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1. Introduction

Let D and dD denote the unit disc of complex plane C and its boundary, respectively. Let H(D)
be the class of holomorphic functions on D. For 0 < p < oo, the Hardy space H” consists of those
functions f € H(D) satisfying

21

1 .
||f||Zp = sup o |f(re)|Pde < oo.
0<r<1 7T Jo

Let H* denote the space of bounded analytic functions with the supremum norm || f{|g=~ = sup_.p, | f(2)I.
For @ > —1 and 0 < p < oo, the weight Dirichlet space D/, consists of those functions f € H(D)
satisfying

Il = 1£ O] + (L lf" @1 - IZIZ)"dA(Z))p < oo,

where dA denotes the normalized area measure on D. When @ = 1 and p = 2, the space DY, is the
Hardy space H?>. When « = p, D/, is just the Bergman space A”.
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Let fe HD),0 < p<oo,-2<g<ooand 0 < s < co. We say that f € F(p,q,s) if

1/p
I/ 1lF(p.qs) = SO + Sup ( fD I @PA - |21 - IGa(Z)Iz)SdA(Z)) < oo,
ae
where o, = {= q, s) was introduced by
Zhao in [25]. For g + s > —1, the space F(p,q, s) is nontrivial. When g = p -2, F(p,p — 2, s) are
Mobius invariant spaces that contain some classical spaces. For instance, when s > 1, F(p,p — 2, s)
is the classical Bloch space 8. When p = 2, F(p,p — 2,s) is the Q space. If p = 2 and s = 1,
F(p,p—2,s)is the BMOA space.
Let g € H(D). The Volterra integral operator 7, is defined by

TH&Fiﬁf@W@MLzeD,f€H®)

The operator T, has been investigated by many researchers. Pommerenke [13] showed that 7', is
bounded on H? if and only if g € BMOA. Aleman and Siskakis [2] proved that T, is bounded on H? if
and only if g € BMOA when p > 1. See [1-3,6,8,9,14,15,17-19] and the references therein for more
information of the operator T,.

For any arc I c dD, let |I| = f % be the normalized arc length of I and

SH={z=re’eD:1-|Il<r<1,¢el

be the Carleson box based on /. Let 0 < p,s < oo and u be a positive Borel measure on D. The tent
space 77 (u) consists of all u-measure functions f satisfying

1

I, = su f lf@IPPdu(z) < oo.
Mz = e 1P S / 3

It was first introduced by Pau and Zhao in [12]. They also showed that 7”(u) is a Banach space for

p > 1. In [24], Xiao showed that the O, (0 < p < 1) space is continuously contained in 7 3(,u) if and

only if

uwu»( 2f
up log—] <o
wcop 1P |1]

Let 0 < A < 1. The analytic Morrey space L>%(D), which introduced by Wu and Xie in [22],
consists of all functions f € H*(D) such that

IWMAﬁﬂ@ P < oo

where f; = i f f5 9 From [8], the equivalent norm of f € £>*(D) can be defined as
1l 20 = 1£CO)] + Su]g(l —1a®)ZNf 0 ou = F@lle.
ae

It is obvious that £L>!(D) = BMOA, £>°(D) = H?. Moreover,

BMOAcC L**cH?, 0<a<l.
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See [23] for the generalization of the Morrey space.
Recently, Galanopoulos, Merchan and Siskakis [6] defined the Dirichlet-Morrey space Df,’/l, which
consisting of all functions f € Df, such that

I Alpz2 = £ (O] + sup(1 — ) I f o o - f@llpy < oo,

aeD
where 0 < p, A < 1. It is easy to check that Df’ﬂ = L2 Df,’l =Q,, Df,’o = ij and
2,4 2
Q,cD,;”cD,0<A<

Recently, Morrey-type spaces have received a lot of attention and many results have been obtained.
For example, Li, Liu and Lou proved that T, is bounded on £>*(D) if and only if g € BMOA when
0 < A < 1in [8]. In [6], Galanopoulos, Merchdn and Siskakis proved that if 7, is bounded on Df;/l,
then g € Q,, while if g € W), then T, is bounded on Df,’l. Here the space W, is the space consisting of
all functions g € H(D) such that

flf(z)lzlg’(z)lz(l ~12)’dA(z) < CIIfIl3,, f € D;.
D p

Clearly, the necessary and sufficient condition for the boundedness of T, on Df;ﬂ are not obtained.
See [4, 10, 16,27] and references therein for more information on other Morrey-type spaces.

Motivated by the definitions of the Morrey space £>* and the Dirichlet-Morrey space D', we
introduce a class of Dirichlet-Morrey spaces as follows. Assume that -1 < 8 < 0,0 <1 < 1 and
fe Dé. We say that f belongs to the Dirichlet-Morrey space Dg ; if

1£1lps, = 1FO)] + sup(1 = |a)#* P2 f o oy = J(@llpy < co.
acD
It is obvious that Dg , is a linear space. Under the above norm, it is easy to check that Dg ; is a Banach
space. By a simple calculation, we have that Dgy = Dé, Dg; =F(1,-1,+1) and

F(l,-1,B+1)cDgyc Dy, O0<a<l.

In this paper, we first state some basic properties for the Dirichlet-Morrey space Dg, and then
investigate the boundedness and compactness of the identity operator I, : Dg; — 7' (u). Using the
embedding theorem, we give a necessary and sufficient condition for the boundedness of the operator
T,:Dg, — F(1,B—s,5) when -1 <5 <0,0 < A4,s <1suchthats > A(8+1). Moreover, the essential
norm and compactness of T, : Dg; — F(1,5 — s, s) are also investigated. In particular, we will prove
that T, : Dg; — Dg, is bounded (compact) if and only if g € F(1,-1,8+ 1) (g € Fo(1,-1,8 + 1)).

In this paper, we say that f < g if there exists a constant C such that f < Cg. If both f < g and
g < f are valid, we write f ~ g.

2. Some basic properties

In this section, we characterize some basic properties of the space Dg,. These properties play an
important role in the proof of our main results. We first recall the definition of a-Carleson measure.
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Suppose that 0 < @ < oo and yu is a positive Borel measure on D. We say that u is a a-Carleson
measure if (see [12])

e MS D)
lellenm, = sup ———
IcoD |I|

< 00.

When a = 1, pu is called the Carleson measure. We say that y is a vanishing a-Carleson measure if

o KD _
-0 |I|*

The Carleson measure is a very important tool in the theory of function spaces and operator theory
(see [5,7,11,24]).

Lemma 1. [I2] Let a,q > 0 and u be a positive Borel measure on D . Then u is a-Carleson measure
if and only if
(1 = laP)*

up | i c‘zz|q+ad'u(Z) < o0.

Proposition 1. Let -1 < <0,0< A< 1and f € HD). Then f € Dy, if and only if
sw(—L—f W@m—mwmmﬂ<w. @.1)
1cop \IMED Jg o)

Proof. First, suppose that f € Dg,. For any arc I C dD, let a = (1 — |I|)¢, where £ is the center of arc
1. Then
l—azl~1—la ~|l|=1-lal, ze S{).

Changing the variable z = o,(w), we have
11Dy, = (1 = laH)PP ) f o oy = J(@llpy
= (1 = |a)PDi=y fD I(f © 0a) @I(1 = |2 PdA(2)
(1= 1zP¥°A = lal’)

1 —azl?

= (1 = Jaf)P+Di=o f |f"(ca(2)) dA(z)
D

1 — 2
=== [ s
1
= G V00N = YA

which implies the desired result by the arbitrariness of /1.
Conversely, assume that (2.1) holds. Let duf(z) = |f'(2)I(1 — |z]*)’dA(z). Then

pr(S) _ 1 ,
ey T P (Illﬁm fs(l) I @1 = Ile)ﬂdA(z)) < oo,

IcoD IcdD

So uy is a A(B + 1)-Carleson measure. Then for each a € D,

—laPy* (A~ [2PY

[1 — az|28+2

1
If o0~ fi@ly = [ 17l dAG)

AIMS Mathematics Volume 6, Issue 7, 7782-7797.



7786

(1 - laPy™!
- ), e

Therefore, by Lemma 1 we have

2\(B+1)(1-2) _ (1 _ |a|2)(ﬁ+1)(2_,1)
sup(l = lal”) ”f 00,4 — f(a)||Dé = sup d[-lf(Z)
D

aeD aeD |1 - aZ|ZB+2
(1 —|a)
= ~ " du, i
Sup fD L=z up(z) < oo
where @ = A(B+ 1) > 0,9 = (B+ 1)(2 - 1) > 0. The proof is complete. O

Proposition 2. Let —1 < 8 <0, 0 < A < 1. Then the following statements hold.

(i) For any f € Dg,,
11l

(1 _ |Z|2)(ﬁ+1)(1—/1)’ z€D.

If@I <

(ii) The function fs,(z) = W belongs to Dg .

Proof. (i) Suppose that f € Dg . For each a € D, applying the Lemma 4.12 in [26], we get

If'@I(1 - laf’) < B+ 1) f I(f 0 o) @I(1 = 2P YdA(z)
D
3 B+1)
- (1- |a|2)(,8+1)(1—/l)

£l
<
- (1 _ |a|2)(ﬂ+1)(1—/l)'

(1 =[PP f o 0y = F@llpy

So
11l

|f,(a)| = (1- |a|2)(ﬁ+1)(1—/1)+1 » a4

e D.

Since f(z) — f(0) = foz f'(w)dw, by integrating both sides of the last inequality, we obtain the desired
result.
(if) By Proposition 1, it suffices to show that

IcoD

1
SUP 17D fs " 5@ = |2 dA(z) < oo (2.2)

Set
S(a,r)={zeD:la-z<raedD,0<r<1}.

Then the inequality (2) is equivalent to

1 ,
sup mfs(m) 52N = 2P dA(z) < co. (2.3)

acdD,0<r<1 T

Since

L‘ ( )|f/;,,1(2)|(1 ~ Y dA(z)

AIMS Mathematics Volume 6, Issue 7, 7782-7797.



7787

_ (1 - |y
=pr b= La NI

! 1
~ j;(u = Z|(ﬁ+1)(1—/1)+1_,3alA(Z) =< js‘(] e Zl(ﬁ+1)(1“)+1‘5dA(Z)

1 " s D(1-1 AB+1
5f (ﬁ+1)(1—A)+1_/5dA(W) = f WD ap ~ D,
[wl<r [wl 0

we see that the inequality (2.3) holds. The proof is complete. O

3. Embedding theorem from D; , to tent spaces

In this section, we study the boundedness and compactness of the identity operator I; : Dg, —
T 1(u). We say that I, is compact if

1
m — f |fn(2)ldu(z) = 0
S

n—oo |I|5

where I C dD, {f,} is a bounded sequence in Dg, and converges to zero uniformly on every compact
subset of D.
We begin this section with several lemmas.

Lemma 2. [12, Corollary 2.5] Let a,b €e Dand r > —1,s,t > 0 suchthat0 < s +t—r—2 < s. Then

(1—=1z»"
—dA()) K —— .
o |1 —azl*|1 — bzt @ (1 —|af?)s+i-r=2

Lemma3. Let -1 <f<0,0<A<1,g>2AB+1)and f € Dg,. Then

L . ( |Z| )q+(ﬁ+l)(1 A)— ldA -
sup(1 ~ laf) 100 0@ ~ F@I e dA@ = Il
Proof. From Lemma 1 in [11], for any a € D and f € H(D),
(foo)(2)— fla) = f(forfa) (A - 1) el Z_()) dA(1),

where h.(f) = 1 — (1 — zt)* is uniformly bounded on D and satisfies /.(0) = 0. Employing Schwarz’s
Lemma, we have |h,(7)| < |¢|. Using this, we deduce that

(1-1?
I(f 0 0a)(z) = fla)] = I(fo o) Ol—7 TRErRE dA(D).

According to the fact that 1 — |f] < |1 — at|, Lemma 2 and Fubini’s Theorem, we get

(1 = |a|?)B+Da- | ( |Z|2)q+(ﬁ+1)(1 -)- ldA
a (f o)) — f(a)l PRTETRI )
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~ 1 - |f|2)2 (1 _ |Z|2)q+(ﬁ+1)(1—/1)—1
(1 - 2<ﬂ+1>w>ff DO g4 dA
<(1 - laP) I e o O AW dAR)

<(1=laPy 0 [ ooyl - [ (1 = gpyrera--)
> ol

—IZP|1 — agla B dA(2)dA(1)

<=1 [ 10 Y 011 = WP A
<(1 =P [ o 0 @1 - WPPaa)
<1l ’
The proof is complete. 0

Lemma 4. [2]1] Let 0 < a < 1 and u be a positive Borel measure on D. Then the identity operator
1 : Dcll_l — L'(u) is bounded if and only if u is a-Carleson measure.

The following theorem is the main result in this section.

Theorem 1. Let -1 < <0,0< A< 1, s > AB + 1) and u be a positive Borel measure on D. Then
the identity operator I; : Dgy — T (1) is bounded if and only if the measure pis a s + (B + 1)(1 — A)-
Carleson measure.

Proof. First, assume that I, : Dg, — 7, (@) is bounded. For any arc I C dD, let a = (1 — |I|)&, where &
is the center of arc /. Then
Il —azl~1—laf = |ll, z€SU).
Set
1—laf

fa(Z) = (1 _ C—lZ)1+(,B+1)(1—/l)’ z€D.

Using Proposition 2, we obtain that f, € Dg, with ||f,|lp,, < 1. Moreover |f,(2)| ~ W, zeSyA).

Hence,
pS@) 1
|[1]5+B+D(1-2) ~ \1)* s [fa(@dp(z) < ”ﬁZHDﬁJ < o,

which implies that p is a s + (8 + 1)(1 — A)-Carleson measure.
Conversely, suppose that p 1s a s + (8 + 1)(1 — A)-Carleson measure. Let f € Dg,. For any arc
I c 0D, let a = (1 — |I])¢, where £ is the center of arc /.

1
— d
o fs  @lduta

1
<o [ @i+ [ 1@ - flalduta
S |I | S
=A + B.
From Proposition 2, we have that

u(S ()
A < Wy, s < Wl
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Since
d f@-fla /'@ N (s+ @B+ D2 -D)a(f(z) - f(a)

d_z(l — az)s+HBHH2-D - (1 — az)s*+B+H2-2 (1 — Gz)s*+B+H2-D+1 ’

by Lemma 4 we obtain

1
B [ 1@ - fl@lduta
11 Js

(1 _ 1,12B+D2-2) f@) - fla)
~(1 = laP) js\([) (1 — az)s+B+DH2-1 du(z)
25\(B+1)(2-) f@) - f(a)
<1 = lal>)** L a0 du(z)
_ d (2) — f(a) ; —D-
<(1-1aFy® ﬁ)f dz (1 fc‘zz)s+<£+1)(2_a> (1= [Py 0ldA )
b _
ﬁB] + BQ,
where
_ |f" (@)l s _1-
Bl — (1 _ |a|2)(ﬁ+1)(2 ﬂ)f |1 aZ];Y+(ﬂ+l)(2_/l)(1 _ |Z|2) +(B+1)(1-2) ldA(Z)
51—
and

B2 — (1 _ |a|2)(ﬁ+l)(2—/l)f |f(Z) — f(a)l (1 _ |Z|2)S+(ﬁ+l)(l—/l)—ldA(Z).
D

|1 — az|s+@+be-D+1
Changing the variable z = o,(w), we have

(1 _ |W|2)s+(ﬁ+l)(l—/l)—l
|1 — awls—ﬂ(ﬁ+l)+2(1 — |a|2)ﬁ

By = (1 —laf)#rVe=y f lf"(caw)) dA(w)
D

< (1 = Ja)#DA=y f I(f 0 ) WI(L = WY dA(w)
D
<1l

Changing the variable z = 0,(w) and using Lemma 3, we obtain

By = (1 — jaP)*De-D f If(z) - f(a)l (1 2Py ED0-D1 44 )
D

|1 _ aZ|s+(,8+1)(2—/l)+l

2yB+DHA-1) (1 = |w]?)s+E+Di-2-1
= (1 - |a| ) fDl(f o O-a)(w) - f(a)l |1 _ (_1W|S_/l(ﬁ+l)+l dA(W)
< 11fllp.
So the identity operator I, : Dg, — 7, (1) is bounded. The proof is complete. O

Theorem 2. Let -1 < <0,0 <A< 1, s > AB + 1) and u be a positive Borel measure on D such
that point evaluation is a bounded functional on T (). Then the identity operator 1, : Dg, — T} (1)
is compact if and only if the measure u is a vanishing s + (8 + 1)(1 — A)-Carleson measure.

AIMS Mathematics Volume 6, Issue 7, 7782-7797.
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Proof. First, we suppose that I; : Dg, — 7, I(u) is compact. Let {I,} be a sequence of subarcs of 6D
with lim |[,| = 0. Set a, = (1 — |I,])¢,, where &, is the midpoint of /,. By simple calculation we have

n—oo

that, for any z € S(1,,), 1 — |a,* ~ |1 — G@,z| ~ |I,,|. Set

1 —la,

(1 = @,z)+6+D-D)° zeD.

@) =

By Proposition 2, we see that {f,} is a bounded sequence in Dg, and converges to zero uniformly on
every compact subset of D. Then

(S (1)) 1 f
—_— |/ (Dldu(z) < M fullr — 0,
TATSCEE TR AT S J: H Jullg

as n — oo, which implies that u is a vanishing s + (8 + 1)(1 — 1)-Carleson measure.

Conversely, suppose that u is a vanishing s + (8 + 1)(1 — A)-Carleson measure. Then pisa s+ (8 +
1)(1 — A)-Carleson measure. Therefore, the identity operator I; : Dg, — ‘7'5l (u) is bounded. From [9]
we have [l — wllem,paya_y — 0, as ¥ — 1, where p,(z) = 0 for r < |z] < 1 and pu,(z) = u(z) for |z < r.
Let {f,} be a bounded sequence in Dy, with sup, . ||/ullp,, < 1 and converges to zero uniformly on
every compact subset of D. We obtain

1 1 1
= [ o < [ 1@ + 5 [ 1@k w0
11 Jsa 115 Jsa 11 Jsa

1
<— f |/ (@Dldp () + [l = tellem, e 1 fallDs,
115 Jsa

1
5_3 f |fn(Z)|d,ur(Z) + ||/"l - /”l}’”CM_H(ﬁJrl)(l,A)‘
115 Jsa

Letting n — oo and r — 1, we get lim, .« [|full77 = 0. So the identity operator I; : Dga — 7, Sl(u) 1S
compact. The proof is complete. O

4. Boundedness of integral operator

In this section, we characterize the boundedness of the operator T, : Dg,; — F(1,8 - s,s) when
-1<8<0,0<A4,5s<1suchthats>AB+1).

Theorem 3. Let g € HD), -1 << 0,0 < A, s < 1 suchthats > AB+1). Then T, : Dg, —
F(1,B — s, s) is bounded if and only if

geEF(L,B—s—@B+ DA =-2,s+ B+ 1D -2).

Proof. First, suppose that T, : Dg; — F(1,8—s, s) is bounded. For any fixed arc I ¢ dD, let ¢” denote
the center of  and a = (1 — |I])e". Set

Jal2) = (1 — az)B+ba-a° zeD.

AIMS Mathematics Volume 6, Issue 7, 7782-7797.
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Then we get || Tg fullr(1 5-s.9) = T gllpg—~rF1p-s.9)ll fallps, < 00, by the assumption and Proposition 2. Since
(T, f) (2) = fu(2)g'(2), we have

1 ,
00 >||Tg fall 1 p-s.5) 2 Wf (Tefo) @I = 2 dA(2)
S
1

=75 f I£.(2)lIg’ @1 = |z PdA(z)
|I| S

1 1
=75 "@I(1 = |zI*YPdA
|I|s L(I) |1 _ azl(ﬁ_'.l)(l_/l) |g (Z)K |Z| )ﬂ (Z)
! : ) _ H(S(D)
~|I|S+(ﬁ+l)(1_/l) ‘f;(]) |g (Z)l(l - |Z| )ﬁdA(Z) - W,

where du,(z) = |8’ (@)I(1 — |z1*)°dA(z). Hence g is a s + (B + 1)(1 — ) -Carleson measure. Employing
Lemma 1, we obtain that

(1 — |a)?)s+E+ba-1
7 ilelgfm |1 — az|*Ls+@B+Ha-] dutg(2)

(1 _ |a|2)s+(ﬁ+l)(1—/l)

N ’ 1.2
ssup [ e QI — Y dA)

~ sup f 18’ @I = 2P E V(A — o ()P )PV dA (),
D

aeD

which implies that g € F(1,8—s— B+ 1)(1 =), s+ (B+ 1)(1 — Q).
Conversely, assume that g € F(1,8—s—(B+ 1)(1 = 4), s+ (B+ 1)(1 — 4)). Then we see that y, is a
s+ (B + 1)(1 — ) -Carleson measure. For each f € Dg,, by Theorem 1, we have

rcop M1

1
sup — f (T, f) @I(1 = |zPdA(z)
S)

1
:W—JWmmwmmew
S)

rcop M1

1
—sup [ @@
l1° Jsay

IcoD
<N fllp,, < oo
Therefore, T, : Dg iy — F(1,8 — s, s) is bounded. The proof is complete. O
In particular, taking s = A(8 + 1), we get the following result.

Theorem 4. Let -1 < <0,0< A< 1and g € H(D). Then T, : Dg, — Dg, is bounded if and only if
geF(1,-1,+1).

5. Essential norm of integral operator

In this section, we investigate the essential norm of the operator T, : Dg 4 — F(1,5 — s, 5). We first
recall some definitions. The essential norm of 7 : X — Y is defined by

IT|lex—y = irlgf{llT — Kl|x—y : K is a compact operator from X to Y},

AIMS Mathematics Volume 6, Issue 7, 7782-7797.
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where (X, ||-|[x) and (Y, || - ||y) are Banach spaces, ||T — K||x—y is the operator norm of the operator 7 — K
from X to Y. Itis easy to see that T : X — Y is compact if ||T||. x—y = O.
For a closed subspace A of X, given f € X, the distance from f to A is defined by distx(f,A) =

infgeA I/ = gllx-
Let Fo(1,8—s—(B+ 1)(1 =), s+ (B+ 1)(1 — 1)) denote the space of all functions f € F(1,8—-s—

B+ 1A —-2),s+ B+ 1)1 - 2)) such that
i f /@I = R0 jor )y P DdA) = 0
al— D
The following lemma gives the distance from F(1,8 - s - B+ 1)(1 — A),s + (B + 1)(1 — A)) to
Fo(1,—s—(@B+ D1 -2),s+ B+ 1)1 -2)).
Lemmas. Let -1 <8<0,0<A< 1. Ifge F(l,m,t), then

lim sup fD 18" @I = [2P)"(1 = lou(2)P)'dA(2)

lal—1

= distr( mn(g, Fo(1,m, 1)) = limsup|lg — g-llFmp-

r—1-

Herem=—-s—-B+1D)(1 -, t=s+B+1)(1-21),g(2)=g0z,0<r<1,zeD.

Proof. Given any g € F(1,m,1), then g, € Fo(1,m,t) and ||g.|lrq1.mn = lIgllFams. For any & € (0, 1),
there exists a a € (0, &) such that o,(z) lies in a compact subset of D. Then lim,_,;- sup_.p, 1g'(074(2)) —
rg’(ro,(2))| = 0. Changing the variable z = o,(w), we have

lim SUPf 8'@) = £/ = 12P)"(1 = |oa(2)]) dA(z)

=17 jaj<g
= rlirfl |Sl|lg f 8" (W) = gL (T = o))" (1 = W) o (w)*dA(w)
) , , (1 _ |W|2)m+t
< ,ll)r{l- ;Salllsp; il;g lg' (Ta(W)) — g (Ta(W))] 5 WdA(W)
1
< lim sup g’ (Ta(W)) — g1 (Ta(W))] s D=2 0

By the definition of distance mentioned above, we obtain that

dist ,Fo(1,m, 1)) = inf -
Fmn(&s Fo( ) feFO(lmt)”g SlEam

< rll)r{l_ llg — g:llFcmn

~ lim sup f 18'(2) = g, @I(1 = 2P)"(1 = lor(2)*)'dA(2)

r—1- |a‘>§

+ lim sup f 9@ — £ @I = P)"(1 = lou@P) dA)

r=1 s

5??? L 8’ @I = 12P)"(1 = |ra(2)P)'dA(z)
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+ lim sup f 8.1 = 2P)"(1 = oo dA(2).
D

r—1- |a‘>§

We write ®©, ,(z) = 0, © ro,(z). Then ®,, 1s an analytic self-map of D and ®,,(0) = 0. Changing the
variable z = o,(w), and using the Littlewood’s Subordination Theorem (see Theorem 1.7 of [5]), we
get

fD 18, @I(1 = 12" (1 = loa(2)*) dA(z)
= L 18T WDI(L = loraW)P)" (1 = WY lo, (w)PdA(w)
< fD 18" 0 0710 © @ gWI(1 = 1077 © ©pg(W)P)"(1 = (W) |07, (W)PdA (W)
< fD 18 (@ W)I(L = o7 WE)" (1 = WY o, (w)*dA(w)

< f 18" WL = wP)"(1 = |omra(W)IP) dA(w).
D

Take the supremum on the above inequality over w € D. Because of the arbitrariness of &, we obtain

distp(i,mn(g, Fo(l,m, 1) < limsup f 8’ @I(1 = 12P)"(1 = loa(2)P) dA().
D

lal—1

For each g € F(1,m, 1), it is easy to get

distpmp(g, Fo(1,m,0)) = inf  |lg = fllrame
feFo(Lmyp)

> Tim sup f 2N = 12D"(1 = lraDPYAAG).
D

lal—1
The proof is complete. O

Lemma 6. Let -1 <<0,0< A, s<1suchthats > AB+1). If fe F(,—s— B+ 1)(1-21),s+
B+ D(1 =), then
117 =5+ 1)1-2).5+B+D(A-2)

(1 _ |a|2)s—/1(ﬂ+1)+1 ’ eD.

lf" (@)l =

Proof. For any a € D, by a change of variable argument, we have
f |f/(Z)|(1 _ |Z|2)ﬁ—s—(ﬁ+l)(l—/l)(1 _ |0_a(z)|2)s+(ﬂ+l)(l—/l)dA(Z)
D
= f (@@L = oa(2) P> F DD — g2y B DD (2)PdA(2)
D

§ f (f 0 ) @I = laPy ™1 = |2 PdA()
D
21 @I(1 = lafy =01,

The last inequality used the Lemma 4.12 in [26]. The proof is complete.
]
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Lemma?7. Let -1 <f<0,0< A, s <1suchthats > AB+1). Ifge F(1,B—s— B+ 1)(1-2),s+
B+D(1-D)and0 <r<1,thenT, : Dg, — F(1,B—s,s) is compact.

Proof. Let {f,} be a bounded sequence in Dg, such that {f,} converges to zero uniformly on any
compact subset of D. Changing the variable z = o,(w), for any a € D, from Lemma 6 and Proposition
1 we have

sup f (T, ) @I(L = 1275 (1 = |ou(2)P) dA(z)
D

aeD
=sup fD @M @I = PP = |ou(2)lP) dA(z)

”g”F(l,m,t)
- (1 _ r2)s—/l(,3+1)+1

sup L‘) @I = 2P = o) PP dAR)

”g”F(l,m,t)
- (1 _ r2)s—/1(,3+1)+1

sup f @I = 2P = o)) P VdA()
aeD JD

”g”F(l,m,t)
- (1 _ r2)s—/1(ﬁ+l)+l

sup f I£2@I = 12?01 = o, (2)P) P VdA(z)
aeD JD

”g”F(l,m,t) £l
(1 — r2)s- B+ nllDp >

wherem=F—s—(B+1)(1 -A),t=s+(B+ 1)(1 — ). Using the Dominated Convergence Theorem
we obtain

lim ||, fullp,,, < lim f 17 @I(1 = 2PV~ dA ()
n—oo n—oo D

< [ fimif@i0 - PP o
D n—oo
which implies that Ty : Dg; — F(1, — s, s5) is compact. The proof is complete. O

The following conclusion is important for studying the essential norm of operators on some analytic
function spaces, see [20].

Lemma 8. Let X, Y be two Banach spaces of analytic functions on D. Suppose that

(i) The point evaluation functionals on Y are continuous.
(ii) The closed unit ball of X is a compact subset of X in the topology of uniform convergence on
compact sets.
(iii) T : X — Y is continuous when X and Y are given the topology of uniform convergence on
compact sets.

Then, T is a compact operator if and only if for any bounded sequence {f,} in X such that { f,,} converges

to zero uniformly on every compact set of D, then the sequence {T f,,} converges to zero in the norm of
Y.

Theorem S. Let g€ HD), -1 <B<0,0< A, s < lsuchthats > AB+1). If T, : Dg, — F(1,5-5,5)
is bounded, then

T glle.pg—F(18-5.5) = diStemn(g, Fo(l,m,1)).
Herem=p—-s—-—B+ 1)1 -, t=s+B+ 1)(1-21).
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Proof. Assume that {/,} is a sequence of subarcs of dD with lim |[,| = 0. Let a, = (1 — |I,,])&,, where
&, is the center of arc I,,. Then {a,} is a bounded sequence in D such that lim,,_,, |a,| = 1. Set

1 —la,f

@) = |1 — a,z|@+Da-D+1 2 €D.

Then {f,} is a bounded sequence in Dg,; and converges to zero uniformly on every compact subset of
D. Moreover,

1

For any compact operator K : Dg; — F(1,8 — s, s), by Lemma 8, we have lim,,,« [|K fullr(1 g-5,5) = O.
Hence

Ty — Kllpy,~F,p-s.5) = limsup |[(Ty — K)(f)llF1,5-s5.5)

n—00

> lim sup(||T full 1 p-s.5) = 1K fullF1 g-s5.5)
n—oo

=limsup |7 full r1 p-s.5)
n—oo

> lim sup f L@ @I = 2P (1 = o, (2)I) dA(2)
n—oo D

) , 1— Z2 1= anZ s—=(B+1)(1-2)

< limsup f oY =) A
n—oo S (1) |1 - anZ| s

> lim sup f 18’ @I(1 = 2P — o, (2)P) PP VAA(R).
n—oo S,

Then it is obvious that

ITglle, 1~ F(1,-5.5) Z lim sup f 18’ @I = 12P)"(1 = lovg, (D)) dA(2).

n—oo D

Since {a,} is arbitrary, using Lemma 5, we have
T glle.n—F(18-5.5) = diStemn(g, Fo(l,m, 1)).
Conversely, by Lemma 7 and Theorem 3,

WTglle.ps—F1p-s.5) < Ty = T, llpys 1~ F(1 p-s.5)

= ||Tg—g,.||D/M—»F(1,ﬁ—s,s) ~|lg - gr”F(l,m,t)-

Using Lemma 5 again, we obtain that
||Tg||e,Dﬁ,4—>F(1,ﬁ—s,s) < rlirfl‘ ”g - gr”F(l,m,t) =~ diStF(l,m,z‘)(ga F()(l, m, t))

The proof is complete. O

From the last theorem, we get the following corollary.
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Corollary 1. Let -1 < < 0,0 < A, s < 1 such that s > AB+1). If g € HD), then T, : Dg, —
F(1,B - s, s) is compact if and only if

geF(1,=—s=@B+ D -2),s+ B+ 1)(1-2).

In particular, when s = A(8 + 1), we get the following result.

Corollary 2. Let -1 < <0,0< A< 1. Ifge€ HD), then T, : Dg, — Dg, is compact if and only if
g€ Fy(l,-1.B+1).

6. Conclusions

In this paper, we mainly prove that the identity operator I; : Dg; — 7, (1) is bounded(compact) if
and only if the measure u is a s+ (8 + 1)(1 — 1)-Carleson measure(vanishing s+ (8+ 1)(1 — 1)-Carleson
measure). As an application, we prove that Volterra integral operator T, : Dg,; — F(1,8 — s, 5) is
bounded(compact) if and only if

geF(,B—s=B+DA =D, s+B+ DA -D)geFp(l,=s—B+ 1) -2),s+ @B+ 1) -21))).

In particular, T, : Dg, — Dg, is bounded(compact) if and only if g € F(1,-1,8+ 1)(g € Fo(1,-1,8+
1)).
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