This paper describes generalized Reed-Solomon (GRS) codes over number fields that are invariant under certain permutations. We call these codes generalized quasi-cyclic (GQC) GRS codes. Moreover, we describe an application of GQC GRS codes over number fields to exact gradient coding.
Citation: Irwansyah, Intan Muchtadi-Alamsyah, Fajar Yuliawan, Muhammad Irfan Hidayat. Generalized Reed-Solomon codes over number fields and exact gradient coding[J]. AIMS Mathematics, 2024, 9(4): 9508-9518. doi: 10.3934/math.2024464
This paper describes generalized Reed-Solomon (GRS) codes over number fields that are invariant under certain permutations. We call these codes generalized quasi-cyclic (GQC) GRS codes. Moreover, we describe an application of GQC GRS codes over number fields to exact gradient coding.
[1] | A. Dür, The automorphism groups of Reed-Solomon codes, J. Comb. Theory A, 44 (1987), 69–82. https://doi.org/10.1016/0097-3165(87)90060-4 doi: 10.1016/0097-3165(87)90060-4 |
[2] | S. Dutta, V. Cadambe, P. Grover, Short-dot: Computing large linear transforms distributedly using coded short dot products, IEEE T. Inform. Theory, 65 (2019), 6171–6193. https://doi.org/10.1109/TIT.2019.2927558 doi: 10.1109/TIT.2019.2927558 |
[3] | C. Güneri, F. Özbudak, B. Özkaya, E. Sacikara, Z. Sepasdar, P. Solé, Structure and performance of generalized quasi-cyclic codes, Finite Fields Th. App., 47 (2017), 183–202. https://doi.org/10.1016/j.ffa.2017.06.005 doi: 10.1016/j.ffa.2017.06.005 |
[4] | W. Halbawi, Error-correcting codes for networks, storage, and computation, PhD Thesis, California Institute of Technology, 2017. https://doi.org/10.7907/Z9J67F08 |
[5] | S. Kalyanswamy, Inverse Galois problem for totally real number fields, PhD Thesis, Cornell University, 2012. |
[6] | T. Kasami, A Gilberd-Varshamov bound for quasi cyclic codes of rate $1/2$, IEEE T. Inform. Theory, 20 (1974), 679. https://doi.org/10.1109/TIT.1974.1055262 doi: 10.1109/TIT.1974.1055262 |
[7] | S. Loepp, W. K. Wooters, Protecting information: from classical error correction to quantum cryptography, Cambridge: Cambridge University Press, 2006. https://doi.org/10.1017/CBO9780511813719 |
[8] | M. Li, D. G. Andersen, A. Smola, K. Yu, Communication efficient distributed machine learning with the parameter server, Proceedings of the 27th International Conference on Neural Information Processing Systems, 1 (2014), 19–27. |
[9] | I. Márquez-Corbella, R. Pellikaan, A characterization of MDS codes that have an error-correcting pair, Finite Fields Th. App., 40, (2016), 224–245. https://doi.org/10.1016/j.ffa.2016.04.004 |
[10] | I. Muchtadi-Alamsyah, Irwansyah, A. Barra, Generalized quasi-cyclic codes with arbitrary block lengths, Bull. Malays. Math. Sci. Soc., 45 (2022), 1383–1407. https://doi.org/10.1007/s40840-022-01251-x doi: 10.1007/s40840-022-01251-x |
[11] | N. Raviv, I. Tamo, R. Tandon, A. G. Dimakis, Gradient coding from cyclic MDS codes and expander graph, IEEE T. Inform. Theory, 66 (2020), 7475–7489. https://doi.org/10.1109/TIT.2020.3029396 doi: 10.1109/TIT.2020.3029396 |
[12] | G. E. Séguin, The algebraic structure of codes invariant under a permutation, In: Information theory and applications II, Heidelberg: Springer, 1995, 1–18. https://doi.org/10.1007/BFb0025131 |
[13] | I. Siap, N. Kulhan, The structure of generalized quasi-cyclic codes, Appl. Math. E-Notes, 5 (2005), 24–30. |
[14] | R. Tandon, Q. Lei, A. Dimakis, N. Karampatziakis, Gradient coding: Avoiding stragglers in distributed learning, Proceedings of the 34th International Conference on Machine Learning, 70 (2017), 3368–3376. |
[15] | H. G. J. Tiesinga, The inverse Galois problem, PhD Thesis, University of Groningen, 2016. Available from: |
[16] | N. J. Yadwarkar, B. Hariharan, J. E. Gonzales, R. Katz, Multitask learning for straggler avoiding predictive job scheduling, J. Mach. Learn. Res., 17 (2016), 3692–728. |