In this paper, we introduce the class of $ n $-quasi-$ A $-$ (m, q) $-isometry operators on a Banach space $ X $, which represents a generalization of the $ n $-quasi-$ (m, q) $-isometry on a Banach space and the $ n $-quasi-$ (A, m) $-isometry on a Hilbert space. After giving some basic properties of this class of operators, we study the product and the power of such operators in this class.
Citation: Khadija Gherairi, Zayd Hajjej, Haiyan Li, Hedi Regeiba. $ n $-quasi-$ A $-$ (m, q) $-isometry on a Banach space[J]. AIMS Mathematics, 2023, 8(12): 28308-28321. doi: 10.3934/math.20231448
In this paper, we introduce the class of $ n $-quasi-$ A $-$ (m, q) $-isometry operators on a Banach space $ X $, which represents a generalization of the $ n $-quasi-$ (m, q) $-isometry on a Banach space and the $ n $-quasi-$ (A, m) $-isometry on a Hilbert space. After giving some basic properties of this class of operators, we study the product and the power of such operators in this class.
[1] | J. Agler, A disconjugacy theorem for Toeplitz operators, Am. J. Math., 112 (1990), 1–14. https://doi.org/10.2307/2374849 doi: 10.2307/2374849 |
[2] | J. Agler, M. Stankus, $m$-isometric transformations of Hilbert space, $I$, Integr. Equat. Oper. Th., 21 (1995), 383–429. https://doi.org/10.1007/BF01222016 doi: 10.1007/BF01222016 |
[3] | J. Agler, M. Stankus, $m$-isometric transformations of Hilbert space, $II$, Integr. Equat. Oper. Th., 23 (1995), 1–48. https://doi.org/10.1007/BF01261201 doi: 10.1007/BF01261201 |
[4] | J. Agler, M. Stankus, $m$-isometric transformations of Hilbert space, $III$, Integr. Equat. Oper. Th., 24 (1996), 379–421. https://doi.org/10.1007/BF01191619 doi: 10.1007/BF01191619 |
[5] | F. Bayart, $m$-isometries on Banach spaces, Math. Nachr., 284 (2011), 2141–2147. https://doi.org/10.1002/mana.200910029 |
[6] | B. P. Duggal, Tensor product of $n$-isometries III, Funct. Anal. Approx. Comput., 4 (2012), 61–67. |
[7] | M. Guesba, E. M. O. Beiba, O. A. M. S. Ahmed, $n$-quasi-$(A, m)$-isometric operators on a Hilbert space, Bull. Math. Anal. Appl., 12 (2020), 8–26. |
[8] | Humaira, M. Sarwar, P. Kumam, Common fixed point results for fuzzy mappings on complex-valued metric spaces with homotopy results, Symmetry, 11 (2019), 61. https://doi.org/10.3390/sym11010061 doi: 10.3390/sym11010061 |
[9] | A. Saddi, O. A. M. S. Ahmed, $A$-$m$-isometric operators in semi-Hilbertian spaces, Linear Algebra Appl., 436 (2012), 3930–3942. https://doi.org/10.1016/j.laa.2010.09.012 doi: 10.1016/j.laa.2010.09.012 |
[10] | S. Mecheri, T. Prasad, On $n$-quasi-$m$-isometric operators, Asian-Eur. J. Math., 9 (2016), 1650073. https://doi.org/10.1142/S179355711650073X doi: 10.1142/S179355711650073X |
[11] | O. A. M. S. Ahmed, A. Saddi, K. Gherairi, Some results on higher orders quasi-isometries, Hacet. J. Math. Stat., 49 (2020), 1315–1333. https://doi.org/10.15672/hujms.532964 doi: 10.15672/hujms.532964 |
[12] | T. Bermúdez, A. Martinón, $(m, q)$-isomotries on metric, J. Operat. Theor., 72 (2014), 313–328. |
[13] | T. Bermúdez, A. Martinón, J. A. Noda, Products of $m$-isometries, Linear Algebra Appl., 438 (2013), 80–86. https://doi.org/10.1016/j.laa.2012.07.011 doi: 10.1016/j.laa.2012.07.011 |
[14] | M. F. Ahmadi, Powers of $A$-$m$-Isometric operators and their supercyclicity, B. Malays. Math. Sci. Soc., 39 (2016), 901–911. https://doi.org/10.1007/s40840-015-0201-6 doi: 10.1007/s40840-015-0201-6 |
[15] | K. Hedayatian, A. M. Moghaddam, Some proprties of the spherical $m$-isometries, J. Operat. Theor., 79 (2018), 55–77. http://dx.doi.org/10.7900/jot.2016oct31.2149 doi: 10.7900/jot.2016oct31.2149 |
[16] | M. U. Rahman, M. Sarwar, Fixed point results in dislocated quasi-metric spaces, Int. Math. Forum, 9 (2014), 677–682. http://dx.doi.org/10.12988/imf.2014.4226 doi: 10.12988/imf.2014.4226 |
[17] | M. Sarwar, M. B. Zada, İ. M. Erha, Common fixed point theorems of integral type contraction on metric spaces and its applications to system of functional equations, Fixed Point Theory A., 2015 (2015), 1–15. https://doi.org/10.1186/s13663-015-0466-3 doi: 10.1186/s13663-015-0466-3 |