Research article Special Issues

Generalized Reed-Solomon codes over number fields and exact gradient coding

  • Received: 31 December 2023 Revised: 09 February 2024 Accepted: 20 February 2024 Published: 07 March 2024
  • MSC : 11T71, 68P30

  • This paper describes generalized Reed-Solomon (GRS) codes over number fields that are invariant under certain permutations. We call these codes generalized quasi-cyclic (GQC) GRS codes. Moreover, we describe an application of GQC GRS codes over number fields to exact gradient coding.

    Citation: Irwansyah, Intan Muchtadi-Alamsyah, Fajar Yuliawan, Muhammad Irfan Hidayat. Generalized Reed-Solomon codes over number fields and exact gradient coding[J]. AIMS Mathematics, 2024, 9(4): 9508-9518. doi: 10.3934/math.2024464

    Related Papers:

  • This paper describes generalized Reed-Solomon (GRS) codes over number fields that are invariant under certain permutations. We call these codes generalized quasi-cyclic (GQC) GRS codes. Moreover, we describe an application of GQC GRS codes over number fields to exact gradient coding.



    加载中


    [1] A. Dür, The automorphism groups of Reed-Solomon codes, J. Comb. Theory A, 44 (1987), 69–82. https://doi.org/10.1016/0097-3165(87)90060-4 doi: 10.1016/0097-3165(87)90060-4
    [2] S. Dutta, V. Cadambe, P. Grover, Short-dot: Computing large linear transforms distributedly using coded short dot products, IEEE T. Inform. Theory, 65 (2019), 6171–6193. https://doi.org/10.1109/TIT.2019.2927558 doi: 10.1109/TIT.2019.2927558
    [3] C. Güneri, F. Özbudak, B. Özkaya, E. Sacikara, Z. Sepasdar, P. Solé, Structure and performance of generalized quasi-cyclic codes, Finite Fields Th. App., 47 (2017), 183–202. https://doi.org/10.1016/j.ffa.2017.06.005 doi: 10.1016/j.ffa.2017.06.005
    [4] W. Halbawi, Error-correcting codes for networks, storage, and computation, PhD Thesis, California Institute of Technology, 2017. https://doi.org/10.7907/Z9J67F08
    [5] S. Kalyanswamy, Inverse Galois problem for totally real number fields, PhD Thesis, Cornell University, 2012.
    [6] T. Kasami, A Gilberd-Varshamov bound for quasi cyclic codes of rate $1/2$, IEEE T. Inform. Theory, 20 (1974), 679. https://doi.org/10.1109/TIT.1974.1055262 doi: 10.1109/TIT.1974.1055262
    [7] S. Loepp, W. K. Wooters, Protecting information: from classical error correction to quantum cryptography, Cambridge: Cambridge University Press, 2006. https://doi.org/10.1017/CBO9780511813719
    [8] M. Li, D. G. Andersen, A. Smola, K. Yu, Communication efficient distributed machine learning with the parameter server, Proceedings of the 27th International Conference on Neural Information Processing Systems, 1 (2014), 19–27.
    [9] I. Márquez-Corbella, R. Pellikaan, A characterization of MDS codes that have an error-correcting pair, Finite Fields Th. App., 40, (2016), 224–245. https://doi.org/10.1016/j.ffa.2016.04.004
    [10] I. Muchtadi-Alamsyah, Irwansyah, A. Barra, Generalized quasi-cyclic codes with arbitrary block lengths, Bull. Malays. Math. Sci. Soc., 45 (2022), 1383–1407. https://doi.org/10.1007/s40840-022-01251-x doi: 10.1007/s40840-022-01251-x
    [11] N. Raviv, I. Tamo, R. Tandon, A. G. Dimakis, Gradient coding from cyclic MDS codes and expander graph, IEEE T. Inform. Theory, 66 (2020), 7475–7489. https://doi.org/10.1109/TIT.2020.3029396 doi: 10.1109/TIT.2020.3029396
    [12] G. E. Séguin, The algebraic structure of codes invariant under a permutation, In: Information theory and applications II, Heidelberg: Springer, 1995, 1–18. https://doi.org/10.1007/BFb0025131
    [13] I. Siap, N. Kulhan, The structure of generalized quasi-cyclic codes, Appl. Math. E-Notes, 5 (2005), 24–30.
    [14] R. Tandon, Q. Lei, A. Dimakis, N. Karampatziakis, Gradient coding: Avoiding stragglers in distributed learning, Proceedings of the 34th International Conference on Machine Learning, 70 (2017), 3368–3376.
    [15] H. G. J. Tiesinga, The inverse Galois problem, PhD Thesis, University of Groningen, 2016. Available from:
    [16] N. J. Yadwarkar, B. Hariharan, J. E. Gonzales, R. Katz, Multitask learning for straggler avoiding predictive job scheduling, J. Mach. Learn. Res., 17 (2016), 3692–728.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(914) PDF downloads(101) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog