b0δ(b))ν(n) = ν(n)ρ4(b). By Remark 2.1, it follows
that ρ4(b) ∈ πA(Z(σ( G))) and η(ρ4(b)) = g4(b) − δ(b)b0, for any b ∈ B. �
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4. Conclusions

We studied the structure of Lie and Jordan σ−centralizers at zero products in order two generalized
matrix algebras. We considered the case where (A,B) and (B,A) are bimodules of M and N ,
respectively, with A,B being unital R−algebras. The R−algebra G = G(A,M,N ,B) is a
generalized matrix algebra defined by the Morita context (A,B,M,N , ζMN , χNM). This study based
on the present structure of generalized matrix algebras has produced numerous substantial results
that enhance our understanding of these algebraic structures. One of the key results is that every
Jordan σ−centralizer at the zero products on the order two generalized matrix algebra G is indeed
a σ−centralizer at the zero product. This result establishes a fundamental connection between two
classes of algebraic objects, shedding light on their connection within the context of generalized
matrix algebras. Furthermore, we provided necessary and sufficient conditions under which a Lie
σ−centralizer at the zero product is proper on the order two generalized matrix algebra G. This
characterization is valuable, as it allows for a deeper understanding of the algebraic properties
and structure of these Lie σ−centralizers. This work extends the theory of generalized matrix
algebras and provides novel insights into the characteristics of Lie and Jordan σ−centralizers in this
algebraic scenario.
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