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H-Toeplitz operator S, with respect to the orthonormal basis of ©,. Subsequently, we characterized the
compactness of S, in terms of the symbol ¢. Furthermore, we developed a new method to investigate
the algebraic properties of H-Toeplitz operators, including self-adjointness, diagonality, co-isometry,
partial isometry as well as commutativity.

Keywords: Dirichlet type spaces; H-Toeplitz operators; compactness; self-adjointness
Mathematics Subject Classification: 47B07, 47G10

1. Introduction

Let D be the unit disk in the complex plane C and dA = %dxdy be the normalized Lebesgue measure
on D. Set
dA(2) = (t + 1)(1 = |z)'dA(z), 1> ~1.

The Sobolev space L,z’1 is the completion of the space of smooth functions f on D such that

2 2 1/2
||f||t={fodAz +fD( )dAt} < oo,

Clearly, Lf’l is a Hilbert space with the inner product

Cron Foan s ({07 07T
<f,g>t—j];fdAthgdAz+fD[az %Y az] JA.

The Dirichlet type space D, consists of all analytic functions f € Ltz’1 with f(0) = 0. The space D,
has been widely investigated; see [1-4], for example. Note that D, is a closed subspace of Lf’l and
hence, D, is a Hilbert space. It is well-known that the Dirichlet type space D, corresponds to several
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important spaces at specific values of #: the Hardy space (r = 1), the Dirichlet space (¢t = 0), and the
weighted Bergman space (¢ > 1).
Let N be the set of all positive integers. For z € D and k € N, let

VItk+1+1) ,

er(2) = ———=2»

VEE!'T(2 + 2)
then {e;};, forms an orthonormal basis of D;. ©; is a reproducing kernel space with reproducing kernel
given by

Kiw) = > exw)exl?) =

k=1

A Lk+t+1)

e W', 1.1
LIkkT(+2) (D

where ' denotes the gamma function.
Let P be the orthogonal projection from L>' onto ®,, which by the property of reproducing
kernel K|, can be expressed as

P(fYw) ={f.K}), weD (1.2)
forall f e L.
Denote P
_ op 0

where the derivatives are taken in the sense of distribution.

For any ¢ € M, the multiplication operator M, : L' — L[> is defined as M (f) = ¢f for f € L.
Given ¢ € M, the Toeplitz operator T, : D, — D, and the Hankel operator H, : ©;, — D, with
symbol ¢ are defined by

T,=PM, and H,= PM,J,
respectively. Here, J : ®, — D, denotes the flip operator given by J(e;) = e for all k € N, where
D, = {? (f e D,}. It can be checked that T, and H, induced by ¢ € M are bounded operators on D;.

The harmonic Dirichlet space ®, is the closed subspace of L,z’] consisting of all harmonic
functions f with f(0) = 0. It is well-known that ©, = D, @ E Consider the dilation operator
K : ©, - D), defined by

K(ex) = e and  K(exy-1) = e

for all k € N. It can be observed that K is bounded on D, with ||K|| = 1. Moreover, the adjoint K* of
the operator K is given by
K*(er) = ey and  K'(ey) = ey

for all k € N. Hence, K*K =1 on ©, and KK* =1 on D,,.
With these notations, we introduce the H-Toeplitz operator on the Dirichlet type space D,, which is
defined as follows.

Definition 1.1. For ¢ € M, the H-Toeplitz operator S, : D, — D, with symbol ¢ is defined by

So(f) = PMK(f)
forall f €D,

AIMS Mathematics Volume 9, Issue 7, 17847-17870.



17849

The H-Toeplitz operator is closely related to both the Toeplitz and Hankel operators. In fact, for any
¢ € Mand k € N, we have

So(exn) = PM,K(exy) = PMy(er) = Ty(er) (1.3)
and
So(en-1) = PM,K(ey—1) = PMy(ey) = PM,J(er) = Hy(ep). (1.4)

Motivated by the notions of Toeplitz, Hankel and Slant Toeplitz operators, Arora and Paliwal [5]
introduced the H-Toeplitz operators on the Hardy space, where they established the necessary and
sufficient conditions under which H-Toeplitz operators become partial isometric, co-isometric, Hilbert-
Schmidt and hyponormal. Moreover, they demonstrated that any H-Toeplitz operator is unitarily
equivalent to a direct sum of a Toeplitz operator and a Hankel operator. The concept of H-Toeplitz
operators is significant because it connects closely with a class of Hankel operators and a class of
Toeplitz operators where the original operators are neither Hankel nor Toeplitz.

In recent years, H-Toeplitz operators on the Bergman space have been investigated by some
specialists. Gupta and Singh [6] initiated the study of H-Toeplitz operators on the Bergman space,
where the fundamental properties of the H-Toeplitz operators have been systematically studied, such
as compactness, Fredholmness, co-isometry, partial isometry and commutativity. Later, Kim and
Lee [7] established the contractivity and expansivity criteria for H-Toeplitz operators. Moreover,
Liang et al. [8] studied the commutativity of H-Toeplitz operators with quasi-homogeneous symbols.
In the recent paper [9], Ding and Chen characterized when the product of two H-Toeplitz operators
with a bounded and a quasi-homogeneous symbol, respectively, becomes an H-Toeplitz operator. They
also characterized when the product of an H-Toeplitz operator and a Toeplitz operator equals to another
H-Toeplitz operator with bounded harmonic symbols.

It is well-known that Hardy, Bergman and Dirichlet spaces are the three most important classical
Hilbert spaces of analytic functions in the unit disk. Despite the fruitful results achieved in the realm
of H-Toeplitz operators on Hardy spaces and Bergman spaces, the theory of H-Toeplitz operators on
Dirichlet spaces is largely unexplored. On the other hand, there is no any result in the literatures about
H-Toeplitz operators on the weighted versions of these classical spaces. For the full generality and
potential applicability, the main purpose of this article is to fill in these blanks by studying several
fundamental properties of H-Toeplitz operators on the Dirichlet type space.

Before we mention the novelties of our work, it is worthwhile to recall from [10, 11] that the study
of Toeplitz operators and Hankel operators on the Dirichlet space are essentially different from that on
the Hardy space and the Bergman space. Moreover, nontrivial self-adjoint Toeplitz operator with C!-
symbol and non-scalar Toeplitz operator satisfying T, = T3 do not exist on the Dirichlet space [12-14].
Since H-Toeplitz operators connect closely with Hankel operators and Toeplitz operators, it is natural
to predict from the results mentioned in the literatures above that many techniques in the study of H-
Toeplitz operators on the Hardy space and the Bergman space are not available on the Dirichlet space.
For instance, one of the important steps to establish many properties (e.g., co-isometry and partial
isometry) of an H-Toeplitz operator on the Hardy space and the Bergman space is using the adjoint
of the H-Toeplitz operator, where the adjoint can be expressed as a composition of several specific
operators. However, this cannot be done on the Dirichlet type space. To overcome this difficulty, our
strategy is to establish an equivalent form of the Dirichlet Toeplitz operators under unitary conditions.
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This new form behaves much better than the original and avoids the need to compute the adjoint of the
H-Toeplitz operator.

This paper is organized as follows. In Section 2, we obtain the matrix representation of the H-
Toeplitz operator with the polynomial harmonic symbol under the orthonormal basis of the Dirichlet
type space ©,. In Section 3, we mainly characterize the compactness of H-Toeplitz operators.
In Section 4, several algebraic properties of H-Toeplitz operators are investigated, including self-
adjointness, diagonality, co-isometry, partial isometry as well as commutativity.

2. The matrix representation of the H-Toeplitz operator

In this section, we will present the matrix representation of the H-Toeplitz operator induced by
the polynomial harmonic symbol under the orthonormal basis {e;};, of the Dirichlet type space D;.
Leveraging the established relationships between the H-Toeplitz operator and both the Toeplitz and
Hankel operators as outlined in Eqgs (1.3) and (1.4), we will initially provide the matrix representations
for the Toeplitz and Hankel operators.

We begin with the following lemma which will be needed in subsequent results.

Lemma 2.1. Suppose t > —1 and z € D. For any n, m and k € N, the following identities hold in the
Dirichlet type space D;:

nn!T(t+2) i
—— ifn=m,
(a) (", 7"y, ={Tmn+1t+1)
0, otherwise.
+m)! I'(t+2
n f=n m(n + ml I ), ifk=n+m,
(b) T", 7" =0and (7", 7", ={ Th+m+1t+1)
0, otherwise.
m\I'm-n+t+1) .
—n <, lfm>n,
(c) PE'7") =3 (m—-n)!T(m+1t+1)
0, ifm<n.

Proof. By integration in polar coordinates, we have

(@, 2" = nm(1 +1) f 27N - 1) dA2)
D

1
=n’(1 +t)f (1= r)dr
0

nn!T'(t+2)

——~ ifn=m,
=T(n+t+1)

0, otherwise.

This proves (a). Now, we show (b) in a similar fashion. The first equality is obvious. For the second
one, we deduce that

k=n _m\ _ a(zkzn)(aim
(77,2 >z—fD 5.\ oz dA(2)
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= km(1 +1) f 27171 - 2P dAG)
D

1

=m(1 + )(n + m) f PN = pdr
0

{m(n +m)! T'(t+2)

ifk=n+m,

Tn+m+t+1)°
0, otherwise.

Next, we show equality (c). By (1.2) and integration in polar coordinates, we get

W) (OK!
PE'Z") = (7", K'Y, = f a(vgw )( 5(W))dA,(w)
D w w

I'(k 1
=m(1 +t)f T 1(k 1 lg(lif;)rk')zkwk 1)(1 — W) dA(w)

Fk+r+1) k-] 2
=m(1 +t)f "= 1( & )(1 [w|*)' dA(w)
= F(t+ 2)k!

1
F?tn+ 21;(;1t—+n)?zm_n fD WP (1 = [wl*) dA(w)

_ 1
m(1 +t)£§'t”+ 2’; (;Hni?z’"‘” f PN = rYdr
ot

=m(l +1)

m!'I'm-n+t+1) )
m=nifm > n,
={m-n!Tm+1r+1)
0, ifm<n.
This ends the proof of Lemma 2.1. O

According to Lemma 2.1, we can find the matrix representations of Toeplitz operator T, and of
Hankel operator H, on D, with symbol

[>9)

w(z) = Zaizi + Zbﬁj eM, zeD,a,b;eC.

i=0 =1
For any m, n € N, the (m,n)-th entry of the matrix representation of 7T, with respect to the
orthonormal basis {e;};7 , of D, is given by
(Tolen), en), = (PMy(en), en), = (pen em),
VI(n+t+ DIm+t+1)

- (7", 7")
Vomn!m!'T'(t + 2) '
Th+t+ DIm+t+1)[w , = ;
_ V@ )L(m ) Zai<zz+n,zm> +ij<zjzn,z
Vamn!m\T(t +2) pary T
Vvmm!T(n+t+1) .
Ayn, 1fm>n,
_ ) Vnn!lT(m+1+1) 2.1

Vmn!'T(m+t+1)
Vvom!T(n+1t+1)

em, 1 m < n.
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Therefore, the matrix representation of T, is explicitly given by

ap

2
a
V2+t 1
32

¥ VGB+H)(2+1)
4+/6I'(2+1)

a2 VG 4

26

VI(5+1)

V(4+1)(3+1) a

and the matrix representation of its adjoint 77, is given by

2

o Vi
1 5 —_
vl o
TF=|—-2_p 23
o = | VG 72 Narad
VoI 2+ 7 \f
3 (4+z)(3+z

VI'(5+1)

Va+t

V2 V6L (2+1) b
VG2 O2 NG
V2 40 6y,
Novhd N@E DG+ 2
a V3 b
0 i+t 1
4
Vi 41 o
3V2  — 4T+ —
VG2 2 NYGE)
3 — 26 @
26+ ! @G+ 2
a 4oy
0 V26101
Eipy ap

1, (2.2)

Next, we find the matrix representation of the Hankel operator. The (m, n)-th entry of the matrix
representation of H, with respect to the orthonormal basis {e;};>, of D; is given by

<H¢(en), em>t = <PM¢J(en),em>t =

(PM (@), en), = (pen. en);

VIin+t+ DITm+t+1), _,
= (@', 2"),
Vomn!m!'I'(t + 2)
NITn+t+ DI(m+1+1) -
= 777" t b;
Vamnlm! Tt + 2) ; Z g

J=
_(m+m)!VmITm+t+ DIm+1+1)

—]+n m

man (2.3)
Vaon!m!T(m+n+t+1)
for m, n € N.
Thus, the matrix representation of H,, in explicit form is given by
2, YUNTEDTCTD 51VTGTH T4
2+t 42 (3+z) \/2T 3V2T(5+1) 2 VA T(6+1)
6 a SINT(E+0)T(3+1) 6! VI'(5+1) T (3+1)
G Vet 3 (4+t>(3+t) 3V2T(6+1) 2 NAIT(T+1)
2 J IR e B IRV € £5) r(4+t) 6! T(4+1) 7 VTG T+ 2.4)
¢ = | @+ y2Td+) 4 2V2T(6+1) 31T (7+1) 8 V3T(8+1) :
SN, SVIGH)TGH) N NT@E DTG 81T(5+1)
G+ V6T 3 26T (7+1) 6V3I(8+1) 41T (O+1)

Note that the matrix of Hankel operator H, is independent of co-analytic term 7, b ij of the symbol

AIMS Mathematics
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function ¢. By a direct calculation, the matrix representation of its adjoint H;, is of the following form:

2 = 6 - MO — SV —-
2+1 42 Gen Vet 3 @)\2t@n Y Grnvercan 5
34t R SIWIGHTED ——  OVIGHDIGH) =
G Ve @03+ 4 3V206+) 2V6T(7+1)
B = | ATETem —  SWIETEH = 6! T(4+1) — 70 NFE) T —
¢ = | 3varen 4 3T(6+1) 5 31T (7+1) 0 6 V3T(8+1)
SINTG+HTQR+t) —  6!NIT' G5+ T'B+1) — 7! NT 5+ T'(4+1) — 8! T'(5+1) —
2VAIT(6+1) 2 VAIT(7+1) 8V3r@®+r) ! 4ITO+n) 8

Observe that H;, = H% for p(z) = X2, a7 + Z;‘;l b_ij (each b; can be zero), where Hg denotes the
transpose of the matrix representation of Hz.

Next we find the matrix representation of H-Toeplitz operator S,. Clearly, it follows from (1.3),
(1.4), (2.1) and (2.3) that

Tn+t+1
Vmm!T(n )a s 1fm>n,

(Spern).en) = (Tolen).en) = \\//:1’;‘1!! T (2.5)

Vom!T(n+1t+1)

n—mo»s lfm < n’

and

! r HI 1
(Suteminen) = (Aiten.ea) = P S DT B 20

where m, n € N. Thus, the matrix representation of S, with respect to the orthonormal basis {e;};”,
of D, is given by

2 3 1
24 @ ;IO () 231 a3 7 b
Givan B Vo 4 @G A o
R eE I 32 SWIGETE |, 3, o
S¢ = | Grvar@an ™ Ve @ " aviren B Wf/ﬁ) 1 , (2.7)
51T2+D) 4~BT(2+D) 6! TG+ (40 26
5+1) VoI G1p) 95 Gy B 26T+ %0 Varngen 2

and the matrix representation of its adjoint is given by

[ 2 o 6 an 4T+ aa SINT2+D a<
2+1 2 Ginvasnt 3 @iV2T@n 4 GrneIGin
— o — 3V — 4B+ —
4o Vo 1 Vo 42 VTG
S* = 3 a 12 —  SINTGB+)T(4+1) — 6!V (B+)I(5+1) —
¢ T | Ginvar 3 @Gy 4 226+ 2V6T(7+1)
L. an _3 g _2¥6 =
Nhe 0 26+ V@G 2

Remark 2.1. It can be seen from (2.2), (2.4) and (2.7) that the matrix representations of the Toeplitz
operator T, and the Hankel operator H, can be obtained by deleting every odd and even column of
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the H-Toeplitz operator S ,, respectively. The matrix of S, is an upper triangular matrix if the symbol
¢ € Mis co-analytic. However, it cannot be lower triangular. Additionally, it is worthwhile to mention
that an n X n Dirichlet type H-Toeplitz matrix defined as follows has 2n degree of freedom rather
than n*. Consequently, for large n, it is relatively easy to solve the system of linear equations when the
coefficient matrix is a Dirichlet type H-Toeplitz matrix.

Definition 2.1. Let ¢(z) = X2 aiz’ + X7, b7 € Mwithz € D and a;,b; € C. We define an infinite
matrix (c,,,) as a Dirichlet type H-Toeplitz matrix if its (m, n)-th entry satisfies the following relation:

Vmm! T +1+1)

am
VINT(m+t+1)

MTon+i+1
_ | ymilon+i+ D), ifn=2landm <1,
Vim!T([+1t+1)

I+m)VmI(+t+DI(m+t+1)
VI!m!'T(im+1+t+1)

where m, n and | are all in N.

I ifn=2land m > I,

Cmn

Am+ls l‘fnzzl_ 1’

3. The compactness of H-Toeplitz operators

This section is mainly concerned with the compactness of H-Toeplitz operators. It is well-
known that compact operators behave like operators on finite-dimensional vector spaces and play a
fundamental role in operator theory.

The following proposition follows easily from the definition of the H-Toeplitz operator S ..

Proposition 3.1. Suppose that a,b € C and ¢, € M. Then

(Cl) Su¢+b¢ = aS¢ + bSl/,,'
(b) S, is a bounded linear operator on D, with ||S .||, < ||g—f||oo + [¢pl]co-

Let L? (dA;) be the weighted Bergman space on D, which consists of all analytic functions in
L*(D, dA;). We use the notations || - ||, and (-, -), to represent the norm and inner product in L2 (dA,),
respectively.

Similar to the proof of [15, Lemma 12], we have the following result.

Lemma 3.1. The identity operator I from D, into L2 (dA,) defined by 3f = f for any f € D, is compact.

From Lemma 3.1, we conclude that for any sequence {f;}; converging weakly to 0 in D, (write
Jr % 0 for short), the sequence {||f|l»}, converges to 0 as k — oo.
The next lemma will be utilized in the compactness of H-Toeplitz operators.

Lemma 3.2. For any ¢ € M, S|, — K*P,My is compact on D,, where Py, is the orthogonal projection
from L*" onto Dy,

Proof. For any f, g € D,, we have
(87— K*PiMp)(f), ), = (f.54(0)), — (K PiM(f), 8),
(f. PM.K(2)) - (PuM5(f). K(2)),

AIMS Mathematics Volume 9, Issue 7, 17847-17870.
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=/, soK(g»t —(of, K(8)),
af 8f A(K(g))
K(g )— P
2 2

07’ 0z
< fé’_<p a(K(g>>> < of a(K(g))>
oz [, 8z 9z 2
of d¢ dp A(K(g))
<a "0z ()> <f’a_z 9z >2'

Since ©; is contained in Lfl (dA,;), it follows that

. f O dp O(K(g))
K(% -K PhME)(f),g> ‘ < <0_ a—K >2 Kf _8—z>2
‘ of Al dp I(K(g))
ozl Moz oz |l

< lleellpe (Ilfllt IIK(g)Ilz + 11 IKIl,)
< il (AT Mgl + 11£112 N8l

890'}

Let {fi}x be any sequence converging weakly to 0 in D,. Takmg Jf = Jfrand g = (S, — K*"P,Mp) fi in
the above, we obtain

ls; - K PiM £}
< llgllpg [l |S = K™ Pubp) fill, + Wfill, [[(S 5, = K*Pubp) £ ]

where
090

lloll o = esssup max{
zeD

Note that S, - K*P,M3) fi % 0in D, as k — oco. It follows from Lemma 3.1 that ||f;|l, and
(S = K*PyuMp)fi||, — 0as k — oo. Therefore,

ls: - K*PhMa)fk”t -0

as k — oo, which implies that S, — K*P, M5 is compact on D,. This completes the proof of the
lemma. O

Remark 3.1. Ler P, denote the orthogonal projection from L*(D,dA) onto the harmonic Bergman
space L;. We have known that the adjoint S » of an H-Toeplitz operator S, is equal to K*Mg (resp.,
K *Iv’hMg) on the Hardy space [5] (resp., Bergman space [6]). However, there is no analogues identity
on the Dirichlet type space. The situation is different from that of Hardy space and Bergman space.

Lemma 3.3. [16, Proposition 7.2] If ¢ € L'(D,dA,) is harmonic, then TS‘, is compact on L? (dA,) if
and only if ¢ = 0.

We apply the above results to show the compactness of the H-Toeplitz operator on D,.
Theorem 3.1. Suppose t > —1 and ¢ € M is co-analytic. Then, S , is a compact operator on D, if and

only if ¢ = 0.

AIMS Mathematics Volume 9, Issue 7, 17847-17870.
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Proof. If ¢ = 0, then S, is trivially compact on D,.
Conversely, assume that S, is compact on D,. We are going to show that ¢ = 0. Otherwise, if
¢ # 0, then Tg, is not compact on Lﬁ (dA,) by Lemma 3.3. Hence, there is a sequence {f;}; C Lﬁ (dA,),

Ifill, = 1, fi = 0 such that ||T,(f)||, /> 0 as k — co. Thus, [lgfill, 7 O, that s,

f el 1fil® dA, £ 0
D

as k — oo.
Note that S, is compact on D,, so is S;’; by [16, Theorem 1.16]. We deduce that K*P, M is also
compact on D, by Lemma 3.2. This implies that § ,K* P, Mg is compact on D,. Let

Fy 1=f0fk(W)dw,

then Fi, — 0 in D, and ||Fl|, = 1. So, ||S K*P,M5(Fy)||, = 0, that s,
it Fill, 0

as k — oo. Thus, we have

(16 Fi i) | < gl ol 1Pl = [[lgP Fol|, - 0

as k — oo. However,

(e’ Fr) oF
<|<)0|2 FkaFk>t =< Fra— 6zk>2

2 OF F. OF
<Fk‘9|90| ,Q> +<|¢,2M h>
2 2

0z 0z 0z 0z

Op
<¢Fka—zafk>2 + <|90|2 fk’fk>2 # 0,

since
dp >
oFi - Ji) | < Ml 1l MLell, — O
< 2

and

(168 fi ), = [ 1eF AP da, 0

D

as k — oo. This contradiction shows that ¢ = 0. This ends the proof of Theorem 3.1. i

Lemma 3.4. Suppose t > —1 and z, w € D. The dilation operator K : D, — Dy, satisfies

[

VIQRk+t+ DIk +t + 1)_2kwk N Z VIQk+0DI(k+1t+1) Skl
kI(t + 2) V2 (2k)! k! ¢ = TI'(t+2) Vkk! 2k - 1) 2k — 1)!Z .

K(KD(w) = >
k=1

AIMS Mathematics Volume 9, Issue 7, 17847-17870.
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Proof. For z,w € D, by (1.1) and the definition of K, we obtain

[

K(KDHw) = " ex(@K(ex)(w) + Z ex 1 @K (exi1)(w)

k=1

= Z exn(2)er(w) + Z ex1(2) ex(w)

Z VIQk+t+ DI(k+1t+ 1)_2kwk
- KT+ 2) V2Rl

VIQE+DTh+ 1+ 1) 1
* ) P,
H(t+2) VKT 2k — 1) 2k - T)!

This finishes the proof of the lemma. O

Fort > —1 and z, w € D, denote
H(w) = KE)(w),

where
Kl(w)

[

is the normalized reproducing kernel of ®,. Let dD be the boundary of the unit disk D. Next, we will
discuss the boundary behavior of A..

ki (w) =

Lemma 3.5. Fort > 0 and z € D, we have h; — Qas z — 0D.

Proof. For t > 0, by the Stirling’s formula, we have

2 NTk+1+1) o Lk + 1)
Kt — Kt’ Kt — Kt — 2k Zk , ]
” Z”’ < z Z>t 2 = kk!F(t+2)|Z| k'F(Z) g (1 - Izlz)t G-
where the notation “ ~ ” is used to denote that the ratio of the two sides tends to 1 as k — oo.
For t = 0, we have
2 lz |2k 1
”Ké”z - <Kl Kl = K(2) = Z 1 — Iz
We conclude that
K(X!
M= K = T2 0
I,
as z — 0D. O

Proposition 3.2. Suppose t > 0 and ¢ € M. Then, S, is not bounded below on D,.

AIMS Mathematics Volume 9, Issue 7, 17847-17870.
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Proof. Given z € D, by the dominated convergence theorem, Lemma 3.5, and (3.1), we have

2
IS DI
2 2
= [P, < [l
2 a(eh)|” o) |
= h. dA Z | |dA
fD(’DZ ’+fD( ow +|aw ’
2
_ f(phf dAtz+f v )6¢(w) o(w) Z VIQk+t+ DIk +1+ DZZk 1 daow)
D K|, & T@+2)V2kI2h)!
2
fht( )590(W) <P(W)Z VKT Qk+ )Tk +1+1) 21551 4L (w)
K|, & T +2) VET 2k = 1) 2k = D!
-0
as z — 0D, from which we deduce that S, is not bounded below on D;. O

Recall that for a bounded linear operator 7 defined on a Hilbert space, the approximated point
spectrum of operator 7 is defined as the set

0ap(T) ={1 € C: T — Al is not bounded below} .

See [17]. Thus, for the H-Toeplitz operator S, defined on ©;, Proposition 3.2 implies that 0 € 0,,(S )
fort > 0and p € M.

At the end of this section, we explore the question of when an H-Toeplitz operator is Fredholm. For
more details concerning Fredholm operators; see [18, CHAPTER XI §2].

The subsequent proposition illustrates the property of the Fredholm operator on ©; from the
perspective of weakly convergent nets.

Proposition 3.3. Suppose t > —1. If T is a Fredholm operator on D, then, there is no {h_} ., of unit

vectors in D, such that h, % 0as z — 6D and lim IThl, = 0.

Proof. Suppose there is {h_},., of unit vectors in D, such that A, % 0as z — dD and lim ITh,|, = 0.
We shall provide a proof by contradiction. Since 7T is Fredholm, there exists a bounded operator B and
a compact operator £ on D, such that BT = I + E. Then,

|1 = 1IBT || = |kl = IBThl,| < IER], — 0

as z — 0D by the compactness of E. This implies that ||BT k.||, — 1 as z — 0D, which contradicts to
the assumption lim ||TA,]|, = 0. O

Theorem 3.2. Suppose t > 0 and ¢ € M. Then, there is no nonzero H-Toeplitz operator S, on D,

which is Fredholm.

Proof. Assume that the H-Toeplitz operator S ,, is Fredholm on D, for some ¢ € M. Take the net {kg} -
2

of normalized kernels on ©,. Then, k. — 0 weakly and also ||S wk;”f — 0 as z — dD by the proof of
Proposition 3.2. This contradicts the fact that S, is a Fredholm operator by Proposition 3.3. It follows
that S, is a Fredholm operator on ©; if and only if ¢ = 0 in M. O

AIMS Mathematics Volume 9, Issue 7, 17847-17870.



17859

Recall that the essential spectrum of a bounded linear operator 7 is given by
.(T)={1 € C: T - Al is not Fredholm} .

Fort > 0 and ¢ € M, we derive that the essential spectrum of H-Toeplitz operator S, on D, is nonempty
by the above theorem, since 0 € o.(S,) in this case.

4. Algebraic properties of H-Toeplitz operators on D,

In this section, we investigate some algebraic properties of H-Toeplitz operators on ©,, which
include self-adjointness, diagonality, co-isometry, partial isometry as well as commutativity.
Let

$ = {goeM:(p(z) = Zaizi+ijZj, z€Danda;,b; EC}.
i=0 =1

In the next theorem, we develop a new method to demonstrate that a nonzero H-Toeplitz operator S ,
induced by ¢ € $ can never be a self-adjoint operator on D,.

Theorem 4.1. Lett > —1 and ¢ € 9. Then the H-Toeplitz operator S, is self-adjoint on D, if and only
ifp=0.
Proof. Let ¢ € $ defined by ¢(z) = Y2, aiz' + PIPY J-Zj , where z € D and a;,b; € C. The backward
implication is trivial. Now, suppose that S, is self-adjoint. Then (S, —-S,)f = 0 for any f € D,. Taking
f(2) = ei(z) = z, we apply the reproducing property of K!, Lemma 3.4, and (1.4) to get
Sy(en(@) = (Syle). KI) = (er, S (KD)
= (e1, PMK(KD)) = (e1, ¢ K(KD)

(w) dA,;(w)

(k)
- D

ow

———0 O(K(K!
=fDK(K£)(W)—(p(W)dAz(W)+f¢( ) ® ( ))( ) dA(w)

_f Zza__” (Z \/F(2k+t+1)1“(k+t+1) -
IR V2N TG+ )2

[ee)

N Z VEQk + Ok + 1+ 1)
STt +2) VEk! 2k = 1) (2k - 1)

S wv— | VTQk+t+ DIk +1+1) kel
- bw! dA
¥ fn(;“ v +]Z:; " ](; [+ 00K )

(o)

_ Z (k+ 1) Nk = DITQk+ DT+ 1+ Dt s Vi+2ag ,
- Tk +1+2)V2k— 1) 2k - 1) ¢ 2

Z2k_ 1 Wk) dA[(W)

k=1

.\ i VEITQk + 1+ 3) by 22,
V2(k+ 1)k +2)!T(k +1+2)
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and
So(e1)z) = Hy(e1)(z) = PM,J(e1)(z) = P(90€_1)(Z)
_ <90€_1, K§>[ _ f 3(9061)
D

_ N i—1— M vl

= fﬂ)(; ia;w w)[k:1 KT 2) dA,(w)

_ C (k+1) aks k

— k+t+1

Therefore,

0

(S, ~ SN
(\/l+2a_0_ 3a3) ,

2 r+3
.\ S ((k+1) \/(k—l)!F(2k+t)1"(k+t+1)W_2ka2k)Z2k_1
£ Tk +1+2)V2k—1)2k - 1)! 2k +t
.\ ( VKITQ2k + 1+ 3) by, _(2k+3)a2k+3] w2,
H\N2(k+ 1)k +2)! Tk +t+2)  2k+1+3

This implies that

— 6613
_ s 4.1
N e T U] “-D

G = 2kT(k+1t+2)VQ2k — 1) 2k — 1)! wn keEN. 42)
k+1D)QRk+0) Vk-DITQk+)T(k+1+ 1)

and

B+ Dk 3Tk 142
by = V20k+ 1)k +3)! TGk + 1+ ) trns, keEN. 4.3)
Qk+1+3) VOTk+113)

Taking f(z) = ex(z) = ‘/ZT z* and by the reproducing property of K’, Lemma 3.4, and (1.3), we
deduce that

S3(e2)(2) = (Sy(e2), Ki) = (€2, So(KD)

= (e2. PM,K(K )) (e2, - K(KD)
a t
= f % () 2wy o
D —_—
= Vt+2 fw—(w)K(K’)(w)dA w)+ Vi+2 fwgo( ) oK (w ))( ) dA;(w)
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N S Y S ANTk+ i+ DLk + 7+ 1) 5,
= 2 ; 1 2k
o DW(;mW )(; kL(t + 2) V2 k) k! e

by Ik + 0Tk + 1+ 1)
£t +2) VKK 2k — 1) 2k — 1)

+ Vt+2Lw[Za_,-W+Zb_jwa
y [i VIQk+1+ DIk +1+ D it
T(t +2) V2 2R K
—a_z2+i k+D)(k+2)VETQRk+ Ok + 1 + D@2
Tk +t+3) VEQKk = 1) 2k — 1)

L M+5)a VLG +3)a A Z NG+ 2Tk +1+ S)b_kzz(k+2)
AVBOTG D) o (k+2)VZ 2k + B! ’

Z2k_ 1 Wk) dAt(W)

J dA,(w)

and

S(e)(@) = Tyle)(2) = PMy(en)(@) = (ger. KL
3(9061)

-5
= - = IFtk+t+1) 4
= igi_w ™+ ) bw ( — W dA,(w)
fD(; 1 ]Z MN& eTary ”
= Z ak_lzk.
k=1

Thus, we obtain

0=(S; - Se)e)2)
46Tt +2)
((k + Dk +2) VRITQR+ DTR* 1+ Dz -\ ey
Tk+1t+3)VkQk—1)2k— 1!

(\/(t+2)r(2k+l‘+5)b_k_a ) 23k+2)
k+2Nz@R+ D )T

+

—+

s 1D

>~
Il

1

This implies that

a; =a,

__4\eTa+D)
N v R

Q
o

4.4)

4.5)
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Tk +1t+3)VkQ2k—1)(2k - 1)!

Qrin = Aop keN, 4.6
T Gk Dk +2)VRTk+ DT+ 1+ 1) 7 (4.6)
and
_ 2) V2 2k + B!
b= KFDV2CKAD ke 4.7

ViE+2)TQRk +1+5)

By (4.1) and (4.5), we get ay = a3 = 0. This together with (4.2), (4.3), (4.6) and (4.7) further implies
that

a;=0,b;=0, foranyie€{0JUN-{1} and jeN. (4.8)

It remains to show a; = 0. Taking

V(+2)( + 3)Z3

f@) =e3(2) = 2

a similar argument shows that

S ,(e3)(2) = <S:;(€3)’ K§>, = <e3’S¢(Kz)> = <e3, PM¢K(K£)>I

¢ K(K?)
= (e3¢ K(KD), = f 0 (3 )#(w)d&(w)

el 22 () KR dA, )

, MO2E+3) f W (w) “Lf))w aam
D

V2
\/(t+ 2)(t+ 3) f T ( VIQRk+t+ DI(k+1t+1) Dk
K+ ) N22OR

(o8]

N Z \/F(Zk + r)r(k i+ 1)
HT(t+2) Vek! 2k — 1) 2k — 1)!

+\/(t+\2/)_(t+3f [2__, Z’;b— J

y i NITQk+t+ DItk+1+1) et
I'(t+2)v2Q2k)! k! ¢

~ \/—3(_t+2)(t+4)a_lz4+
B 8

ZZk—ka) dAt(W)

)dA (w)

and

So(e3)(2) = Hy(e2)(2) = PM,J(e2)(2)
= P(p&:)(2) = (¢es, K?),

AIMS Mathematics Volume 9, Issue 7, 17847-17870.



17863

_ f 5(9062)(
D

_ - \/t+21a,~ [ Tk+t+1) ey
—fD(Z R | VAN Y 44)

=1
S ke D)k +2) Vit 2ag
- 2hk+i+2)k+i+1)

k=1

Hence, we obtain

b

_ o (V3@ +2)@+4)a;r 15Vt +2aq
0= (Ssﬁ — Sy)e3)(2) —( 3 - (t+6)(t+5))

which implies

40 V3 _
as = 0.
(l+6)(l+5) Vt+4
This together with (4.8) shows that ¢ = 0, completing the proof of the theorem. O

Recall that an operator T is diagonal on the Dirichlet type space D, if and only if <Te,~, e j>z = 0 for
all positive integers i # j.

Theorem 4.2. Lett > —1 and ¢ € 9. Then, S, is a diagonal operator on D, if and only if ¢ = 0.

Proof. Let ¢ € $ defined by ¢(z) = Yiopaiz + 2mb ij , where z € D and g;,b; € C. The forward
implication is trivial. Suppose conversely that S, is a diagonal operator on ©,. Then, for m, n € N such
that m # n, we have <S o(en), em>t = 0, where {e,,} ~, 1s an orthonormal basis of D,. Then, the following
two cases arise. If n = 2k for some k € N, by (2.5), we get

Vmm!T(k+1t+1)

<Snp(62k)a em>t = <T<P(ek)’ em>t - \\//11:1112"¥((’Z’lil‘l‘: 11))

VEm!'T(k+t+1)

Am—ks if m 2> k,

k—m> 1f k> m.

If n = 2k — 1 for some k € N, by (2.6), we obtain

k+m)\VmI(k+t+ DIT(m+1+ l)a
VKR mI Tm + k + 1 + 1) e

The above cases indicate that ¢; = 0 and b; = O forall i > 0, j > 1. Hence, ¢ = 0. O

S(p(e2k—l)’em = Hga(ek),em =
< )= )

Let P be the Bergman projection from L*(D, dA,) onto the weighted Bergman space L2 (dA;). For
any ¢ € L*(DD), the Toeplitz operator T¢ on LZ (dA;) 1s defined by

T,=PM,.
Note that the adjoint of T, satisfies T; =T,
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Let
VItk+1+2) ,

VE'T'(t+2) :

Then, {&};>, forms an orthonormal basis of L? (dA,). Define an operator U : ®, — L2 (dA;) by

ér(z) = zeD.

Uler) = éx-1
and linearly extending it to ©,. Then, U is a unitary operator such that
uf=r

for each f € D,.
In the next result, we see that a Toeplitz operator induced by a co-analytic symbol in M on the
Dirichlet type space D is unitarily equivalent to that on the weighted Bergman space L2 (dA,).

Lemma 4.1. Let ¢ € M be a co-analytic function. Then, T, = U* T¢ U.

Proof. Recall that (-, -), denotes the inner product in L2 (dA,). Let ¢ € M be a co-analytic function.
For any f, g € D,, a direct calculation gives

dz 0z

(

<8 0 of o
()4

(

<

07’ 0z

This gives the desired result. O

In the next theorem, we apply Lemma 4.1 to establish a criterion of co-isometry for the H-Toeplitz
operator on ;.

Theorem 4.3. Suppose t > —1 and ¢ € M is a nonzero, co-analytic function on D. Then, S, is a
co-isometry on ®©, if and only if ¢ = 1 on D.

Proof. Let ¢ € M be a nonzero, co-analytic function on D. Then, by Lemma 4.1,

$485 (&) = (PM.K) (K MP) (&)

= PM, T} (")

= PM, (U'T,U) (&)
= PM,UT;U ()

= PM,U" (kig?"")

= PM, (g?zk)

= Ty ()
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for arbitrary k € N. Since the polynomials are dense in D, it follows that
S(pS:; = T|<p|2 . (49)

Assume that S, is a co-isometry on D, that is, S¢S; = I. Thus, by (4.9), we have T_,2 = 0. Since
1 — ¢ is analytic, it follows that
T1_¢T1_¢ = 0.

Similar to [15, Corollary 10], we conclude that either 1 — ¢ = 0 or 1 — ¢ = 0, which gives that ¢ = 1
on D.

Conversely, if ¢ = 1 on D, then §,S; = T\ = I by (4.9), which means that S, is a co-isometry
on D,. This completes the proof of the theorem. O

Let 8(®,) denote the algebra consisting of all bounded linear operators on the Dirichlet type
space ©,. We are going to show that the map ¢ — §, is one-to-one if the domain is $, which is
given in the following.

Lemma 4.2. The map y :  — B(D,) defined by y(¢) = S, is one-to-one.
Proof. Let ¢, ¥ € 9, which are defined by

(o) [e)
so(z)=za,-z’+ b7/, z€D, a,b;eC,
i=0 j=1

and

(o) [>9)

Y(z) = Za;zi + Zb}_j, zeD, a},b;€C,

i=0 =1
respectively. If §, = §,, then §,_y(e;) = O for all k € N. In particular, §,_y(e;) = 0, that is,
PM,_,K(e,) = 0. More precisely,

P [Z(ai — )+ Y (b - b;)zfz] = 0.
i=0

=1

Applying Lemma 2.1, we derive that

(o8]

Z(ai —a)7* =0.

i=0

Therefore, a; = a; for all i > 0. Moreover, S ,_,(e4) = 0, thus we obtain

P [Z(a,. — @)+ ) (b - b;.)zfzz) = 0.
i=0 j=1

Using Lemma 2.1 again, we get

2
—— (b, - b)z=0,
[+2(1 1)Z

hence b, = b}. Continuing the above process for eg, es, ¢ and so on, we obtain b; = b;. forall j > 2,
and then ¢ = . This proves the desired result. O
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In the next result, we give a necessary and sufficient condition for an H-Toeplitz operator to be a
partial isometry on the Dirichlet type space D,.

Theorem 4.4. Supposet > —1 and ¢ € M s a nonzero, co-analytic function on D. Then S, is a partial
isometry on D, if and only if ¢ = 1 on D.

Proof. 1If ¢ = 1 on D, then S, is a co-isometry by Theorem 4.3. Thus, S, is a partial isometry.
Conversely, suppose S, is a partial isometry on ©,. Then, by [17, Theorem 2.3.3], we have
Sp8,8, =S, Inview of (4.9), we get
TigpSy =S,

or equivalently,

T1_|¢|2S¢ =0.
Since ¢ # 0, we have S, # 0 by Lemma 4.2. Thus, T',_,» = 0. The desired result is then obtained by
proceeding as in the proof of Lemma 4.3. O

As an operator on the Hilbert space, S, is a partial isometry if and only if S is a partial isometry
for ¢ € M; see [19, Proposition 4.38]. Thus, combining Theorem 4.3 with Theorem 4.4, we get the
following corollary.

Corollary 4.1. Suppose t > —1 and ¢ € M s a nonzero, co-analytic function on D. Then, the following
statements are equivalent:

(a) S:; is a isometry on D;.
(b) S, is a partial isometry on D;.
(c) ¢ =1o0nD.

For any fixed positive integer M, define
Hy = span{zl,l <Il< ZM}.

Then Hy, is a closed subspace of the Dirichlet type space D,. In fact, the following theorem reveals
that it is the kernel of H-Toeplitz operator with some co-analytic symbol.

Theorem 4.5. Suppose t > —1 and M is a fixed positive integer. Let p(z) = Y12y aZ € M. Then, the
subspace Hy of D, is the kernel of the H-Toeplitz operator S .

Proof. Consider positive integers i, j satisfying M <i < ooand 1 < j <2M. If j = 2k for some k € N,
then by Lemma 2.1

VIKIGR i) k=i if ke >
S.(z) = PM, K(ZZk) _ {\/F(2k+t+1)F(k+t+1)(k—i)! ’ ’

0, ifk <i.

Note that M < i < oo and 1 < k < M, then S.i(z/) is equal to 0 in the case of j = 2k. If j = 2k — 1 for
some k € N, similarly, we get

 NCE-D@k-DITk+1+1)

P —i+k =0.
VEKIT 2k + 1) @)

S.(z)) = PMLK (z2k_1)
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Hence, S.i(z/) = 0 for the positive integers i, j satisfying M < i < coand 1 < j < 2M. Now, for
0@ =25y az e M, by Proposition 3.1(a) and a limiting argument, we see that

o0

S¢(zj) = Z alSzz(zj).

I=M
Hence, we have S Q(,(zj ) =0forall 1 < j <2M. Therefore, we conclude that Hy, is the kernel of S,. O

Taking the symbol as a polynomial harmonic function for the H-Toeplitz operator, we can prove its
kernel is infinite-dimensional.

Theorem 4.6. If y € M is a polynomial harmonic function, then dimker S, = oo

Proof. Observe that if ¢ is a co-analytic function in M, then S (z f (zz)) = 0 for suitable choice of
function f € ©,. This implies that kerS, # {0}. Now, suppose that M, N € N are arbitrary given
integers, set Y(z) = YN a,z* + XM | b,7". Let @ = max {M, N} and choose f(z) = Y., ciz**! € D,.
We can obtain

Sy f(@) = PM,K (Zc.zzm)

. Z\/(21+1)(21+1)'F(l+t+2)c
I VitDizDIT@iziz ©

M oo : 0 :
20+ DRi+ DITG+1+2)
_p Zasszermzm Z V2i+ DQi+ DITG+1+ )c,-Z’“
- - — NG+ DI+ DITQi+1+2)
Y V2i+ D2+ DITG+1+2) i\
Z aA Z lZ - 0’
VE+ D@+ DITQi+1t+2)
where the last equality follows from Lemma 2.1. Similarly, foralln € N, §, (Zznf (Z)) = 0. Hence, if

a nonzero function g € ker S, then Yj_, 4,z%g € ker S, for n € N and 4; € C. In particular, the set
{zz”g ‘ne N} is a linear independent set. In fact, suppose 3_, L;z%g(z) = 0 but g # 0, then ¥}, 4z*

vanishes on a positive measure set so that 4; = 0 fork = 1,2, - -, n. This shows that {zzg, g, zz”g}
is linear independent. This is true for all » € N and all such functions in ker S, so kerS, is infinite
dimensional. O

It is well-known that the C*-algebra generated by self-adjoint operators is abelian and hence its
algebraic structure is primitive. As examples of non-self-adjoint operators, the C*-algebra generated
by H-Toeplitz operators is complicated. Therefore, it is of great importance to study the condition for
commutativity of H-Toeplitz operators.

The subsequent theorem characterizes when two H-Toeplitz operators with analytic symbols
commute on D, under certain conditions.

Theorem 4.7. Supposet > —1. Let o = Y52, ;7' and = pIp bjz/ in M, where z € D, a;, b; # 0 for
alli, je N andZ—: = Zif—:fw alli € N. Iij“ b2’ 2 for all i, k € N, then S, and S, commute on D, if
and only if ¢ and  are linearly dependent.
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Proof. We show the forward implication only because the reverse implication is trivial. Suppose
SySy =SS, Inparticular, S, ,(z) = S48 ,(2), that is,

PM,KP (Z bjz/z) = PM,KP (Z a,-z"z] :
j=1 i=1
Hence, by Lemma 2.1,
G+ Dbsa (i + Day
PM_K =PM,K 7.
v []Z:l ]+1+t v Zz+1+t

Using Lemma 2.1 again,

[

iz Qk + )V TR+ 1+ 1)
==k + 1+ ) VK TRk +1+ 1)
2UNCE - D2k - DITh + 7+ 1 |
+;; \/((2k+t))( m )bzka,-z’_"
S Qk+ DV2CRITk + 1+ 1)
) Rk+1+DVE'TQRk+t+1)
+§:i2k\/(2k—1)(2k—1)!F(k+t+1)
=1 j>k 2k + 1) VKK T2k + 1)

Then, comparing the coefficients of z in the above equation, we get

i+k
2k+14iZ

j+k
arys1b jZ"

>~
1l

i—k
[25)% ij .

i UNCE-DRk=-DITk+7+1)
£ 2k + ) VERIT (2K + 1)

(boxays1 — arbir1) 2=0

which implies that -% = bz’ for each i € N by the hypothesis 2 >

air1 Aivk  —

coefficients of 72, we get

bai

- Similarly, comparing the

2
(bakisa — arbis2)z” = 0,

IVATGHD) 2+i2k\/(2k—1)(2k—1)!F(k+t+1)
GrovIGrd O T LT oy VAR Tk )

bzl bz,

which means that bua — b for each i € N by the hypothesis - b”" > agam Continuing in this faShIOIl

we obtain that ’*’; = b2 for each i, k € N. Therefore, b; = /la, for each integer i > 1, where 4 = 2 is a
constant. It follows thatz,b Agp. |

More generally, we use the same trick in Theorem 4.7 to obtain an equivalent condition for the
commutativity of H-Toeplitz operators with polynomial harmonic symbols.

Theorem 4.8. Suppose t > —1. Let ¢ = 32 a2 + X7, b7 and y = ¥ " + X2, d 7 in M,
where a;, bj, ¢,,, dy # 0 fori, jym d € Nand ¢+ = 2 foralli € N. If > 2 and b @uson g gl

C2(j+k)+1

I, , k€N, then S, and S, commute on D, if and only if o and ¥ are lznearly dependent
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5. Conclusions

In this research, we conduct a study of H-Toeplitz operators on the Dirichlet type space D,.
Specifically, the compactness, self-adjointness, diagonality, co-isometry, partial isometry and
commutativity of H-Toeplitz operators on D, are characterized.
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