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1. Introduction and preliminaries

The idea of a bipolar metric was introduced by Mutlu and Gurdal in [9] in 2016 and was motivated
by real-life applications and necessity driven by numerous examples where “distance” is measured
between elements of different sets. Some of them are the distance between lines and points in Euclidian
space, distance between sets and elements of a set, and the distance from a set of planetary bodies to
the inverse of visible luminosities of a set of stars.

The question of bipolarity is also investigated in the fuzzy logic through the notion of a bipolar-
valued set. Importance of bipolar-valued sets may be foreseen through significant application in
decision making. The importance of the concept of bipolarity in the process of decision-making is
based on the possibility to overcome previous obstacles in this field, lowering the level of uncertainty,
and successfully solving problems in a range of different decision-making processes as testified by
several case studies. The relation between the notion of a bipolar fuzzy metric and a bipolar fuzzy set
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is still an open problem and there are no results of the application of a bipolar metric as can be seen for
the bipolar set [14–16].

There are numerous results on fixed point problems in the bipolar metric space or bipolar
pseudometric space [2–4,6,8–13,17], along with different extensions of this concept like fuzzy bipolar
metric space, bipolar soft metric space, C∗-algebra valued bipolar metric space, and partially ordered
bipolar metric space, among others.

We will recall basic definitions and theorems in both metric space and bipolar metric space. For the
sake of simplicity, we will use BMS when denoting a bipolar metric space.

Definition 1. Let X be a nonempty set. A function d : X × X → [0,+∞) is a metric on a set X if it
fulfills the following assumptions for any x, y, z ∈ X:

(d1) d(x, x) = 0;
(d2) d(x, y) = d(y, x) = 0 implies x = y;
(d3) d(x, y) = d(y, x);
(d4) d(x, z) ≤ d(x, y) + d(y, z)

then the ordered pair (X, d) is a metric space.

The bipolar metric is mimicking the properties of a metric adjusted to the new environment.

Definition 2. [9] If X and Y are nonempty sets, then a mapping d : X × Y 7→ [0,+∞) satisfying:

(d∗1) d(x, x) = 0 for any x ∈ X ∩ Y;
(d∗2) if d(x, y) = d(y, x) = 0 for some x ∈ X and y ∈ Y, then x = y;
(d∗3) d(x, y) = d(y, x) for all x, y ∈ X ∩ Y;
(d∗4) d(x1, y1) ≤ d(x1, y2) + d(x2, y1) + d(x2, y2) for all x1, x2 ∈ X and y1, y2 ∈ Y

is a bipolar metric and a triple (X,Y, d) is a bipolar metric space (BMS).

The bipolar pseudometric is a mapping d : X×Y 7→ [0,+∞) satisfying (d∗1), (d∗3), and (d∗4), assuming
that X and Y are nonempty sets and (X,Y, d) is a bipolar pseudometric space (BPMS).

Example 1. If (X, d) is a metric space (pseudometric space), then (X, X, d) is a bipolar metric space
(bipolar pseudometric space).

The BMS (X × Y, d) is disjoint if X ∩ Y = ∅, while it is a joint BMS otherwise. The sets X and Y are
the left pole and the right pole of a BMS (X,Y, d), respectively.

The question that arises is how the bipolar metric defined on X × Y may be transferred to the poles
forming a metric space and what is a general answer to the metrizability problem.

Definition 3. If (X,Y, d) is a BPMS, then the functions dX : X × X 7→ R and dY : Y × Y 7→ R defined by

dM(x1, x2) = sup
y∈Y
|d(x1, y) − d(x2, y)|, x1, x2 ∈ X,

dN(y1, y2) = sup
x∈X
|d(x, y1) − d(x, y2)|, y1, y2 ∈ Y

are inner pseudo-metrics on X and Y, respectively, induced by a bipolar metric d.
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It is shown in [9] that the inner pseudo-metrics are pseudo-metrics on X and Y , respectively. In
the case of BMS, dX and dY are metrics on X and Y, respectively, which was implicitly proven in [9]
through the embedding theorem. Meanwhile in the case of a joint BPMS (BMS) (X,Y, d), the pseudo-
metric (metric) dM and bipolar pseudo-metric (metric) d coincide on X × (X ∩ Y) as well as dN and d
agree on (X ∩ Y) × Y .

First, we collect some results from [9] regarding topological properties, convergence, and continuity
of a BMS. The definitions will be presented in the setting of BMS, but the same approach is used in
the case of BPMS.

If (X, Y, d) is a BMS, then a sequence ((xn, yn)) ⊆ X × Y is a bisequence in a BMS (X,Y, d). The
idea behind the convergence of a bisequence ((xn, yn)) in a bipolar metric space (X × Y,D) relies on
the convergence of a sequence (xn) ⊆ X to some y ∈ Y under which we consider the usual metric
convergence, i.e., that for any ε > 0 there exists n0 ∈ N such that d(xn, y) < ε for any n ≥ n0, and,
analogously, on the convergence of a sequence (yn) ⊆ Y to some x ∈ X assuming that, for any ε > 0
there exists m0 ∈ N, fulfilling d(x, yn) < ε for any n ≥ m0.

Definition 4. [9] If (X, Y, d) is a BMS, then

(i) A bisequence ((xn, yn)) ⊆ X × Y is convergent in (X,Y, d) if both (xn) and (yn) converge.
(ii) If (xn) and (yn) both converge to the same point z ∈ X ∩ Y, then a bisequence ((xn, yn)) is a

biconvergent bisequence in (X,Y, d).

Definition 5. [9] If (X, Y, d) is a BMS and (xn, yn) ⊆ X × Y is a bisequence, then it is a Cauchy
bisequence if for any ε > 0, there exists some n0 ∈ N fulfilling d(xn, ym) < ε for any n,m ≥ n0.

To clarify the question of biconvergence, note that the bisequence ((xn, yn)) converges to some (z, z) ∈
X × Y for some z ∈ X ∩ Y , if for any ε > 0, there exists n0 ∈ N such that for any n,m ≥ n0 we have
d(xn, z) < ε and d(z, yn) < ε.
The relation between Cauchy property and convergence is obtained.

Theorem 1. [9] A biconvergent bisequence in a BMS is a Cauchy bisequence.

It is important to notice that if there exists a convergent Cauchy bisequence, then the bipolar metric
space must be joint. Also, observe that from Theorem 1 it could be deduced that convergence of a
sequence does not necessarily imply Cauchiness which is not substantiated by any example in [9].
As usual, completeness is defined according to the convergence of a Cauchy sequence; in this case, a
bisequence.

Definition 6. [9] A BMS (X,Y, d) is complete if any Cauchy bisequence in (X,Y, d) is convergent.

It is important to mention that the definition of complete BMS corresponds to the definition of a
complete metric space (X, d) in the case when we observe its bipolar equivalent (X, X, d).

Theorem 2. [9] A convergent Cauchy bisequence is biconvergent in a BMS.

Recall that a self-mapping T on a metric space (X, d) is a contraction if there exists q ∈ [0, 1) such
that the inequality

d(T x,Ty) ≤ qd(x, y) (1.1)

holds for all x, y ∈ X. Famous Banach contraction principle presents a highlight of the metric fixed
point theory with numerous applications, extensions, and generalizations.
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Theorem 3. [1] If (X, d) is a complete metric space and T : X 7→ X is a contraction on X for some
contractive constant q ∈ [0, 1), then a mapping T has a unique fixed point x∗ ∈ X, and for arbitrary
initial point x ∈ X, the iterative sequence (T nx) converges to the fixed point x∗.

It is possible to observe two different concepts of contractive mappings in BMS: Covariant and
contravariant mappings, as presented in [9]. These concepts present an analog of a contraction in the
setting of BMS.

Covariant mapping assumes that T : (X,Y, d)⇒ (X,Y, d) is such that T (X) ⊆ X and T (Y) ⊆ Y , while
for contravariant mappings T : (X,Y, d)� (X,Y, d) implies T (X) ⊆ Y and T (Y) ⊆ X. In both cases, the
domain and codomain of a mapping T is indeed X ∪ Y .

Definition 7. [9] If (X,Y, d) is a BMS, a covariant mapping T : (X,Y, d) ⇒ (X,Y, d) is a covariant
contraction on (X,Y, d) if there exists some q ∈ [0, 1) such that the inequality

d(T x,Ty) ≤ qd(x, y)

holds for all x ∈ X and all y ∈ Y.

Definition 8. If (X,Y, d) is a BMS, a contravariant mapping T : (X,Y, d)� (X,Y, d) is a contravariant
contraction if there exists some q ∈ [0, 1) such that the inequality

d(Ty,T x) ≤ qd(x, y)

holds for all x ∈ X and all y ∈ Y.

Fixed point for both covariant and contravariant contraction on a complete BMS exists and is
unique, which is the main result of [9]. In the sequel, covariant contraction mapping will be denoted
as cocontraction, while contravariant contraction mapping will be contracontraction.

The main aim of this manuscript is to prove that fixed point results for both covariant and
contravariant contractive mappings are a direct corollary of the Banach fixed point theorem after proper
metrization of a complete bipolar metric space is done.

2. Metrizability of a bipolar metric space

We intend to prove that this approach of introducing a new concept of BMS is unnecessary since
those results are easily derived from the usual theorems in metric space concerning existence and
uniqueness of a fixed point.

Theorem 4. If (X,Y, d) is a BMS, then (X × Y,D) is a metric space where D : (X × Y) × (X × Y) 7→
[0,+∞) is defined by

D((x1, y1), (x2, y2)) =


∑

i, j∈{1,2}

d(xi, y j), x1 , x2 or y1 , y2

0, x1 = x2 and y1 = y2

(2.1)

for any (x1, y1), (x2, y2) ∈ X × Y.
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Proof. Assume that (X,Y, d) is a BMS and that D : (X × Y) × (X × Y) 7→ [0,+∞) is defined by (2.1).
Evidently, D is a well-defined function since d(xi, y j) ≥ 0, where i, j = {1, 2} for any (x1, y1), (x2, y2) ∈
X × Y .

(d1) If (x, y) ∈ X × Y , then D((x, y), (x, y)) = 0 by the Definition 2.1.
(d2) Assuming that (x1, y1) , (x2, y2) and D((x1, y1), (x2, y2)) = 0 and observing that

D((x1, y1), (x2, y2)) ≥ d(xi, y j) ≥ 0

for i, j = 1, 2 along with (d∗2) further imply that x1 = y1 = y2 = x2; hence, (x1, y1) = (x2, y2) in the case
of a joint BMS and we obtain a contradiction. If the BMS is disjoint, then D((x1, y1), (x2, y2)) = 0 only
in the case of (x1, y1) = (x2, y2) due to the previous estimations as X ∩ Y = ∅.

Thus, D((x1, y1), (x2, y2)) = 0 implies (x1, y1) = (x2, y2) is not related to the structure of X ∩ Y .
(d3) For arbitrary (x1, y1), (x2, y2) ∈ X × Y , we have

D((x1, y1), (x2, y2)) = d(x1, y2) + d(x2, y1) + d(x1, y1) + d(x2, y2)
= d(x2, y1) + d(x1, y2) + d(x2, y2) + d(x1, y1)
= D((x2, y2), (x1, y1))

concluding that D is a symmetric function on X × Y thanks to (d∗3).
(d4) Let (x1, y1), (x2, y2), (x3, y3) ∈ X × Y be arbitrary, then

D((x1, y1), (x2, y2)) = d(x1, y2) + d(x2, y1) + d(x1, y1) + d(x2, y2)
≤ d(x1, y3) + d(x3, y2) + d(x3, y3) + d(x2, y3)
+ d(x3, y1) + d(x3, y3) + d(x1, y1) + d(x2, y2)
= D((x1, y1), (x3, y3)) + D((x3, y3), (x2, y2))

so the triangle inequality holds in (X × Y,D). Consequently, (X × Y,D) is a metric space. �

In this manner, each BMS is associated to the properly defined metric space defined as in Theorem 4.
What still remains open is a question of the transfer of completeness.

Theorem 5. If (X,Y, d) is a complete BMS, then (X × Y,D) is a complete metric space where D :
(X × Y) × (X × Y) 7→ [0,+∞) is determined by (2.1).

Proof. If (X,Y, d) is a complete BMS, then (X × Y,D) is a metric space due to Theorem 4, assuming
that D : (X × Y) × (X × Y) 7→ [0,+∞) is defined by (2.1).
Assume that ((xn, yn)) ⊆ X × Y is a Cauchy sequence in a metric space (X,Y,D), meaning that for
arbitrary ε > 0, there exists some n0 ∈ N such that D((xn, yn), (xm, ym)) < ε for any integers n,m ≥ n0.
Equivalently,

d(xn, ym) ≤ d(xn, ym) + d(xm, yn) + d(xn, yn) + d(xn, yn)
= D((xn, yn), (xm, ym))
< ε
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and ((xn, yn)) is a Cauchy bisequence in a complete BMS (X,Y, d). Further, based on Theorem 2 and the
assumption of completeness, the bisequence ((xn, yn)) is biconvergent. So, there exists a limit z ∈ X∩Y
of both (xn) and (yn) such that, for an ε > 0, there exists n1 ∈ N such that

d(xn, z) <
ε

3
and d(ym, z) <

ε

3

for any n,m ≥ n1. Additionally, let n2 ∈ N be such that d(xn, ym) < ε3 for any n,m ≥ n2.
If m0 = max{n1, n2}, then for any n ≥ m0, it follows that

D((xn, yn), (z, z)) = d(xn, z) + d(z, yn) + d(xn, yn) + d(z, z)

<
ε

3
+
ε

3
+
ε

3
= ε

leading to the conclusion that ((xn, yn)) is converging to (z, z) in a metric space (X × Y,D). Therefore,
the metric space (X × Y,D) is a complete metric space. �

The following corollary is easily deduced from the presented proof of Theorem 5.

Corollary 6. If (X,Y, d) in a BMS and (X × Y,D) is an associated metric space as in Theorem 4, then
any Cauchy sequence ((xn, yn)) ⊆ X × Y in a metric space (X × Y,D) is a Cauchy bisequence in a BMS
(X,Y, d).

Proof. As proven in the part of the proof of Theorem 5. �

Corollary 7. If (X,Y, d) is a complete BMS and (X×Y,D) is an associated metric space as in Theorem 4,
then any convergent sequence ((xn, yn)) ⊆ X × Y in a metric space (X × Y,D) is biconvergent in a BMS
(X,Y, d).

Proof. If (X,Y, d) is a complete BMS and (X×Y,D) is an associated metric space as in Theorem 4, then
by Theorem 5 it is a complete metric space. Assume that ((xn, yn)) ⊆ X ×Y is a convergent sequence in
a metric space (X×Y,D), then it is necessarily a Cauchy sequence in (X×Y,D) and, due to Corollary 6,
it is a Cauchy bisequence in (X,Y, d).

As (X,Y, d) is a complete BMS, the sequence ((xn, yn)) is a convergent Cauchy bisequence in a BMS
and Theorem 2 yields biconvergency of a bisequence ((xn, yn)) in a BMS (X,Y, d). �

2.1. Covariant contraction

As mentioned, all fixed point theorems in the setting of BMSs may be reduced in this way on their
analogues in associated metric space as described in Theorem 4. We intend to present a proof of the
main result of [9] through the Banach contraction principle showing that this set of fixed point results
is a direct corollary of Banach and, analogously, the Kannan fixed point theorem. Generally, the same
approach is applicable for any contractive mapping in a complete BMS and related fixed point theorem
in metric space.

We will take into the consideration cocontraction, showing that it induces a contraction on a
complete metric space (X × Y,D) whose existence is guaranteed by Theorems 4 and 5.
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Theorem 8. [9] If (X,Y, d) is a complete BMS and a mapping T : (X,Y, d) ⇒ (X,Y, d) is a
cocontraction, then the mapping T : X ∪ Y 7→ X ∪ Y possesses a unique fixed point in X ∪ Y.

Proof. Observe a cocontraction T on a complete BMS (X,Y, d) with a contractive constant q ∈ [0, 1)
and define a mapping

S (x, y) = (T x,Ty)

for any x ∈ X and y ∈ Y . For arbitrary pairs (x1, y1), (x2, y2) ∈ X × Y:

D(S (x1, y1), S (x2, y2)) = D((T x1,Ty1), (T x2,Ty2))
= d(T x1,Ty2) + d(T x2,Ty1) + d(T x1,Ty1) + d(T x2,Ty2)
≤ q (d(x1, y2) + d(x2, y1) + d(x1, y1) + d(x2, y2))

= qD((x1, y1), (x2, y2))

assuming that S (x1, y1) , S (x2, y2), since we have applied the definition of a metric D in that manner.
Evidently, the inequality holds anyway since S (x1, y1) = S (x2, y2) implies D(S (x1, y1), S (x2, y2)) = 0
and, yet again,

D(S (x1, y1), S (x2, y2)) ≤ qD((x1, y1), (x2, y2)).

Accordingly, S is a contraction on a complete metric space (X × Y,D) and, consequently, it possesses
a single fixed point (x∗, y∗) ∈ X × Y , and any sequence of a form (S n(x, y)) for arbitrary initial point
(x, y) ∈ X × Y converges to the fixed point as n → +∞, with respect to the metric D. Having in mind
that the sequence (S n(x, y)) = ((T nx,T ny)) is a convergent bisequence in a complete BMS because
of Corollary 7, thus biconvergent, we conclude that x∗ = y∗ ∈ X ∩ Y is a unique fixed point of a
mapping T . �

Obviously, Theorem 8 is a direct corollary of the Banach contraction principle.

3. Another approach on a metrizability of a bipolar metric space

Since we are aiming to consider contracontraction in a complete BMS, we will present another idea
for metrizability of BMS.

We state obvious remarks regarding fixed point(s) of a contravariant mapping. Furthermore, it is
essential to observe only joint BMS for that purpose.

Lemma 9. If (X,Y, d) is a BMS and T : (X,Y, d) � (X,Y, d) is a caontravariant mapping, then the set
of fixed points of a mapping T is a subset of X ∩ Y.

Proof. Recall that if T : X ∪ Y 7→ X ∪ Y is a contravariant mapping in a BMS (X,Y, d), then T (X) ⊆ Y
and T (Y) ⊆ X. Thus, if Tz = z for some z ∈ X ∪ Y , then

z ∈ X ∩ T (X) ⊆ X ∩ Y or z ∈ Y ∩ T (Y) ⊆ X ∩ Y

�

Hence, the focus will be on set X ∩ Y instead of on the whole X ∪ Y (or substituted by X × Y).
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Theorem 10. If (X,Y, d) is a joint BMS and d∗ : (X ∩ Y) × (X ∩ Y) 7→ [0,+∞) is a mapping defined
with

d∗(z1, z2) = d(z1, z2) (3.1)

for any z1, z2 ∈ X ∩ Y, then (X ∩ Y, d∗) is a metric space.

Proof. Suppose that (X,Y, d) is a joint BMS and d∗ : (X ∩ Y)×(X ∩ Y) 7→ [0,+∞) is defined with (3.1).
Obviously, d∗ is well-defined. We will comment on the fulfillment of (d1)–(d4) for d∗ which will be
valid due to fulfillment of (d∗1)–(d∗4) for a bipolar metric d.

(d1) If z ∈ X ∩ Y , then d∗(z, z) = d(z, z) = 0.
(d2) Assume that d∗(z1, z2) = 0 for some z1, z2 ∈ X ∩ Y , then d(z1, z2) = 0 implying z1 = z2.
(d3) If z1, z2 ∈ X ∩ Y are arbitrary, then

d∗(z1, z2) = d(z1, z2) = d(z2, z1) = d∗(z2, z1)

according to (d∗3).
(d4) For some z1.z2, z3 ∈ X ∩ Y , we get:

d∗(z1, z2) = d(z1, z2)
≤ d(z1, z3) + d(z3, z2) + d(z3, z3)
= d(z1, z3) + d(z3, z2)

so the triangle inequality holds on X ∩ Y .
Hence, (X ∩ Y, d∗) is a metric space. �

Remark 1. The major part of the proof of Theorem 10 is deducible from the fact that d∗ may be
observed as a restriction of a bipolar metric d on a set (X ∩ Y)×(X ∩ Y), while (d4) needs to be anyway
additionally commented as it is necessary to apply (d∗4) for (z1, z2) and (z3, z3) to acquire triangle
inequality for d∗.

Theorem 11. Let (X,Y, d) be a BMS and d∗ : (X ∩ Y) × (X ∩ Y) 7→ [0,+∞) is a mapping defined
by (3.1). If (X,Y, d) is a complete BMS, then (X ∩ Y, d∗) is a complete metric space.

Proof. Assume that (X,Y, d) is a complete BMS and let d∗ : (X ∩ Y) × (X ∩ Y) 7→ [0,+∞) be defined
by (3.1). Theorem 10 asserts that (X ∩ Y, d∗) is a metric space.

Moreover, let (zn) ⊆ X ∩ Y be a Cauchy sequence in a metric space (X ∩ Y, d∗). Consequently, for
any ε > 0, there exists some n0 ∈ N such that d∗(zn, zm) < ε for all n,m ≥ n0. Equivalently, d(zn, zm) < ε
for any n,m ≥ n0 and ((zn, zn)) is a Cauchy bisequence in a complete BMS (X,Y, d). Theorem 2 allows
us to conclude that the bisequence is biconvergent.

Therefore, there must exist some z ∈ X ∩ Y satisfying that both the left and the right sequence
converge to z. Meaning, there exists some k0 ∈ N such that for all k ≥ k0, we get d(zk, z) < ε. Taking
into the account the definition of a metric d∗, it is evident that the sequence (zn) converges in (X∩Y, d∗)
to the same limit z. �

Theorems 10 and 11 affirm the existence of a unique fixed point for any contraction on a complete
metric space (X∩Y, d∗) with the presumption of completeness of a BMS (X,Y, d). Moreover, supported
by Lemma 9, it leads to the conclusion that the second main result of [9] concerning the fixed point
problem for contracontraction is a direct corollary of the Banach theorem.
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Theorem 12. [9] If (X,Y, d) is a complete BMS and T : (X,Y, d) � (X,Y, d) is a contracontraction,
then the mapping T : X ∪ Y 7→ X ∪ Y has a unique fixed point.

Proof. Assume that (X,Y, d) is a complete BMS and a contravariant mapping T : (X,Y, d) � (X,Y, d)
is a contraction for some contractive constant q ∈ [0, 1). Lemma 9 claims that, if it exists, a fixed
point of T must be precisely in X ∩ Y . Hence, if S = T �X∩Y , then Fix(S ) = Fix(T ), and problem of
existence and uniqueness of a fixed point of a mapping T is now reduced to the fixed point existence
and uniqueness problem for a mapping S . Note that in the same time we can observe S as a restriction
and a reduction of a mapping T , S : X ∩ Y 7→ X ∩ Y since S (X ∩ Y) ⊆ S (X) ∩ S (Y) = Y ∩ X.

Observing a remark concerning restriction and Theorem 10 along with Theorem 11, it follows that
(X∩Y, d∗) is a complete metric space and S a self-mapping on X∩Y . Also, for arbitrary z1, z2 ∈ X∩Y:

d∗(S z1, S z2) = d∗(Tz1,Tz2)
= d(Tz1,Tz2)
≤ qd(z1, z2)
= qd∗(z1, z2)

and, implicitly, S is a contraction on a complete metric space. Banach fixed point theorem claims
the existence and uniqueness of a fixed point of a mapping S , which further gives the existence and
uniqueness of a fixed point for a mapping T . �

Remark 2. Analogously to the first main result of [9], we may conclude that the second main results
concerning the fixed point problem of a contracontraction is a direct corollary of a Banach fixed point
theorem.

The same approach may be used for any contravariant contractive mapping, like contravariant
Kannan contraction.

Theorem 13. [5] If (X, d) is a complete metric space and T : X → X is a mapping such that there
exists a constant k ∈ [0, 1

2 ) fulfilling

d(T x,Ty) ≤ k (d(x,T x) + d(y,Ty)) (3.2)

for all x, y ∈ X, then T possesses a unique fixed point in X.

The result regarding uniqueness of a fixed point for a Kannan contracontraction on a complete BMS
is given in [9].

Theorem 14. [9] If (X,Y, d) is a complete BMS and T : X → X is a mapping such that there exists a
constant k ∈ [0, 1

2 ) fulfilling
d(Ty,T x) ≤ k (d(x,T x) + d(Ty, y)) (3.3)

for all x ∈ X, y ∈ Y, then T possesses a unique fixed point.

Proof. Under the assumption that (X,Y, d) is a complete BMS, we have that (X ∩ Y, d∗) is a complete
metric space due to Theorems 10 and 11. Moreover, if S : X ∩ Y 7→ X ∩ Y is defined by S z = Tz for
any z ∈ X ∩ Y , then Fix(S ) = Fix(T ). A mapping S is a Kannan contraction on (X ∩ Y, d∗) since

d∗(S z1, S z2) = d∗(Tz1,Tz2)
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= d(Tz1,TZ2)
≤ k (d(z1,Tz1) + d(z2,Tz2))

= k (d(z1,Tz1) + d(z2,Tz2))

= k (d(z1, S z1) + d(z2, S z2))

= k (d∗(z1, S z1) + d∗(z2, S z2))

for any z1, z2 ∈ X ∩ Y . Consequently, S has a unique fixed point in X ∩ Y by Theorem 13. Further, T
has a unique fixed point. �

The example included in [9] regarding contravariant mapping concerns a Kannan contraction.

Example 2. Denote with X the class of all singletons of R and with Y the class of all nonempty compact
subsets of R. Define d : X × Y → R as

d({x}, A) = |x − inf(A)| + |x − sup(A)|

for any {x} ∈ X and any A ∈ Y.
Evidently, the triple (X,Y, d) is a complete BMS.
Observe the contravariant mapping T : (X,Y, d)� (X,Y, d), defined as

T A =

{
inf(A) + sup(A) + 6

8

}
for any A ∈ X ∪ Y. A mapping T is a Kannan mapping on a BMS (X,Y, d) for k = 1

3 , meaning that

d(T A,T {x}) ≤
1
3

(d({x},T {x}) + d(T A, A))

for any {x} ∈ X and A ∈ Y.
Note that X ∩ Y = X and d({x}, {y}) = 2|x − y| for any {x}, {y} ∈ X is a metric on X (more precisely, d∗

as its restriction is a metric on X). As for the case of Banach contraction, T is a Kannan mapping on
(X, d∗), it possesses a fixed point by Theorem 13, and it is unique.

4. Conclusions

Among numerous extensions and generalizations of the concept of metric space, it is important
to make a clear distinction among those who present true scientific novelty and meticulously analyze
the topological properties of introduced generalization and examine its metrizability. Otherwise, those
concepts become further incorrectly utilized as a preferred setting for various types of contractions and
related fixed-point theorems.

The purpose of this manuscript was to gather the main fixed point results in the setting of BMS and
to investigate their relation with analogous fixed point results in metric space obtaining equivalence as
a final result. The equivalence was obtained based on several different approaches to the metrizability
of BMS presented therein. A similar approach may be used for the generalizations of a BMS like soft
BMS, bipolar fuzzy metric space, and bipolar R-metric space, among others.

Consequently, those results did not deliver any scientific novelty and in the case of their application,
like in solving an integral and differential equation, the same results are acquired if the metric analog
is applied.
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