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Abstract: In this paper, we conducted a study of H-Toeplitz operators on the Dirichlet type
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1. Introduction

LetD be the unit disk in the complex plane C and dA = 1
π
dxdy be the normalized Lebesgue measure

on D. Set
dAt(z) = (t + 1)(1 − |z|2)tdA(z), t > −1.

The Sobolev space L2,1
t is the completion of the space of smooth functions f on D such that

∥ f ∥t =
{∣∣∣∣∣∫

D

f dAt

∣∣∣∣∣2 + ∫
D

(∣∣∣∣∣∂ f
∂z

∣∣∣∣∣2 + ∣∣∣∣∣∂ f
∂z

∣∣∣∣∣2) dAt

}1/2

< ∞.

Clearly, L2,1
t is a Hilbert space with the inner product

⟨ f , g⟩t =
∫
D

f dAt

∫
D

g dAt +

∫
D

∂ f
∂z
∂g
∂z
+
∂ f
∂z
∂g
∂z

 dAt.

The Dirichlet type space Dt consists of all analytic functions f ∈ L2,1
t with f (0) = 0. The space Dt

has been widely investigated; see [1–4], for example. Note that Dt is a closed subspace of L2,1
t and

hence, Dt is a Hilbert space. It is well-known that the Dirichlet type space Dt corresponds to several
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important spaces at specific values of t: the Hardy space (t = 1), the Dirichlet space (t = 0), and the
weighted Bergman space (t > 1).

Let N be the set of all positive integers. For z ∈ D and k ∈ N, let

ek(z) =
√
Γ(k + t + 1)
√

k k!Γ(t + 2)
zk,

then {ek}
∞
k=1 forms an orthonormal basis ofDt. Dt is a reproducing kernel space with reproducing kernel

given by

Kt
z(w) =

∞∑
k=1

ek(w)ek(z) =
∞∑

k=1

Γ(k + t + 1)
k k!Γ(t + 2)

wkzk, (1.1)

where Γ denotes the gamma function.
Let P be the orthogonal projection from L2,1

t onto Dt, which by the property of reproducing
kernel Kt

w can be expressed as

P( f )(w) = ⟨ f ,Kt
w⟩t, w ∈ D (1.2)

for all f ∈ L2,1
t .

Denote

M =

{
φ

∣∣∣∣φ, ∂φ
∂z
,
∂φ

∂z
∈ L∞(D)

}
,

where the derivatives are taken in the sense of distribution.
For any φ ∈ M, the multiplication operator Mφ : L2,1

t → L2,1
t is defined as Mφ( f ) = φ f for f ∈ L2,1

t .
Given φ ∈ M, the Toeplitz operator Tφ : Dt → Dt and the Hankel operator Hφ : Dt → Dt with
symbol φ are defined by

Tφ = PMφ and Hφ = PMφJ,

respectively. Here, J : Dt → Dt denotes the flip operator given by J(ek) = ek for all k ∈ N, where
Dt :=

{
f : f ∈ Dt

}
. It can be checked that Tφ and Hφ induced by φ ∈ M are bounded operators on Dt.

The harmonic Dirichlet space Dh is the closed subspace of L2,1
t consisting of all harmonic

functions f with f (0) = 0. It is well-known that Dh = Dt ⊕ Dt. Consider the dilation operator
K : Dt → Dh defined by

K(e2k) = ek and K(e2k−1) = ek

for all k ∈ N. It can be observed that K is bounded on Dt with ∥K∥ = 1. Moreover, the adjoint K∗ of
the operator K is given by

K∗(ek) = e2k and K∗(ek) = e2k−1

for all k ∈ N. Hence, K∗K = I on Dt and KK∗ = I on Dh.
With these notations, we introduce the H-Toeplitz operator on the Dirichlet type space Dt, which is

defined as follows.

Definition 1.1. For φ ∈ M, the H-Toeplitz operator S φ : Dt → Dt with symbol φ is defined by

S φ( f ) = PMφK( f )

for all f ∈ Dt.
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The H-Toeplitz operator is closely related to both the Toeplitz and Hankel operators. In fact, for any
φ ∈ M and k ∈ N, we have

S φ(e2k) = PMφK(e2k) = PMφ(ek) = Tφ(ek) (1.3)

and

S φ(e2k−1) = PMφK(e2k−1) = PMφ(ek) = PMφJ(ek) = Hφ(ek). (1.4)

Motivated by the notions of Toeplitz, Hankel and Slant Toeplitz operators, Arora and Paliwal [5]
introduced the H-Toeplitz operators on the Hardy space, where they established the necessary and
sufficient conditions under which H-Toeplitz operators become partial isometric, co-isometric, Hilbert-
Schmidt and hyponormal. Moreover, they demonstrated that any H-Toeplitz operator is unitarily
equivalent to a direct sum of a Toeplitz operator and a Hankel operator. The concept of H-Toeplitz
operators is significant because it connects closely with a class of Hankel operators and a class of
Toeplitz operators where the original operators are neither Hankel nor Toeplitz.

In recent years, H-Toeplitz operators on the Bergman space have been investigated by some
specialists. Gupta and Singh [6] initiated the study of H-Toeplitz operators on the Bergman space,
where the fundamental properties of the H-Toeplitz operators have been systematically studied, such
as compactness, Fredholmness, co-isometry, partial isometry and commutativity. Later, Kim and
Lee [7] established the contractivity and expansivity criteria for H-Toeplitz operators. Moreover,
Liang et al. [8] studied the commutativity of H-Toeplitz operators with quasi-homogeneous symbols.
In the recent paper [9], Ding and Chen characterized when the product of two H-Toeplitz operators
with a bounded and a quasi-homogeneous symbol, respectively, becomes an H-Toeplitz operator. They
also characterized when the product of an H-Toeplitz operator and a Toeplitz operator equals to another
H-Toeplitz operator with bounded harmonic symbols.

It is well-known that Hardy, Bergman and Dirichlet spaces are the three most important classical
Hilbert spaces of analytic functions in the unit disk. Despite the fruitful results achieved in the realm
of H-Toeplitz operators on Hardy spaces and Bergman spaces, the theory of H-Toeplitz operators on
Dirichlet spaces is largely unexplored. On the other hand, there is no any result in the literatures about
H-Toeplitz operators on the weighted versions of these classical spaces. For the full generality and
potential applicability, the main purpose of this article is to fill in these blanks by studying several
fundamental properties of H-Toeplitz operators on the Dirichlet type space.

Before we mention the novelties of our work, it is worthwhile to recall from [10, 11] that the study
of Toeplitz operators and Hankel operators on the Dirichlet space are essentially different from that on
the Hardy space and the Bergman space. Moreover, nontrivial self-adjoint Toeplitz operator with C1-
symbol and non-scalar Toeplitz operator satisfying T ∗φ = Tφ do not exist on the Dirichlet space [12–14].
Since H-Toeplitz operators connect closely with Hankel operators and Toeplitz operators, it is natural
to predict from the results mentioned in the literatures above that many techniques in the study of H-
Toeplitz operators on the Hardy space and the Bergman space are not available on the Dirichlet space.
For instance, one of the important steps to establish many properties (e.g., co-isometry and partial
isometry) of an H-Toeplitz operator on the Hardy space and the Bergman space is using the adjoint
of the H-Toeplitz operator, where the adjoint can be expressed as a composition of several specific
operators. However, this cannot be done on the Dirichlet type space. To overcome this difficulty, our
strategy is to establish an equivalent form of the Dirichlet Toeplitz operators under unitary conditions.
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This new form behaves much better than the original and avoids the need to compute the adjoint of the
H-Toeplitz operator.

This paper is organized as follows. In Section 2, we obtain the matrix representation of the H-
Toeplitz operator with the polynomial harmonic symbol under the orthonormal basis of the Dirichlet
type space Dt. In Section 3, we mainly characterize the compactness of H-Toeplitz operators.
In Section 4, several algebraic properties of H-Toeplitz operators are investigated, including self-
adjointness, diagonality, co-isometry, partial isometry as well as commutativity.

2. The matrix representation of the H-Toeplitz operator

In this section, we will present the matrix representation of the H-Toeplitz operator induced by
the polynomial harmonic symbol under the orthonormal basis {ek}

∞
k=1 of the Dirichlet type space Dt.

Leveraging the established relationships between the H-Toeplitz operator and both the Toeplitz and
Hankel operators as outlined in Eqs (1.3) and (1.4), we will initially provide the matrix representations
for the Toeplitz and Hankel operators.

We begin with the following lemma which will be needed in subsequent results.

Lemma 2.1. Suppose t > −1 and z ∈ D. For any n, m and k ∈ N, the following identities hold in the
Dirichlet type space Dt:

(a) ⟨zn, zm⟩t =


n n!Γ(t + 2)
Γ(n + t + 1)

, if n = m,

0, otherwise.

(b) ⟨zn, zm⟩t = 0 and ⟨zkzn, zm⟩t =


m (n + m)!Γ(t + 2)
Γ(n + m + t + 1)

, if k = n + m,

0, otherwise.

(c) P(znzm) =


m!Γ(m − n + t + 1)

(m − n)!Γ(m + t + 1)
zm−n, if m > n,

0, if m ≤ n.

Proof. By integration in polar coordinates, we have

⟨zn, zm⟩t = nm(1 + t)
∫
D

zn−1 zm−1(1 − |z|2)tdAt(z)

= n2(1 + t)
∫ 1

0
rn−1(1 − r)tdr

=


n n!Γ(t + 2)
Γ(n + t + 1)

, if n = m,

0, otherwise.

This proves (a). Now, we show (b) in a similar fashion. The first equality is obvious. For the second
one, we deduce that

⟨zkzn, zm⟩t =

∫
D

∂(zkzn)
∂z

(
∂zm

∂z

)
dAt(z)
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= km(1 + t)
∫
D

zk−1zn+m−1(1 − |z|2)tdA(z)

= m(1 + t)(n + m)
∫ 1

0
rn+m−1(1 − r)tdr

=


m (n + m)!Γ(t + 2)
Γ(n + m + t + 1)

, if k = n + m,

0, otherwise.

Next, we show equality (c). By (1.2) and integration in polar coordinates, we get

P(znzm) = ⟨znzm,Kt
z⟩t =

∫
D

∂(wnwm)
∂w

(
∂Kt

z(w)
∂w

)
dAt(w)

= m(1 + t)
∫
D

wnwm−1

 ∞∑
k=1

Γ(k + t + 1)
Γ(t + 2)k!

zkwk−1

 (1 − |w|2)tdA(w)

= m(1 + t)
∫
D

wm−1

 ∞∑
k=1

Γ(k + t + 1)
Γ(t + 2)k!

zkwn+k−1

 (1 − |w|2)tdA(w)

= m(1 + t)
Γ(m − n + t + 1)
Γ(t + 2)(m − n)!

zm−n
∫
D

|w|2(m−1) (1 − |w|2)tdA(w)

= m(1 + t)
Γ(m − n + t + 1)
Γ(t + 2)(m − n)!

zm−n
∫ 1

0
rm−1(1 − r)tdr

=


m!Γ(m − n + t + 1)

(m − n)!Γ(m + t + 1)
zm−n, if m > n,

0, if m ≤ n.

This ends the proof of Lemma 2.1. □

According to Lemma 2.1, we can find the matrix representations of Toeplitz operator Tφ and of
Hankel operator Hφ on Dt with symbol

φ(z) =
∞∑

i=0

aizi +

∞∑
j=1

b jz
j
∈ M, z ∈ D, ai, b j ∈ C.

For any m, n ∈ N, the (m, n)-th entry of the matrix representation of Tφ with respect to the
orthonormal basis {ek}

∞
k=1 of Dt is given by〈

Tφ(en), em

〉
t
=

〈
PMφ(en), em

〉
t
= ⟨φen, em⟩t

=

√
Γ(n + t + 1)Γ(m + t + 1)
√

n m n! m!Γ(t + 2)
⟨φzn, zm⟩t

=

√
Γ(n + t + 1)Γ(m + t + 1)
√

n m n! m!Γ(t + 2)

 ∞∑
i=0

ai

〈
zi+n, zm

〉
t
+

∞∑
j=1

b j

〈
z jzn, zm

〉
t


=


√

m m!Γ(n + t + 1)
√

n n!Γ(m + t + 1)
am−n, if m ≥ n,

√
m n!Γ(m + t + 1)
√

n m!Γ(n + t + 1)
bn−m, if m < n.

(2.1)
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Therefore, the matrix representation of Tφ is explicitly given by

Tφ =



a0
1
√

2+t
b1

√
2

√
(3+t)(2+t)

b2

√
6Γ(2+t)
√
Γ(5+t)

b3 · · ·

2
√

2+t
a1 a0

√
2

√
3+t

b1

√
6

√
(4+t)(3+t)

b2 · · ·

3
√

2
√

(3+t)(2+t)
a2

3
√

2(3+t)
a1 a0

√
3

√
4+t

b1 · · ·

4
√

6Γ(2+t)
√
Γ(5+t)

a3
2
√

6
√

(4+t)(3+t)
a2

4
√

3(4+t)
a1 a0 · · ·

...
...

...
...


, (2.2)

and the matrix representation of its adjoint T ∗φ is given by

T ∗φ =



a0
2
√

2+t
a1

3
√

2
√

(3+t)(2+t)
a2

4
√

6Γ(2+t)
√
Γ(5+t)

a3 · · ·

1
√

2+t
b1 a0

3
√

2(3+t)
a1

2
√

6
√

(4+t)(3+t)
a2 · · ·

√
2

√
(3+t)(2+t)

b2

√
2

√
3+t

b1 a0
4

√
2(3+t)

a1 · · ·
√

6Γ(2+t)
√
Γ(5+t)

b3

√
6

√
(4+t)(3+t)

b2

√
3

√
4+t

b1 a0 · · ·

...
...

...
...


.

Next, we find the matrix representation of the Hankel operator. The (m, n)-th entry of the matrix
representation of Hφ with respect to the orthonormal basis {ek}

∞
k=1 of Dt is given by〈

Hφ(en), em

〉
t
=

〈
PMφJ(en), em

〉
t
=

〈
PMφ(en), em

〉
t
= ⟨φen, em⟩t

=

√
Γ(n + t + 1)Γ(m + t + 1)
√

nm n!m!Γ(t + 2)

〈
φzn, zm〉

t

=

√
Γ(n + t + 1)Γ(m + t + 1)
√

nm n!m!Γ(t + 2)

 ∞∑
i=0

ai

〈
zizn, zm

〉
t
+

∞∑
j=1

b j

〈
z j+n, zm

〉
t


=

(n + m)!
√

mΓ(n + t + 1)Γ(m + t + 1)
√

n n! m!Γ(m + n + t + 1)
am+n (2.3)

for m, n ∈ N.
Thus, the matrix representation of Hφ in explicit form is given by

Hφ =



2
2+t a2

3
(3+t)

√
2+t

a3
4!
√
Γ(4+t)Γ(2+t)

3
√

2Γ(5+t)
a4

5!
√
Γ(5+t)Γ(2+t)

2
√

4!Γ(6+t)
a5 · · ·

6
(3+t)

√
2+t

a3
12

(4+t)(3+t) a4
5!
√
Γ(4+t)Γ(3+t)

3
√

2Γ(6+t)
a5

6!
√
Γ(5+t)Γ(3+t)

2
√

4!Γ(7+t)
a6 · · ·

4!
√
Γ(2+t)

(4+t)
√

2Γ(4+t)
a4

5!
√
Γ(3+t)Γ(4+t)

2
√

2Γ(6+t)
a5

6!Γ(4+t)
3!Γ(7+t) a6

7!
√
Γ(5+t)Γ(4+t)

8
√

3Γ(8+t)
a7 · · ·

5!
√
Γ(2+t)

(5+t)
√

6Γ(5+t)
a5

6!
√
Γ(3+t)Γ(5+t)

2
√

6Γ(7+t)
a6

7!
√
Γ(4+t)Γ(5+t)

6
√

3Γ(8+t)
a7

8!Γ(5+t)
4!Γ(9+t) a8 · · ·

...
...

...
...


. (2.4)

Note that the matrix of Hankel operator Hφ is independent of co-analytic term
∑∞

j=1 b jz
j of the symbol
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function φ. By a direct calculation, the matrix representation of its adjoint H∗φ is of the following form:

H∗φ =



2
2+t a2

6
(3+t)

√
2+t

a3
4!
√
Γ(2+t)

(4+t)
√

2Γ(4+t)
a4

5!
√
Γ(2+t)

(5+t)
√

6Γ(5+t)
a5 · · ·

3
(3+t)

√
2+t

a3
12

(4+t)(3+t) a4
5!
√
Γ(3+t)Γ(4+t)

3
√

2Γ(6+t)
a5

6!
√
Γ(3+t)Γ(5+t)

2
√

6Γ(7+t)
a6 · · ·

4!
√
Γ(4+t)Γ(2+t)

3
√

2Γ(5+t)
a4

5!
√
Γ(4+t)Γ(3+t)
3Γ(6+t) a5

6!Γ(4+t)
3!Γ(7+t) a6

7!
√
Γ(4+t)Γ(5+t)

6
√

3Γ(8+t)
a7 · · ·

5!
√
Γ(5+t)Γ(2+t)

2
√

4!Γ(6+t)
a5

6!
√
Γ(5+t)Γ(3+t)

2
√

4!Γ(7+t)
a6

7!
√
Γ(5+t)Γ(4+t)

8
√

3Γ(8+t)
a7

8!Γ(5+t)
4!Γ(9+t) a8 · · ·

...
...

...
...


.

Observe that H∗φ = H⊤
φ̂

for φ̂(z) =
∑∞

i=1 aizi +
∑∞

j=1 b jz
j (each b j can be zero), where H⊤

φ̂
denotes the

transpose of the matrix representation of Hφ̂.
Next we find the matrix representation of H-Toeplitz operator S φ. Clearly, it follows from (1.3),

(1.4), (2.1) and (2.3) that

〈
S φ(e2n), em

〉
t
=

〈
Tφ(en), em

〉
t
=


√

m m!Γ(n + t + 1)
√

n n!Γ(m + t + 1)
am−n, if m ≥ n,

√
m n!Γ(m + t + 1)
√

n m!Γ(n + t + 1)
bn−m, if m < n,

(2.5)

and 〈
S φ(e2n−1), em

〉
t
=

〈
Hφ(en), em

〉
t
=

(n + m)!
√

mΓ(n + t + 1)Γ(m + t + 1)
√

n n! m!Γ(m + n + t + 1)
am+n, (2.6)

where m, n ∈ N. Thus, the matrix representation of S φ with respect to the orthonormal basis {ek}
∞
k=1

of Dt is given by

S φ =



2
2+t a2 a0

3
(3+t)

√
2+t

a3
1
√

2+t
b1 · · ·

6
(3+t)

√
2+t

a3
2
√

2+t
a1

12
(4+t)(3+t) a4 a0 · · ·

4!
√
Γ(2+t)

(4+t)
√

2Γ(4+t)
a4

3
√

2
√

(3+t)(2+t)
a2

5!
√
Γ(3+t)Γ(4+t)

2
√

2Γ(6+t)
a5

3
√

2(3+t)
a1 · · ·

5!
√
Γ(2+t)

(5+t)
√

6Γ(5+t)
a5

4
√

6Γ(2+t)
√
Γ(5+t)

a3
6!
√
Γ(3+t)Γ(5+t)

2
√

6Γ(7+t)
a6

2
√

6
√

(4+t)(3+t)
a2 · · ·

...
...

...
...


, (2.7)

and the matrix representation of its adjoint is given by

S ∗φ =



2
2+t a2

6
(3+t)

√
2+t

a3
4!
√
Γ(2+t)

(4+t)
√

2Γ(4+t)
a4

5!
√
Γ(2+t)

(5+t)
√

6Γ(5+t)
a5 · · ·

a0
2
√

2+t
a1

3
√

2
√

(3+t)(2+t)
a2

4
√

6Γ(2+t)
√
Γ(5+t)

a3 · · ·

3
(3+t)

√
2+t

a3
12

(4+t)(3+t) a4
5!
√
Γ(3+t)Γ(4+t)

2
√

2Γ(6+t)
a5

6!
√
Γ(3+t)Γ(5+t)

2
√

6Γ(7+t)
a6 · · ·

1
√

2+t
b1 a0

3
√

2(3+t)
a1

2
√

6
√

(4+t)(3+t)
a2 · · ·

...
...

...
...


.

Remark 2.1. It can be seen from (2.2), (2.4) and (2.7) that the matrix representations of the Toeplitz
operator Tφ and the Hankel operator Hφ can be obtained by deleting every odd and even column of
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the H-Toeplitz operator S φ, respectively. The matrix of S φ is an upper triangular matrix if the symbol
φ ∈ M is co-analytic. However, it cannot be lower triangular. Additionally, it is worthwhile to mention
that an n × n Dirichlet type H-Toeplitz matrix defined as follows has 2n degree of freedom rather
than n2. Consequently, for large n, it is relatively easy to solve the system of linear equations when the
coefficient matrix is a Dirichlet type H-Toeplitz matrix.

Definition 2.1. Let φ(z) =
∑∞

i=0 aizi +
∑∞

j=1 b jz
j
∈ M with z ∈ D and ai, b j ∈ C. We define an infinite

matrix (cm,n) as a Dirichlet type H-Toeplitz matrix if its (m, n)-th entry satisfies the following relation:

cm,n =



√
m m!Γ(l + t + 1)
√

l l!Γ(m + t + 1)
am−l, if n = 2l and m ≥ l,

√
m l!Γ(m + t + 1)
√

l m!Γ(l + t + 1)
bl−m, if n = 2l and m < l,

(l + m)!
√

mΓ(l + t + 1)Γ(m + t + 1)
√

l l! m!Γ(m + l + t + 1)
am+l, if n = 2l − 1,

where m, n and l are all in N.

3. The compactness of H-Toeplitz operators

This section is mainly concerned with the compactness of H-Toeplitz operators. It is well-
known that compact operators behave like operators on finite-dimensional vector spaces and play a
fundamental role in operator theory.

The following proposition follows easily from the definition of the H-Toeplitz operator S φ.

Proposition 3.1. Suppose that a, b ∈ C and φ, ψ ∈ M. Then

(a) S aφ+bψ = aS φ + bS ψ;
(b) S φ is a bounded linear operator on Dt with ∥S φ∥t ≤

∥∥∥∂φ
∂z

∥∥∥
∞
+ ∥φ∥∞.

Let L2
a (dAt) be the weighted Bergman space on D, which consists of all analytic functions in

L2(D, dAt). We use the notations ∥ · ∥2 and ⟨·, ·⟩2 to represent the norm and inner product in L2
a (dAt),

respectively.
Similar to the proof of [15, Lemma 12], we have the following result.

Lemma 3.1. The identity operator I fromDt into L2
a (dAt) defined by I f = f for any f ∈ Dt is compact.

From Lemma 3.1, we conclude that for any sequence { fk}k converging weakly to 0 in Dt (write
fk

w
→ 0 for short), the sequence {∥ fk∥2}k converges to 0 as k → ∞.
The next lemma will be utilized in the compactness of H-Toeplitz operators.

Lemma 3.2. For any φ ∈ M, S ∗φ − K∗PhMφ is compact on Dt, where Ph is the orthogonal projection
from L2,1

t onto Dh.

Proof. For any f , g ∈ Dt, we have〈
(S ∗φ − K∗PhMφ)( f ), g

〉
t
=

〈
f , S φ(g)

〉
t
−

〈
K∗PhMφ( f ), g

〉
t

=
〈

f , PMφK(g)
〉

t
−

〈
PhMφ( f ),K(g)

〉
t
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= ⟨ f , φK(g)⟩t − ⟨φ f ,K(g)⟩t

=

〈
∂ f
∂z
,K(g)

∂φ

∂z

〉
2
+

〈
∂ f
∂z
, φ
∂(K(g))
∂z

〉
2

−

〈
f
∂φ

∂z
,
∂(K(g))
∂z

〉
2
−

〈
φ
∂ f
∂z
,
∂(K(g))
∂z

〉
2

=

〈
∂ f
∂z
,
∂φ

∂z
K(g)

〉
2
−

〈
f ,
∂φ

∂z
∂(K(g))
∂z

〉
2
.

Since Dt is contained in L2
a (dAt), it follows that∣∣∣∣〈(S ∗φ − K∗PhMφ)( f ), g

〉
t

∣∣∣∣ ≤ ∣∣∣∣∣∣
〈
∂ f
∂z
,
∂φ

∂z
K(g)

〉
2

∣∣∣∣∣∣ +
∣∣∣∣∣∣
〈

f ,
∂φ

∂z
∂(K(g))
∂z

〉
2

∣∣∣∣∣∣
≤

∥∥∥∥∥∂ f
∂z

∥∥∥∥∥
2

∥∥∥∥∥∂φ∂z
K(g)

∥∥∥∥∥
2
+ ∥ f ∥2

∥∥∥∥∥∂φ∂z
∂(K(g))
∂z

∥∥∥∥∥
2

≤ ∥φ∥M
(
∥ f ∥t ∥K(g)∥2 + ∥ f ∥2 ∥K(g)∥t

)
≤ ∥φ∥M

(
∥ f ∥t ∥g∥2 + ∥ f ∥2 ∥g∥t

)
,

where

∥φ∥M = esssup
z∈D

max
{
|φ| ,

∣∣∣∣∣∂φ∂z

∣∣∣∣∣ , ∣∣∣∣∣∂φ∂z

∣∣∣∣∣} .
Let { fk}k be any sequence converging weakly to 0 in Dt. Taking f = fk and g = (S ∗φ − K∗PhMφ) fk in
the above, we obtain ∥∥∥(S ∗φ − K∗PhMφ) fk

∥∥∥2

t

≤ ∥φ∥M
[
∥ fk∥t

∥∥∥(S ∗φ − K∗PhMφ) fk

∥∥∥
2
+ ∥ fk∥2

∥∥∥(S ∗φ − K∗PhMφ) fk

∥∥∥
t

]
.

Note that (S ∗φ − K∗PhMφ) fk
w
→ 0 in Dt as k → ∞. It follows from Lemma 3.1 that ∥ fk∥2 and∥∥∥(S ∗φ − K∗PhMφ) fk

∥∥∥
2
→ 0 as k → ∞. Therefore,∥∥∥(S ∗φ − K∗PhMφ) fk

∥∥∥
t
→ 0

as k → ∞, which implies that S ∗φ − K∗PhMφ is compact on Dt. This completes the proof of the
lemma. □

Remark 3.1. Let P̌h denote the orthogonal projection from L2(D, dA) onto the harmonic Bergman
space L2

h. We have known that the adjoint S ∗φ of an H-Toeplitz operator S φ is equal to K∗Mφ (resp.,
K∗P̌hMφ) on the Hardy space [5] (resp., Bergman space [6]). However, there is no analogues identity
on the Dirichlet type space. The situation is different from that of Hardy space and Bergman space.

Lemma 3.3. [16, Proposition 7.2] If φ ∈ L1(D, dAt) is harmonic, then Ťφ is compact on L2
a (dAt) if

and only if φ = 0.

We apply the above results to show the compactness of the H-Toeplitz operator on Dt.

Theorem 3.1. Suppose t > −1 and φ ∈ M is co-analytic. Then, S φ is a compact operator on Dt if and
only if φ = 0.
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Proof. If φ = 0, then S φ is trivially compact on Dt.
Conversely, assume that S φ is compact on Dt. We are going to show that φ = 0. Otherwise, if

φ , 0, then Ťφ is not compact on L2
a (dAt) by Lemma 3.3. Hence, there is a sequence { fk}k ⊆ L2

a (dAt),
∥ fk∥2 = 1, fk

w
→ 0 such that

∥∥∥Ťφ( fk)
∥∥∥

2
̸→ 0 as k → ∞. Thus, ∥φ fk∥2 ̸→ 0, that is,∫

D

|φ|2 | fk|
2 dAt ̸→ 0

as k → ∞.
Note that S φ is compact on Dt, so is S ∗φ by [16, Theorem 1.16]. We deduce that K∗PhMφ is also

compact on Dt by Lemma 3.2. This implies that S φK∗PhMφ is compact on Dt. Let

Fk :=
∫ z

0
fk(w) dw,

then Fk
w
→ 0 in Dt and ∥Fk∥t = 1. So,

∥∥∥S φK∗PhMφ(Fk)
∥∥∥

t
→ 0, that is,∥∥∥|φ|2 Fk

∥∥∥
t
→ 0

as k → ∞. Thus, we have ∣∣∣∣〈|φ|2 Fk, Fk

〉
t

∣∣∣∣ ≤ ∥∥∥|φ|2 Fk

∥∥∥
t
∥Fk∥t =

∥∥∥|φ|2 Fk

∥∥∥
t
→ 0

as k → ∞. However,

〈
|φ|2 Fk, Fk

〉
t
=

〈∂ (
|φ|2 Fk

)
∂z

,
∂Fk

∂z

〉
2

=

〈
Fk
∂ |φ|2

∂z
,
∂Fk

∂z

〉
2
+

〈
|φ|2

∂Fk

∂z
,
∂Fk

∂z

〉
2

=

〈
φFk

∂φ

∂z
, fk

〉
2
+

〈
|φ|2 fk, fk

〉
2
̸→ 0,

since ∣∣∣∣∣∣
〈
φFk

∂φ

∂z
, fk

〉
2

∣∣∣∣∣∣ ≤ ∥φ∥2M ∥Fk∥2 ∥ fk∥t → 0

and 〈
|φ|2 fk, fk

〉
2
=

∫
D

|φ|2 | fk|
2 dAt ̸→ 0

as k → ∞. This contradiction shows that φ = 0. This ends the proof of Theorem 3.1. □

Lemma 3.4. Suppose t > −1 and z, w ∈ D. The dilation operator K : Dt → Dh satisfies

K(Kt
z)(w) =

∞∑
k=1

√
Γ(2k + t + 1)Γ(k + t + 1)
kΓ(t + 2)

√
2 (2k)! k!

z2kwk +

∞∑
k=1

√
Γ(2k + t)Γ(k + t + 1)

Γ(t + 2)
√

k k! (2k − 1) (2k − 1)!
z2k−1wk.
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Proof. For z,w ∈ D, by (1.1) and the definition of K, we obtain

K(Kt
z)(w) =

∞∑
k=1

e2k(z)K(e2k)(w) +
∞∑

k=1

e2k−1(z)K(e2k−1)(w)

=

∞∑
k=1

e2k(z)ek(w) +
∞∑

k=1

e2k−1(z) ek(w)

=

∞∑
k=1

√
Γ(2k + t + 1)Γ(k + t + 1)
k Γ(t + 2)

√
2 k! (2k)!

z2kwk

+

∞∑
k=1

√
Γ(2k + t)Γ(k + t + 1)

Γ(t + 2)
√

k k! (2k − 1) (2k − 1)!
z2k−1wk.

This finishes the proof of the lemma. □

For t > −1 and z, w ∈ D, denote
ht

z(w) := K(kt
z)(w),

where

kt
z(w) =

Kt
z(w)∥∥∥Kt

z

∥∥∥
t

is the normalized reproducing kernel of Dt. Let ∂D be the boundary of the unit disk D. Next, we will
discuss the boundary behavior of ht

z.

Lemma 3.5. For t ≥ 0 and z ∈ D, we have ht
z → 0 as z→ ∂D.

Proof. For t > 0, by the Stirling’s formula, we have

∥∥∥Kt
z

∥∥∥2

t
=

〈
Kt

z,K
t
z

〉
t
= Kt

z(z) =
∞∑

k=1

Γ(k + t + 1)
k k!Γ(t + 2)

|z|2k ∼

∞∑
k=1

Γ(k + t)
k!Γ(t)

|z|2k =
1(

1 − |z|2
)t , (3.1)

where the notation “ ∼ ” is used to denote that the ratio of the two sides tends to 1 as k → ∞.
For t = 0, we have

∥∥∥Kt
z

∥∥∥2

t
=

〈
Kt

z,K
t
z

〉
t
= Kt

z(z) =
∞∑

k=1

|z|2k

k
= log

1
1 − |z|2

.

We conclude that

ht
z = K(kt

z) =
K(Kt

z)∥∥∥Kt
z

∥∥∥
t

→ 0

as z→ ∂D. □

Proposition 3.2. Suppose t ≥ 0 and φ ∈ M. Then, S φ is not bounded below on Dt.
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Proof. Given z ∈ D, by the dominated convergence theorem, Lemma 3.5, and (3.1), we have∥∥∥S φ(kt
z)
∥∥∥2

t

=
∥∥∥PMφ(ht

z)
∥∥∥2

t
≤

∥∥∥φht
z

∥∥∥2

t

=

∣∣∣∣∣∫
D

φht
z dAt

∣∣∣∣∣2 + ∫
D

∣∣∣∣∣∣∂(φht
z)

∂w

∣∣∣∣∣∣2 +
∣∣∣∣∣∣∂(φht

z)
∂w

∣∣∣∣∣∣2
 dAt

=

∣∣∣∣∣∫
D

φht
z dAt

∣∣∣∣∣2 + ∫
D

∣∣∣∣∣∣∣ht
z(w)

∂φ(w)
∂w

+
φ(w)∥∥∥Kt

z

∥∥∥
t

∞∑
k=1

√
Γ(2k + t + 1)Γ(k + t + 1)
Γ(t + 2)

√
2 k! (2k)!

z2kwk−1

∣∣∣∣∣∣∣
2

dAt(w)

+

∫
D

∣∣∣∣∣∣∣ht
z(w)

∂φ(w)
∂w

+
φ(w)∥∥∥Kt

z

∥∥∥
t

∞∑
k=1

√
k Γ(2k + t)Γ(k + t + 1)

Γ(t + 2)
√

k! (2k − 1) (2k − 1)!
z2k−1wk−1

∣∣∣∣∣∣∣
2

dAt(w)

→ 0

as z→ ∂D, from which we deduce that S φ is not bounded below on Dt. □

Recall that for a bounded linear operator T defined on a Hilbert space, the approximated point
spectrum of operator T is defined as the set

σap(T ) = {λ ∈ C : T − λI is not bounded below} .

See [17]. Thus, for the H-Toeplitz operator S φ defined on Dt, Proposition 3.2 implies that 0 ∈ σap(S φ)
for t ≥ 0 and φ ∈ M.

At the end of this section, we explore the question of when an H-Toeplitz operator is Fredholm. For
more details concerning Fredholm operators; see [18, CHAPTER XI §2].

The subsequent proposition illustrates the property of the Fredholm operator on Dt from the
perspective of weakly convergent nets.

Proposition 3.3. Suppose t > −1. If T is a Fredholm operator on Dt, then, there is no {hz}z∈D of unit
vectors in Dt such that hz

w
→ 0 as z→ ∂D and lim ∥Thz∥t = 0.

Proof. Suppose there is {hz}z∈D of unit vectors in Dt such that hz
w
→ 0 as z → ∂D and lim ∥Thz∥t = 0.

We shall provide a proof by contradiction. Since T is Fredholm, there exists a bounded operator B and
a compact operator E on Dt such that BT = I + E. Then,∣∣∣I − ∥BThz∥t

∣∣∣ = ∣∣∣∥hz∥t − ∥BThz∥t

∣∣∣ ≤ ∥Ehz∥t → 0

as z → ∂D by the compactness of E. This implies that ∥BThz∥t → 1 as z → ∂D, which contradicts to
the assumption lim ∥Thz∥t = 0. □

Theorem 3.2. Suppose t ≥ 0 and φ ∈ M. Then, there is no nonzero H-Toeplitz operator S φ on Dt

which is Fredholm.

Proof. Assume that the H-Toeplitz operator S φ is Fredholm onDt for some φ ∈ M. Take the net
{
kt

z

}
z∈D

of normalized kernels on Dt. Then, kt
z → 0 weakly and also

∥∥∥S φkt
z

∥∥∥
t
→ 0 as z → ∂D by the proof of

Proposition 3.2. This contradicts the fact that S φ is a Fredholm operator by Proposition 3.3. It follows
that S φ is a Fredholm operator on Dt if and only if φ = 0 inM. □
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Recall that the essential spectrum of a bounded linear operator T is given by

σe(T ) = {λ ∈ C : T − λI is not Fredholm} .

For t ≥ 0 and φ ∈ M, we derive that the essential spectrum of H-Toeplitz operator S φ onDt is nonempty
by the above theorem, since 0 ∈ σe(S φ) in this case.

4. Algebraic properties of H-Toeplitz operators on Dt

In this section, we investigate some algebraic properties of H-Toeplitz operators on Dt, which
include self-adjointness, diagonality, co-isometry, partial isometry as well as commutativity.

Let

H =

φ ∈ M : φ(z) =
∞∑

i=0

aizi +

∞∑
j=1

b jz
j, z ∈ D and ai, b j ∈ C

 .
In the next theorem, we develop a new method to demonstrate that a nonzero H-Toeplitz operator S φ

induced by φ ∈ H can never be a self-adjoint operator on Dt.

Theorem 4.1. Let t > −1 and φ ∈ H. Then the H-Toeplitz operator S φ is self-adjoint on Dt if and only
if φ = 0.

Proof. Let φ ∈ H defined by φ(z) =
∑∞

i=0 aizi +
∑∞

j=1 b jz
j, where z ∈ D and ai, b j ∈ C. The backward

implication is trivial. Now, suppose that S φ is self-adjoint. Then (S ∗φ−S φ) f = 0 for any f ∈ Dt. Taking
f (z) = e1(z) = z, we apply the reproducing property of Kt

z, Lemma 3.4, and (1.4) to get

S ∗φ(e1)(z) =
〈
S ∗φ(e1),Kt

z

〉
t
=

〈
e1, S φ(Kt

z)
〉

t

=
〈
e1, PMφK(Kt

z)
〉

t
=

〈
e1, φ · K(Kt

z)
〉

t

=

∫
D

∂
(
φ · K(Kt

z)
)

∂w
(w) dAt(w)

=

∫
D

K(Kt
z)(w)

∂φ

∂w
(w) dAt(w) +

∫
D

φ(w)
∂(K(Kt

z))
∂w

(w) dAt(w)

=

∫
D

 ∞∑
i=1

i ai wi−1

 ( ∞∑
k=1

√
Γ(2k + t + 1)Γ(k + t + 1)
kΓ(t + 2)

√
2 (2k)! k!

z2kwk

+

∞∑
k=1

√
Γ(2k + t)Γ(k + t + 1)

Γ(t + 2)
√

k k! (2k − 1) (2k − 1)!
z2k−1wk

)
dAt(w)

+

∫
D

 ∞∑
i=0

ai wi
+

∞∑
j=1

b jw j


 ∞∑

k=1

√
Γ(2k + t + 1)Γ(k + t + 1)
Γ(t + 2)

√
2 (2k)! k!

z2kwk−1

 dAt(w)

=

∞∑
k=1

(k + 1)
√

(k − 1)!Γ(2k + t)Γ(k + t + 1) ak+1

Γ(k + t + 2)
√

(2k − 1) (2k − 1)!
z2k−1 +

√
t + 2 a0

2
z2

+

∞∑
k=1

√
k!Γ(2k + t + 3) bk

√
2 (k + 1) (2k + 2)!Γ(k + t + 2)

z2k+2,
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and

S φ(e1)(z) = Hφ(e1)(z) = PMφJ(e1)(z) = P(φe1)(z)

=
〈
φe1,Kt

z

〉
t
=

∫
D

∂(φe1)
∂w

(w)
∂Kt

z

∂w
(w) dAt(w)

=

∫
D

 ∞∑
i=1

iaiwi−1w

  ∞∑
k=1

Γ(k + t + 1)
k!Γ(t + 2)

zkwk−1

 dAt(w)

=

∞∑
k=1

(k + 1) ak+1

k + t + 1
zk.

Therefore,

0 = (S ∗φ − S φ)(e1)(z)

=

 √t + 2 a0

2
−

3 a3

t + 3

 z2

+

∞∑
k=1

(
(k + 1)

√
(k − 1)!Γ(2k + t)Γ(k + t + 1) ak+1

Γ(k + t + 2)
√

(2k − 1) (2k − 1)!
−

2k a2k

2k + t

)
z2k−1

+

∞∑
k=1

 √
k!Γ(2k + t + 3) bk

√
2 (k + 1) (2k + 2)!Γ(k + t + 2)

−
(2k + 3) a2k+3

2k + t + 3

 z2k+2.

This implies that

a0 =
6a3

√
t + 2 (t + 3)

, (4.1)

ak+1 =
2k Γ(k + t + 2)

√
(2k − 1) (2k − 1)!

(k + 1) (2k + t)
√

(k − 1)!Γ(2k + t)Γ(k + t + 1)
a2k, k ∈ N, (4.2)

and

bk =

√
2 (k + 1) (2k + 3)!Γ(k + t + 2)

(2k + t + 3)
√

k!Γ(2k + t + 3)
a2k+3, k ∈ N. (4.3)

Taking f (z) = e2(z) =
√

t+2
2 z2 and by the reproducing property of Kt

z, Lemma 3.4, and (1.3), we
deduce that

S ∗φ(e2)(z) =
〈
S ∗φ(e2),Kt

z

〉
t
=

〈
e2, S φ(Kt

z)
〉

t

=
〈
e2, PMφK(Kt

z)
〉

t
=

〈
e2, φ · K(Kt

z)
〉

t

=

∫
D

∂e2

∂w
(w)

∂(φ · K(Kt
z))

∂w
(w) dAt(w)

=
√

t + 2
∫
D

w
∂φ

∂w
(w) K(Kt

z)(w) dAt(w) +
√

t + 2
∫
D

wφ(w)
∂(K(Kt

z))
∂w

(w) dAt(w)
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=
√

t + 2
∫
D

w

 ∞∑
i=1

i ai wi−1

 ( ∞∑
k=1

√
Γ(2k + t + 1)Γ(k + t + 1)
kΓ(t + 2)

√
2 (2k)! k!

z2kwk

+

∞∑
k=1

√
Γ(2k + t)Γ(k + t + 1)

Γ(t + 2)
√

k k! (2k − 1) (2k − 1)!
z2k−1wk

)
dAt(w)

+
√

t + 2
∫
D

w

 ∞∑
i=0

ai wi
+

∞∑
j=1

b jw j


×

 ∞∑
k=1

√
Γ(2k + t + 1)Γ(k + t + 1)
Γ(t + 2)

√
2 (2k)! k!

z2kwk−1

 dAt(w)

= a1z2 +

∞∑
k=1

(k + 1) (k + 2)
√

k!Γ(2k + t)Γ(k + t + 1) ak+2

Γ(k + t + 3)
√

k (2k − 1) (2k − 1)!
z2k−1

+

√
Γ(t + 5) a0

4
√

6Γ(t + 2)
z4 +

∞∑
k=1

√
(t + 2)Γ(2k + t + 5) bk

(k + 2)
√

2 (2k + 4)!
z2(k+2),

and

S φ(e2)(z) = Tφ(e1)(z) = PMφ(e1)(z) =
〈
φe1,Kt

z

〉
t

=

∫
D

∂(φe1)
∂w

(w)
∂Kt

z

∂w
(w) dAt(w)

=

∫
D

 ∞∑
i=1

iai−1wi−1 +

∞∑
j=1

b jw
j


 ∞∑

k=1

Γ(k + t + 1)
k!Γ(t + 2)

zkwk−1

 dAt(w)

=

∞∑
k=1

ak−1zk.

Thus, we obtain

0 = (S ∗φ − S φ)(e2)(z)

= (a1 − a1) z2 +

( √
Γ(t + 5) a0

4
√

6Γ(t + 2)
− a3

)
z4

+

∞∑
k=1

(
(k + 1) (k + 2)

√
k!Γ(2k + t)Γ(k + t + 1) ak+2

Γ(k + t + 3)
√

k (2k − 1) (2k − 1)!
− a2k−2

)
z2k−1

+

∞∑
k=1

 √(t + 2)Γ(2k + t + 5) bk

(k + 2)
√

2 (2k + 4)!
− a2k+3

 z2(k+2).

This implies that

a1 = a1, (4.4)

a0 =
4
√

6Γ(t + 2)
√
Γ(t + 5)

a3, (4.5)
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ak+2 =
Γ(k + t + 3)

√
k (2k − 1) (2k − 1)!

(k + 1) (k + 2)
√

k!Γ(2k + t)Γ(k + t + 1)
a2k−2, k ∈ N, (4.6)

and

bk =
(k + 2)

√
2 (2k + 4)!

√
(t + 2)Γ(2k + t + 5)

a2k+3, k ∈ N. (4.7)

By (4.1) and (4.5), we get a0 = a3 = 0. This together with (4.2), (4.3), (4.6) and (4.7) further implies
that

ai = 0, b j = 0, for any i ∈ {0} ∪ N − {1} and j ∈ N. (4.8)

It remains to show a1 = 0. Taking

f (z) = e3(z) =
√

(t + 2)(t + 3)

3
√

2
z3,

a similar argument shows that

S ∗φ(e3)(z) =
〈
S ∗φ(e3),Kt

z

〉
t
=

〈
e3, S φ(Kz)

〉
t
=

〈
e3, PMφK(Kt

z)
〉

t

=
〈
e3, φ · K(Kt

z)
〉

t
=

∫
D

∂e3

∂w
(w)

∂
(
φ · K(Kt

z)
)

∂w
(w) dAt(w)

=

√
(t + 2)(t + 3)
√

2

∫
D

w2 ∂φ

∂w
(w) K(Kt

z)(w) dAt(w)

+

√
(t + 2)(t + 3)
√

2

∫
D

w2φ(w)
∂(K(Kt

z))
∂w

(w) dA(w)

=

√
(t + 2)(t + 3)
√

2

∫
D

w2

 ∞∑
i=1

i ai wi−1

 ( ∞∑
k=1

√
Γ(2k + t + 1)Γ(k + t + 1)
kΓ(t + 2)

√
2 (2k)! k!

z2kwk

+

∞∑
k=1

√
Γ(2k + t)Γ(k + t + 1)

Γ(t + 2)
√

k k! (2k − 1) (2k − 1)!
z2k−1wk

)
dAt(w)

+

√
(t + 2)(t + 3)
√

2

∫
D

w2

 ∞∑
i=0

ai wi
+

∞∑
j=1

b jw j


×

 ∞∑
k=1

√
Γ(2k + t + 1)Γ(k + t + 1)
Γ(t + 2)

√
2 (2k)! k!

z2kwk−1

 dAt(w)

=

√
3 (t + 2) (t + 4) a1

8
z4 + · · · ,

and

S φ(e3)(z) = Hφ(e2)(z) = PMφJ(e2)(z)

= P(φe2)(z) =
〈
φe2,Kt

z

〉
t
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=

∫
D

∂(φe2)
∂w

(w)
∂Kt

z

∂w
(w) dAt(w)

=

∫
D

 ∞∑
i=1

√
t + 2 i ai

2
wi−1w2

  ∞∑
k=1

Γ(k + t + 1)
k!Γ(t + 2)

zkwk−1

 dAt(w)

=

∞∑
k=1

(k + 1) (k + 2)
√

t + 2 ak+2

2(k + t + 2) (k + t + 1)
zk.

Hence, we obtain

0 = (S ∗φ − S φ)(e3)(z) =
 √3 (t + 2) (t + 4) a1

8
−

15
√

t + 2 a6

(t + 6) (t + 5)

 z4 + · · · ,

which implies

a1 =
40
√

3

(t + 6) (t + 5)
√

t + 4
a6 = 0.

This together with (4.8) shows that φ = 0, completing the proof of the theorem. □

Recall that an operator T is diagonal on the Dirichlet type space Dt if and only if
〈
Tei, e j

〉
t
= 0 for

all positive integers i , j.

Theorem 4.2. Let t > −1 and φ ∈ H. Then, S φ is a diagonal operator on Dt if and only if φ = 0.

Proof. Let φ ∈ H defined by φ(z) =
∑∞

i=0 aizi +
∑∞

j=1 b jz
j, where z ∈ D and ai, b j ∈ C. The forward

implication is trivial. Suppose conversely that S φ is a diagonal operator onDt. Then, for m, n ∈ N such
that m , n, we have

〈
S φ(en), em

〉
t
= 0, where {en}

∞
n=1 is an orthonormal basis of Dt. Then, the following

two cases arise. If n = 2k for some k ∈ N, by (2.5), we get

〈
S φ(e2k), em

〉
t
=

〈
Tφ(ek), em

〉
t
=


√

m m!Γ(k + t + 1)
√

k k!Γ(m + t + 1)
am−k, if m ≥ k,

√
m k!Γ(m + t + 1)
√

k m!Γ(k + t + 1)
bk−m, if k > m.

If n = 2k − 1 for some k ∈ N, by (2.6), we obtain

〈
S φ(e2k−1), em

〉
t
=

〈
Hφ(ek), em

〉
t
=

(k + m)!
√

mΓ(k + t + 1)Γ(m + t + 1)
√

k k! m!Γ(m + k + t + 1)
am+k.

The above cases indicate that ai = 0 and b j = 0 for all i ≥ 0, j ≥ 1. Hence, φ = 0. □

Let P̌ be the Bergman projection from L2(D, dAt) onto the weighted Bergman space L2
a (dAt). For

any φ ∈ L∞(D), the Toeplitz operator Ťφ on L2
a (dAt) is defined by

Ťφ = P̌Mφ.

Note that the adjoint of Ťφ satisfies Ť ∗φ = Ťφ.
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Let

ěk(z) =
√
Γ(k + t + 2)
√

k!Γ(t + 2)
zk, z ∈ D.

Then, {ěk}
∞
k=0 forms an orthonormal basis of L2

a (dAt). Define an operator U : Dt → L2
a (dAt) by

U(ek) = ěk−1

and linearly extending it to Dt. Then, U is a unitary operator such that

U f = f
′

for each f ∈ Dt.
In the next result, we see that a Toeplitz operator induced by a co-analytic symbol in M on the

Dirichlet type space Dt is unitarily equivalent to that on the weighted Bergman space L2
a (dAt).

Lemma 4.1. Let φ ∈ M be a co-analytic function. Then, Tφ = U∗ŤφU.

Proof. Recall that ⟨·, ·⟩2 denotes the inner product in L2
a (dAt). Let φ ∈ M be a co-analytic function.

For any f , g ∈ Dt, a direct calculation gives〈
Tφ f , g

〉
t
=

〈
PMφ f , g

〉
t
= ⟨φ f , g⟩t

=

〈
∂(φ f )
∂z

,
∂g
∂z

〉
2

=

〈
f
∂φ

∂z
,
∂g
∂z

〉
2
+

〈
φ
∂ f
∂z
,
∂g
∂z

〉
2

=
〈
ŤφU f ,Ug

〉
2

=
〈
U∗ŤφU f , g

〉
t
.

This gives the desired result. □

In the next theorem, we apply Lemma 4.1 to establish a criterion of co-isometry for the H-Toeplitz
operator on Dt.

Theorem 4.3. Suppose t > −1 and φ ∈ M is a nonzero, co-analytic function on D. Then, S φ is a
co-isometry on Dt if and only if φ = 1 on D.

Proof. Let φ ∈ M be a nonzero, co-analytic function on D. Then, by Lemma 4.1,

S φS ∗φ
(
zk
)
=

(
PMφK

) (
K∗M∗φP

) (
zk
)

= PMφT ∗φ
(
zk
)

= PMφ

(
U∗ŤφU

)∗ (
zk
)

= PMφU∗ŤφU
(
zk
)

= PMφU∗
(
kφzk−1

)
= PMφ

(
φzk

)
= T |φ|2

(
zk
)
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for arbitrary k ∈ N. Since the polynomials are dense in Dt, it follows that

S φS ∗φ = T |φ|2 . (4.9)

Assume that S φ is a co-isometry on Dt, that is, S φS ∗φ = I. Thus, by (4.9), we have T1−|φ|2 = 0. Since
1 − φ is analytic, it follows that

T1−φT1−φ = 0.

Similar to [15, Corollary 10], we conclude that either 1 − φ = 0 or 1 − φ = 0, which gives that φ = 1
on D.

Conversely, if φ = 1 on D, then S φS ∗φ = T1 = I by (4.9), which means that S φ is a co-isometry
on Dt. This completes the proof of the theorem. □

Let B(Dt) denote the algebra consisting of all bounded linear operators on the Dirichlet type
space Dt. We are going to show that the map φ 7→ S φ is one-to-one if the domain is H, which is
given in the following.

Lemma 4.2. The map γ : H→ B(Dt) defined by γ(φ) = S φ is one-to-one.

Proof. Let φ, ψ ∈ H, which are defined by

φ(z) =
∞∑

i=0

aizi +

∞∑
j=1

b jz
j, z ∈ D, ai, b j ∈ C,

and

ψ(z) =
∞∑

i=0

a′iz
i +

∞∑
j=1

b′jz
j, z ∈ D, a′i , b

′
j ∈ C,

respectively. If S φ = S ψ, then S φ−ψ(ek) = 0 for all k ∈ N. In particular, S φ−ψ(e2) = 0, that is,
PMφ−ψK(e2) = 0. More precisely,

P

 ∞∑
i=0

(ai − a′i)z
i+1 +

∞∑
j=1

(b j − b′j)z
jz

 = 0.

Applying Lemma 2.1, we derive that
∞∑

i=0

(ai − a′i)z
i+1 = 0.

Therefore, ai = a′i for all i ≥ 0. Moreover, S φ−ψ(e4) = 0, thus we obtain

P

 ∞∑
i=0

(ai − a′i)z
i+2 +

∞∑
j=1

(b j − b′j)z
jz2

 = 0.

Using Lemma 2.1 again, we get
2

t + 2
(b1 − b′1)z = 0,

hence b1 = b′1. Continuing the above process for e6, e8, e10 and so on, we obtain b j = b′j for all j ≥ 2,
and then φ = ψ. This proves the desired result. □
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In the next result, we give a necessary and sufficient condition for an H-Toeplitz operator to be a
partial isometry on the Dirichlet type space Dt.

Theorem 4.4. Suppose t > −1 and φ ∈ M is a nonzero, co-analytic function onD. Then S φ is a partial
isometry on Dt if and only if φ = 1 on D.

Proof. If φ = 1 on D, then S φ is a co-isometry by Theorem 4.3. Thus, S φ is a partial isometry.
Conversely, suppose S φ is a partial isometry on Dt. Then, by [17, Theorem 2.3.3], we have

S φS ∗φS φ = S φ. In view of (4.9), we get
T |φ|2S φ = S φ,

or equivalently,
T1−|φ|2S φ = 0.

Since φ , 0, we have S φ , 0 by Lemma 4.2. Thus, T1−|φ|2 = 0. The desired result is then obtained by
proceeding as in the proof of Lemma 4.3. □

As an operator on the Hilbert space, S φ is a partial isometry if and only if S ∗φ is a partial isometry
for φ ∈ M; see [19, Proposition 4.38]. Thus, combining Theorem 4.3 with Theorem 4.4, we get the
following corollary.

Corollary 4.1. Suppose t > −1 and φ ∈ M is a nonzero, co-analytic function onD. Then, the following
statements are equivalent:

(a) S ∗φ is a isometry on Dt.
(b) S ∗φ is a partial isometry on Dt.
(c) φ = 1 on D.

For any fixed positive integer M, define

HM = span
{
zl, 1 ≤ l ≤ 2M

}
.

Then HM is a closed subspace of the Dirichlet type space Dt. In fact, the following theorem reveals
that it is the kernel of H-Toeplitz operator with some co-analytic symbol.

Theorem 4.5. Suppose t > −1 and M is a fixed positive integer. Let φ(z) =
∑∞

l=M alz
l
∈ M. Then, the

subspace HM of Dt is the kernel of the H-Toeplitz operator S φ.

Proof. Consider positive integers i, j satisfying M ≤ i < ∞ and 1 ≤ j ≤ 2M. If j = 2k for some k ∈ N,
then by Lemma 2.1

S zi(z j) = PMzi K
(
z2k

)
=


√

2 k! (2k)!Γ(k−i+t+1)
√
Γ(2k+t+1)Γ(k+t+1) (k−i)!

zk−i, if k > i,

0, if k ≤ i.

Note that M ≤ i < ∞ and 1 ≤ k ≤ M, then S zi(z j) is equal to 0 in the case of j = 2k. If j = 2k − 1 for
some k ∈ N, similarly, we get

S zi(z j) = PMzi K
(
z2k−1

)
=

√
(2k − 1) (2k − 1)!Γ(k + t + 1)

√
k k!Γ(2k + t)

P(zi+k) = 0.
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Hence, S zi(z j) = 0 for the positive integers i, j satisfying M ≤ i < ∞ and 1 ≤ j ≤ 2M. Now, for
φ(z) =

∑∞
l=M alz

l
∈ M, by Proposition 3.1(a) and a limiting argument, we see that

S φ(z j) =
∞∑

l=M

alS zl(z j).

Hence, we have S φ(z j) = 0 for all 1 ≤ j ≤ 2M. Therefore, we conclude that HM is the kernel of S φ. □

Taking the symbol as a polynomial harmonic function for the H-Toeplitz operator, we can prove its
kernel is infinite-dimensional.

Theorem 4.6. If ψ ∈ M is a polynomial harmonic function, then dim ker S ψ = ∞.

Proof. Observe that if ψ is a co-analytic function in M, then S ψ

(
z f (z2)

)
= 0 for suitable choice of

function f ∈ Dt. This implies that ker S ψ , {0}. Now, suppose that M, N ∈ N are arbitrary given
integers, set ψ(z) =

∑N
s=0 aszs +

∑M
m=1 bmzm. Let α = max {M,N} and choose f (z) =

∑∞
i=α ciz2i+1 ∈ Dt.

We can obtain

S ψ f (z) = PMψK

 ∞∑
i=α

ciz2i+1


= PMψ

 ∞∑
i=α

√
(2i + 1)(2i + 1)!Γ(i + t + 2)
√

(i + 1)(i + 1)!Γ(2i + t + 2)
ciz

i+1


= P

 N∑
s=0

aszs +

M∑
m=1

bmzm

  ∞∑
i=α

√
(2i + 1)(2i + 1)!Γ(i + t + 2)
√

(i + 1)(i + 1)!Γ(2i + t + 2)
ciz

i+1


= P

 N∑
s=0

aszs

  ∞∑
i=α

√
(2i + 1)(2i + 1)!Γ(i + t + 2)
√

(i + 1)(i + 1)!Γ(2i + t + 2)
ciz

i+1

 = 0,

where the last equality follows from Lemma 2.1. Similarly, for all n ∈ N, S ψ

(
z2n f (z)

)
= 0. Hence, if

a nonzero function g ∈ ker S ψ, then
∑n

k=1 λkz2kg ∈ ker S ψ for n ∈ N and λk ∈ C. In particular, the set{
z2ng : n ∈ N

}
is a linear independent set. In fact, suppose

∑n
k=1 λkz2kg(z) = 0 but g , 0, then

∑n
k=1 λkz2k

vanishes on a positive measure set so that λk = 0 for k = 1, 2, · · · , n. This shows that
{
z2g, z4g, · · · , z2ng

}
is linear independent. This is true for all n ∈ N and all such functions in ker S ψ, so ker S ψ is infinite
dimensional. □

It is well-known that the C∗-algebra generated by self-adjoint operators is abelian and hence its
algebraic structure is primitive. As examples of non-self-adjoint operators, the C∗-algebra generated
by H-Toeplitz operators is complicated. Therefore, it is of great importance to study the condition for
commutativity of H-Toeplitz operators.

The subsequent theorem characterizes when two H-Toeplitz operators with analytic symbols
commute on Dt under certain conditions.

Theorem 4.7. Suppose t > −1. Let φ =
∑∞

i=1 aizi and ψ =
∑∞

j=1 b jz j inM, where z ∈ D, ai, b j , 0 for
all i, j ∈ N and b1

a1
= b2i+1

a2i+1
for all i ∈ N. If bi+k

ai+k
≥

b2i
a2i

for all i, k ∈ N, then S φ and S ψ commute on Dt if
and only if φ and ψ are linearly dependent.
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Proof. We show the forward implication only because the reverse implication is trivial. Suppose
S φS ψ = S ψS φ. In particular, S φS ψ(z) = S ψS φ(z), that is,

PMφKP

 ∞∑
j=1

b jz jz

 = PMψKP

 ∞∑
i=1

aiziz

 .
Hence, by Lemma 2.1,

PMφK

 ∞∑
j=1

( j + 1)b j+1

j + 1 + t
z j

 = PMψK

 ∞∑
i=1

(i + 1)ai+1

i + 1 + t
zi

 .
Using Lemma 2.1 again,

∞∑
k=1

∞∑
i=1

(2k + 1)
√

2(2k)!Γ(k + t + 1)
(2k + 1 + t)

√
k!Γ(2k + t + 1)

b2k+1aizi+k

+

∞∑
k=1

∞∑
i>k

2k
√

(2k − 1)(2k − 1)!Γ(k + t + 1)
(2k + t)

√
k k!Γ(2k + t)

b2kaizi−k

=

∞∑
k=1

∞∑
j=1

(2k + 1)
√

2(2k)!Γ(k + t + 1)
(2k + 1 + t)

√
k!Γ(2k + t + 1)

a2k+1b jz j+k

+

∞∑
k=1

∞∑
j>k

2k
√

(2k − 1)(2k − 1)!Γ(k + t + 1)
(2k + t)

√
k k!Γ(2k + t)

a2kb jz j−k.

Then, comparing the coefficients of z in the above equation, we get

∞∑
k=1

2k
√

(2k − 1)(2k − 1)!Γ(k + t + 1)
(2k + t)

√
k k!Γ(2k + t)

(b2kak+1 − a2kbk+1) z = 0,

which implies that bi+1
ai+1
= b2i

a2i
for each i ∈ N by the hypothesis bi+k

ai+k
≥

b2i
a2i

. Similarly, comparing the
coefficients of z2, we get

3
√

4Γ(t + 2)
(3 + t)

√
Γ(t + 3)

(b3a1 − a3b1) z2 +

∞∑
k=1

2k
√

(2k − 1)(2k − 1)!Γ(k + t + 1)
(2k + t)

√
k k!Γ(2k + t)

(b2kak+2 − a2kbk+2)z2 = 0,

which means that bi+2
ai+2
= b2i

a2i
for each i ∈ N by the hypothesis bi+k

ai+k
≥

b2i
a2i

again. Continuing in this fashion,
we obtain that bi+k

ai+k
= b2

a2
for each i, k ∈ N. Therefore, bi = λai for each integer i ≥ 1, where λ = b2

a2
is a

constant. It follows that ψ = λφ. □

More generally, we use the same trick in Theorem 4.7 to obtain an equivalent condition for the
commutativity of H-Toeplitz operators with polynomial harmonic symbols.

Theorem 4.8. Suppose t > −1. Let φ =
∑∞

i=1 aizi +
∑∞

j=1 b jz
j and ψ =

∑∞
m=1 cmzm +

∑∞
n=1 dnzn inM,

where ai, b j, cm, dn , 0 for i, j, m, d ∈ N and c1
a1
= c2i+1

a2i+1
for all i ∈ N. If ai+k

ci+k
≥

a2i
c2i

and b j

d j
≥

a2( j+k)+1

c2( j+k)+1
for all

i, j, k ∈ N, then S φ and S ψ commute on Dt if and only if φ and ψ are linearly dependent.
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5. Conclusions

In this research, we conduct a study of H-Toeplitz operators on the Dirichlet type space Dt.
Specifically, the compactness, self-adjointness, diagonality, co-isometry, partial isometry and
commutativity of H-Toeplitz operators on Dt are characterized.
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