A class of Dirichlet-Morrey spaces $ D_{\beta, \lambda} $ is introduced in this paper. For any positive Borel measure $ \mu $, the boundedness and compactness of the identity operator from $ D_{\beta, \lambda} $ into the tent space $ \mathcal{T}_s^1(\mu) $ are characterized. As an application, the boundedness of the Volterra integral operator $ T_g: D_{\beta, \lambda} \to F(1, \beta-s, s) $ is studied. Moreover, the essential norm and the compactness of the operator $ T_g $ are also investigated.
Citation: Lian Hu, Rong Yang, Songxiao Li. Embedding and Volterra integral operators on a class of Dirichlet-Morrey spaces[J]. AIMS Mathematics, 2021, 6(7): 7782-7797. doi: 10.3934/math.2021453
A class of Dirichlet-Morrey spaces $ D_{\beta, \lambda} $ is introduced in this paper. For any positive Borel measure $ \mu $, the boundedness and compactness of the identity operator from $ D_{\beta, \lambda} $ into the tent space $ \mathcal{T}_s^1(\mu) $ are characterized. As an application, the boundedness of the Volterra integral operator $ T_g: D_{\beta, \lambda} \to F(1, \beta-s, s) $ is studied. Moreover, the essential norm and the compactness of the operator $ T_g $ are also investigated.
[1] | A. Aleman, J. Cima, An integral operator on $H^p$ and Hardy's inequality, J. Anal. Math., 85 (2001), 157–176. doi: 10.1007/BF02788078 |
[2] | A. Aleman, A. Siskakis, An integral operator on $H^p$, Complex Var. Elliptic Equations, 28 (1995), 149–158. |
[3] | A. Aleman, A. Siskakis, Integration operators on Bergman spaces, Indiana Univ. Math. J., 46 (1997), 337–356. |
[4] | F. Anceschi, C. Goodrich, A. Scapellato, Operators with Gaussian kernel bounds on mixed Morrey spaces, Filomat, 33 (2019), 5219–5230. doi: 10.2298/FIL1916219A |
[5] | P. Duren, Theory of $H^p$ Spaces, New York: Academic Press, 1970. |
[6] | P. Galanopoulos, N. Merchán, A. Siskakis, A family of Dirichlet-Morrey spaces, Complex Var. Elliptic Equations, 64 (2019), 1686–1702. |
[7] | D. Girela, J. Peláez, Carleson measure, multipliers and integration operators for spaces of Dirichlet type, J. Funct. Anal., 241 (2006), 334–358. doi: 10.1016/j.jfa.2006.04.025 |
[8] | P. Li, J. Liu, Z. Lou, Integral operators on analytic Morrey spaces, Sci. China Math., 57 (2014), 1961–1974. doi: 10.1007/s11425-014-4811-5 |
[9] | S. Li, J. Liu, C. Yuan, Embedding theorem for Dirichlet type spaces, Canad. Math. Bull., 63 (2020), 106–117. doi: 10.4153/S0008439519000201 |
[10] | X. Liu, S. Li, R. Qian, Volterra integral operators and Carleson embedding on Campanato spaces, J. Nonlinear Var. Anal., 5 (2021), 141–153. doi: 10.23952/jnva.5.2021.1.09 |
[11] | J. Liu, Z. Lou, Carleson measure for analytic Morrey spaces, Nonlinear Anal., 125 (2015), 423–432. doi: 10.1016/j.na.2015.05.016 |
[12] | J. Pau, R. Zhao, Carleson measures, Riemann-Stieltjes and multiplication operators on a general family of function spaces, Integr. Equations Oper. Theory, 78 (2014), 483–514. doi: 10.1007/s00020-014-2124-2 |
[13] | C. Pommerenke, Schlichte Funktionen und analytische Funktionen von beschränkter mittlerer Oszillation, Comment. Mathematici Helvetici, 52 (1997), 591–602. |
[14] | R. Qian, S. Li, Volterra type operators on Morrey type spaces, Math. Inequalities Appl., 18 (2015), 1589–1599. |
[15] | R. Qian, X. Zhu, Embedding of $Q_p$ spaces into tent spaces and Volterra integral operator, AIMS Math., 6 (2020), 698–711. |
[16] | A. Scapellato, Riesz potential, Marcinkiewicz integral and their commutators on mixed Morrey spaces, Filomat, 34 (2020), 931–944. doi: 10.2298/FIL2003931S |
[17] | C. Shen, Z. Lou, S. Li, Embedding of $ BMOA_ {\log} $ into tent spaces and Volterra integral operators, Comput. Methods Funct. Theory, (2020), 1–18. |
[18] | Y. Shi, S. Li, Essential norm of integral operators on Morrey type spaces, Math. Inequalities Appl., 19 (2016), 385–393. |
[19] | G. Siskakis, R. Zhao, A Volterra type operator on spaces of analytic functions, Contemp. Math., 232 (1999), 299–312. doi: 10.1090/conm/232/03406 |
[20] | M. Tjani, Compact Composition Operators on Some Möbius Invariant Banach Spaces, Michigan State University, Department of Mathematics, 1996. |
[21] | Z. Wu, Carleson measures and multipliers for Dirichlet spaces, J. Funct. Anal., 169 (1999), 148–163. doi: 10.1006/jfan.1999.3490 |
[22] | Z. Wu, C. Xie, $Q_p$ spaces and Morrey spaces, J. Funct. Anal., 201 (2003), 282–297. doi: 10.1016/S0022-1236(03)00020-X |
[23] | H. Wulan, J. Zhou, $Q_K$ and Morrey type spaces, Ann. Acad. Sci. Fenn. Math., 38 (2013), 193–207. doi: 10.5186/aasfm.2013.3801 |
[24] | J. Xiao, The $Q_p$ Carleson measure problem, Adv. Math., 217 (2008), 2075–2088. doi: 10.1016/j.aim.2007.08.015 |
[25] | R. Zhao, On a general family of function spaces, Ann. Acad. Sci. Fenn. Math. Diss., 105 (1996), 56. |
[26] | K. Zhu, Operator Theory in Function Spaces, Providence: American Mathematical Society, 2007. |
[27] | Z. Zhuo, S. Ye, Volterra-type operators from analytic Morrey spaces to Bloch space, J. Integr. Equations Appl., 27 (2015), 289–309. |