Research article Special Issues

Nonlinear system controlled using novel adaptive fixed-time SMC

  • Received: 15 December 2023 Revised: 04 February 2024 Accepted: 13 February 2024 Published: 26 February 2024
  • MSC : 93C10, 93C40, 93D09, 93D21, 93B52

  • This work introduces a novel adaptive fixed-time control strategy for nonlinear systems subject to external disturbances. The focus pertains to the introduction of the fixed-time terminal sliding mode control (FxSMC) technique. The proposed scheme exhibits rapid convergence, chatter-free and smooth control inputs, and stability within a fixed time. The utilization of an adaptive methodology in combination with the FxSMC yields the proposed strategy. This approach is employed to address the dynamic system in the presence of external disturbances. The results obtained from the Lyapunov analysis will provide insights into the stability of the closed-loop system in a fixed time. In the end, the simulation results are presented in order to assess and demonstrate the effectiveness of the methodology.

    Citation: Saim Ahmed, Ahmad Taher Azar, Ibraheem Kasim Ibraheem. Nonlinear system controlled using novel adaptive fixed-time SMC[J]. AIMS Mathematics, 2024, 9(4): 7895-7916. doi: 10.3934/math.2024384

    Related Papers:

  • This work introduces a novel adaptive fixed-time control strategy for nonlinear systems subject to external disturbances. The focus pertains to the introduction of the fixed-time terminal sliding mode control (FxSMC) technique. The proposed scheme exhibits rapid convergence, chatter-free and smooth control inputs, and stability within a fixed time. The utilization of an adaptive methodology in combination with the FxSMC yields the proposed strategy. This approach is employed to address the dynamic system in the presence of external disturbances. The results obtained from the Lyapunov analysis will provide insights into the stability of the closed-loop system in a fixed time. In the end, the simulation results are presented in order to assess and demonstrate the effectiveness of the methodology.



    加载中


    [1] W. Chen, Disturbance observer based control for nonlinear systems, IEEE/ASME Trans. Mech., 9 (2004), 706–710. https://doi.org/10.1109/TMECH.2004.839034 doi: 10.1109/TMECH.2004.839034
    [2] H. Tajadodi, A. Khan, J. Francisco Gómez-Aguilar, H. Khan, Optimal control problems with atangana-baleanu fractional derivative, Optim. Contr. Appl. Met., 42 (2021), 96–109. https://doi.org/10.1002/oca.2664 doi: 10.1002/oca.2664
    [3] S. Mobayen, K. A. Alattas, A. Fekih, F. F. M. El-Sousy, M. Bakouri, Barrier function-based adaptive nonsingular sliding mode control of disturbed nonlinear systems: a linear matrix inequality approach, Chaos Soliton. Fract., 157 (2022), 111918. https://doi.org/10.1016/j.chaos.2022.111918 doi: 10.1016/j.chaos.2022.111918
    [4] D. Tong, C. Xu, Q. Chen, W. Zhou, Sliding mode control of a class of nonlinear systems, J. Franklin Inst., 357 (2020), 1560–1581. https://doi.org/10.1016/j.jfranklin.2019.11.004 doi: 10.1016/j.jfranklin.2019.11.004
    [5] B. B. Musmade, B. M. Patre, Robust sliding mode control of uncertain nonlinear systems with chattering alleviating scheme, Int. J. Mod. Phys. B, 35 (2021), 2140042. https://doi.org/10.1142/S0217979221400427 doi: 10.1142/S0217979221400427
    [6] S. Singh, A. T. Azar, A. Ouannas, Q. Zhu, W. Zhang, J. Na, Sliding mode control technique for multi-switching synchronization of chaotic systems, 2017 9th International Conference on Modelling, Identification and Control (ICMIC), 2017,880–885. https://doi.org/10.1109/ICMIC.2017.8321579 doi: 10.1109/ICMIC.2017.8321579
    [7] N. Cheng, L. Guan, L. Wang, J. Han, Chattering reduction of sliding mode control by adopting nonlinear saturation function, Adv. Mater. Res., 143-144 (2011), 53–61. https://doi.org/10.4028/www.scientific.net/AMR.143-144.53 doi: 10.4028/www.scientific.net/AMR.143-144.53
    [8] P. V. Suryawanshi, P. D. Shendge, S. B. Phadke, A boundary layer sliding mode control design for chatter reduction using uncertainty and disturbance estimator, Int. J. Dynam. Control, 4 (2016), 456–465. https://doi.org/10.1007/s40435-015-0150-9 doi: 10.1007/s40435-015-0150-9
    [9] S. Ahmed, A. T. Azar, Adaptive fractional tracking control of robotic manipulator using fixed-time method, Complex Intell. Syst., 10 (2023), 369–382. https://doi.org/10.1007/s40747-023-01164-7 doi: 10.1007/s40747-023-01164-7
    [10] Y. Feng, X. Yu, Z. Man, Non-singular terminal sliding mode control of rigid manipulators, Automatica, 38 (2002), 2159–2167. https://doi.org/10.1016/S0005-1098(02)00147-4 doi: 10.1016/S0005-1098(02)00147-4
    [11] L. Yang, J. Yang, Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems, Int. J. Robust Nonlinear Control, 21 (2011), 1865–1879. https://doi.org/10.1002/rnc.1666 doi: 10.1002/rnc.1666
    [12] C. Ton, C. Petersen, Continuous fixed-time sliding mode control for spacecraft with flexible appendages, IFAC-PapersOnLine, 51 (2018), 1–5. https://doi.org/10.1016/j.ifacol.2018.07.079 doi: 10.1016/j.ifacol.2018.07.079
    [13] Z. Hou, P. Lu, Z. Tu, Nonsingular terminal sliding mode control for a quadrotor UAV with a total rotor failure, Aerosp. Sci. Technol., 98 (2020), 105716. https://doi.org/10.1016/j.ast.2020.105716 doi: 10.1016/j.ast.2020.105716
    [14] X. Zhao, Y. Gong, H. Jin, C. Xu, Adaptive super-twisting-based nonsingular fast terminal sliding mode control of permanent magnet linear synchronous motor, Trans. Inst. Meas. Control, 45 (2023), 3057–3066. https://doi.org/10.1177/01423312231162782 doi: 10.1177/01423312231162782
    [15] H. Khan, S. Ahmed, J. Alzabut, A. T. Azar, A generalized coupled system of fractional differential equations with application to finite time sliding mode control for Leukemia therapy, Chaos Soliton. Fract., 174 (2023), 113901. https://doi.org/10.1016/j.chaos.2023.113901 doi: 10.1016/j.chaos.2023.113901
    [16] J. Mishra, Finite-time sliding mode control strategies and their applications, Ph.D. Thesis, RMIT University, 2019.
    [17] G. Tao, Multivariable adaptive control: a survey, Automatica, 50 (2014), 2737–2764. https://doi.org/10.1016/j.automatica.2014.10.015 doi: 10.1016/j.automatica.2014.10.015
    [18] E. Lavretsky, K. A. Wise, Robust adaptive control, In: Robust and adaptive control: with aerospace applications, London: Springer, 2012,317–353. https://doi.org/10.1007/978-1-4471-4396-3_11
    [19] M. A. Attia, A. Y. Abdelaziz, K. Sarita, A. S. S. Vardhan, A. S. S. Vardhan, S. Singh, et al., AVR performance enhancement by using adaptive PI controller, In: A. P. Pandian, R. Palanisamy, M. Narayanan, T. Senjyu, Proceedings of Third International Conference on Intelligent Computing, Information and Control Systems, Singapore: Springer, 1415 (2022), 249–260. https://doi.org/10.1007/978-981-16-7330-6_19
    [20] J. M. R. Chintu, R. K. Sahu, S. Panda, Adaptive differential evolution tuned hybrid fuzzy PD-PI controller for automatic generation control of power systems, Int. J. Ambient Energy, 43 (2022), 515–530. https://doi.org/10.1080/01430750.2019.1653986 doi: 10.1080/01430750.2019.1653986
    [21] M. Y. Silaa, O. Barambones, A. Bencherif, A novel adaptive PID controller design for a PEM fuel cell using stochastic gradient descent with momentum enhanced by whale optimizer, Electronics, 11 (2022), 2610. https://doi.org/10.3390/electronics11162610 doi: 10.3390/electronics11162610
    [22] T. S. Gorripotu, H. Samalla, C. J. M. Rao, A. T. Azar, D. Pelusi, TLBO algorithm optimized fractional-order PID controller for AGC of interconnected power system, In: J. Nayak, A. Abraham, B. Krishna, G. Chandra Sekhar, A. Das, Soft computing in data analytics, Proceedings of International Conference on SCDA 2018, Singapore: Springer, 758 (2019), 847–855. https://doi.org/10.1007/978-981-13-0514-6_80
    [23] H. Yin, B. Meng, Z. Wang, Disturbance observer-based adaptive sliding mode synchronization control for uncertain chaotic systems, AIMS Math., 8 (2023), 23655–23673. https://doi.org/10.3934/math.20231203 doi: 10.3934/math.20231203
    [24] Z. Liu, O. Zhang, Y. Gao, Y. Zhao, Y. Sun, J. Liu, Adaptive neural network-based fixed-time control for trajectory tracking of robotic systems, IEEE Trans. Circuits Syst. II, 70 (2022), 241–245. https://doi.org/10.1109/TCSII.2022.3194917 doi: 10.1109/TCSII.2022.3194917
    [25] S. Ahmed, Robust model reference adaptive control for five-link robotic exoskeleton, Int. J. Model. Identif. Control, 39 (2021), 324–331. https://doi.org/10.1504/IJMIC.2021.123799 doi: 10.1504/IJMIC.2021.123799
    [26] B. Meghni, D. Dib, A. T. Azar, A. Saadoun, Effective supervisory controller to extend optimal energy management in hybrid wind turbine under energy and reliability constraints, Int. J. Dynam. Control, 6 (2018), 369–383. https://doi.org/10.1007/s40435-016-0296-0 doi: 10.1007/s40435-016-0296-0
    [27] B. Meghni, D. Dib, A. T. Azar, S. Ghoudelbourk, A. Saadoun, Robust adaptive supervisory fractional order controller for optimal energy management in wind turbine with battery storage, In: A. Azar, S. Vaidyanathan, A. Ouannas, Fractional order control and synchronization of chaotic systems, Cham: Springer, 688 (2017), 165–202. https://doi.org/10.1007/978-3-319-50249-6_6
    [28] Y. Wang, B. Li, F. Yan, B, Chen, Practical adaptive fractional-order nonsingular terminal sliding mode control for a cable-driven manipulator, Int. J. Robust Nonlinear Control, 29 (2019), 1396–1417. https://doi.org/10.1002/rnc.4441 doi: 10.1002/rnc.4441
    [29] X. Zhang, J. Wu, X. Zhan, T. Han, H. Yan, Observer-based adaptive time-varying formation-containment tracking for multiagent system with bounded unknown input, IEEE Trans. Syst. Man Cybern., 53 (2022), 1479–1491. https://doi.org/10.1109/TSMC.2022.3199410 doi: 10.1109/TSMC.2022.3199410
    [30] Y. Zhao, F. Tang, G. Zong, X. Zhao, N. Xu, Event-based adaptive containment control for nonlinear multiagent systems with periodic disturbances, IEEE Trans. Circuits Syst. II, 69 (2022), 5049–5053. https://doi.org/10.1109/TCSII.2022.3200053 doi: 10.1109/TCSII.2022.3200053
    [31] C. Li, Y. Wang, X. Yang, Adaptive fuzzy control of a quadrotor using disturbance observer, Aerosp. Sci. Technol., 128 (2022), 107784. https://doi.org/10.1016/j.ast.2022.107784 doi: 10.1016/j.ast.2022.107784
    [32] M. Naeem, A. Khan, S. Ashraf, S. Abdullah, M. Ayaz, N. Ghanmi, A novel decision making technique based on spherical hesitant fuzzy Yager aggregation information: application to treat Parkinson's disease, AIMS Math., 7 (2022), 1678–1706. https://doi.org/10.3934/math.2022097 doi: 10.3934/math.2022097
    [33] Z. Zhao, X. Jin, X. Wu, H. Wang, J. Chi, Neural network-based fixed-time sliding mode control for a class of nonlinear Euler-Lagrange systems, Appl. Math. Comput., 415 (2022), 126718. https://doi.org/10.1016/j.amc.2021.126718 doi: 10.1016/j.amc.2021.126718
    [34] A. Khan, T. Abdeljawad, M. Alqudah, Neural networking study of worms in a wireless sensor model in the sense of fractal fractional, AIMS Math., 8 (2023), 26406–26424. https://doi.org/10.3934/math.20231348 doi: 10.3934/math.20231348
    [35] S. Ahmed, H. Wang, Y. Tian, Fault tolerant control using fractional-order terminal sliding mode control for robotic manipulators, Stud. Inform. Control, 27 (2018), 55–64. https://doi.org/10.24846/V27I1Y201806 doi: 10.24846/V27I1Y201806
    [36] J. Zhai, Z. Li, Fast-exponential sliding mode control of robotic manipulator with super-twisting method, IEEE Trans. Circuits Syst. II, 69 (2021), 489–493. https://doi.org/10.1109/TCSII.2021.3081147 doi: 10.1109/TCSII.2021.3081147
    [37] S. Ahmed, A. T. Azar, M. Tounsi, I. K. Ibraheem, Adaptive control design for Euler-Lagrange systems using fixed-time fractional integral sliding mode scheme, Fractal Fract., 7 (2023), 712. https://doi.org/10.3390/fractalfract7100712 doi: 10.3390/fractalfract7100712
    [38] J. Ni, L. Liu, C. Liu, X. Hu, Fractional order fixed-time nonsingular terminal sliding mode synchronization and control of fractional order chaotic systems, Nonlinear Dyn., 89 (2017), 2065–2083. https://doi.org/10.1007/s11071-017-3570-6 doi: 10.1007/s11071-017-3570-6
    [39] M. Gao, L. Ding, X. Jin, ELM-based adaptive faster fixed-time control of robotic manipulator systems, IEEE Trans. Neur. Net. Lear. Syst., 34 (2021), 4646–4658. https://doi.org/10.1109/TNNLS.2021.3116958 doi: 10.1109/TNNLS.2021.3116958
    [40] X. Lin, C. Wu, W. Yao, Z. Liu, X. Shen, R. Xu, et al., Observer-based fixed-time control for permanent-magnet synchronous motors with parameter uncertainties, IEEE Trans. Power Electron., 38 (2022), 4335–4344. https://doi.org/10.1109/TPEL.2022.3226033 doi: 10.1109/TPEL.2022.3226033
    [41] Z. Liu, Y. Zhao, O. Zhang, W. Chen, J. Wang, Y. Gao, et al., A novel faster fixed-time adaptive control for robotic systems with input saturation, IEEE Trans. Ind. Electron., 71 (2023), 5215–5223. https://doi.org/10.1109/TIE.2023.3281701 doi: 10.1109/TIE.2023.3281701
    [42] M. Labbadi, H. El Moussaoui, An improved adaptive fractional-order fast integral terminal sliding mode control for distributed quadrotor, Math. Comput. Simul., 188 (2021), 120–134. https://doi.org/10.1016/j.matcom.2021.03.039 doi: 10.1016/j.matcom.2021.03.039
    [43] Z. Anjum, H. Zhou, S. Ahmed, Y. Guo, Fixed time sliding mode control for disturbed robotic manipulator, J. Vib. Control, 2023. https://doi.org/10.1177/10775463231165094 doi: 10.1177/10775463231165094
    [44] J. Zhang, T. Chai, Proportional-integral funnel control of unknown lower-triangular nonlinear systems, IEEE Trans. Autom. Control, 2023, 1–7. https://doi.org/10.1109/TAC.2023.3330900 doi: 10.1109/TAC.2023.3330900
    [45] J. Zhang, T. Yang, T. Chai, Neural network control of underactuated surface vehicles with prescribed trajectory tracking performance, IEEE Trans. Neural Neural Learn. Syst., 2022, 1–14. https://doi.org/10.1109/TNNLS.2022.3223666 doi: 10.1109/TNNLS.2022.3223666
    [46] G. E. M. Abro, S. A. B. M. Zulkifli, V. S. Asirvadam, Z. A. Ali, Model-free-based single-dimension fuzzy SMC design for underactuated quadrotor UAV, Actuators, 10 (2021), 191. https://doi.org/10.3390/act10080191 doi: 10.3390/act10080191
    [47] X. Jin, W. Che, Z. Wu, H. Wang, Analog control circuit designs for a class of continuous-time adaptive fault-tolerant control systems, IEEE Trans. Cybern., 52 (2020), 4209–4220. https://doi.org/10.1109/TCYB.2020.3024913 doi: 10.1109/TCYB.2020.3024913
    [48] S. Ahmed, A. T. Azar, M. Tounsi, Adaptive fault tolerant non-singular sliding mode control for robotic manipulators based on fixed-time control law, Actuators, 11 (2022), 353. https://doi.org/10.3390/act11120353 doi: 10.3390/act11120353
    [49] Z. Han, K. Zhang, T. Yang, M. Zhang, Spacecraft fault-tolerant control using adaptive non-singular fast terminal sliding mode, IET Control Theory Appl., 10 (2016), 1991–1999. https://doi.org/10.1049/iet-cta.2016.0044 doi: 10.1049/iet-cta.2016.0044
    [50] F. Leyla, Z. Khaled, S. Abdelkrim, B. I. Khalil, D. Mohamed, Adaptive sliding mode control vibrations of structures, In: C. Fischer, J. Náprstek, Vibration control of structures, IntechOpen, 2021. https://doi.org/10.5772/intechopen.98193
    [51] J. Huang, G. Xie, S. Gao, F. Qian, Adaptive $H_{\infty}$ observer-based sliding mode control for uncertain fractional-order nonlinear systems, IEEJ Trans. Electr. Electron. Eng., 18 (2023), 1127–1135. https://doi.org/10.1002/tee.23811 doi: 10.1002/tee.23811
    [52] R. M. Arasi, S. Padma, Adaptive nonlinear sliding mode control for DC power distribution in commercial buildings, Intell. Autom. Soft Comput., 36 (2023), 997–1012. https://doi.org/10.32604/iasc.2023.032645 doi: 10.32604/iasc.2023.032645
    [53] M. Golestani, S. Mobayen, H. Richter, Fast robust adaptive tracker for uncertain nonlinear second-order systems with time-varying uncertainties and unknown parameters, Int. J. Adapt. Control Signal Process., 32 (2018), 1764–1781. https://doi.org/10.1002/acs.2943 doi: 10.1002/acs.2943
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(862) PDF downloads(126) Cited by(10)

Article outline

Figures and Tables

Figures(16)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog