Research article Special Issues

$ n $-quasi-$ A $-$ (m, q) $-isometry on a Banach space

  • Received: 04 August 2023 Revised: 25 September 2023 Accepted: 07 October 2023 Published: 17 October 2023
  • MSC : 47B99, 47A05

  • In this paper, we introduce the class of $ n $-quasi-$ A $-$ (m, q) $-isometry operators on a Banach space $ X $, which represents a generalization of the $ n $-quasi-$ (m, q) $-isometry on a Banach space and the $ n $-quasi-$ (A, m) $-isometry on a Hilbert space. After giving some basic properties of this class of operators, we study the product and the power of such operators in this class.

    Citation: Khadija Gherairi, Zayd Hajjej, Haiyan Li, Hedi Regeiba. $ n $-quasi-$ A $-$ (m, q) $-isometry on a Banach space[J]. AIMS Mathematics, 2023, 8(12): 28308-28321. doi: 10.3934/math.20231448

    Related Papers:

  • In this paper, we introduce the class of $ n $-quasi-$ A $-$ (m, q) $-isometry operators on a Banach space $ X $, which represents a generalization of the $ n $-quasi-$ (m, q) $-isometry on a Banach space and the $ n $-quasi-$ (A, m) $-isometry on a Hilbert space. After giving some basic properties of this class of operators, we study the product and the power of such operators in this class.



    加载中


    [1] J. Agler, A disconjugacy theorem for Toeplitz operators, Am. J. Math., 112 (1990), 1–14. https://doi.org/10.2307/2374849 doi: 10.2307/2374849
    [2] J. Agler, M. Stankus, $m$-isometric transformations of Hilbert space, $I$, Integr. Equat. Oper. Th., 21 (1995), 383–429. https://doi.org/10.1007/BF01222016 doi: 10.1007/BF01222016
    [3] J. Agler, M. Stankus, $m$-isometric transformations of Hilbert space, $II$, Integr. Equat. Oper. Th., 23 (1995), 1–48. https://doi.org/10.1007/BF01261201 doi: 10.1007/BF01261201
    [4] J. Agler, M. Stankus, $m$-isometric transformations of Hilbert space, $III$, Integr. Equat. Oper. Th., 24 (1996), 379–421. https://doi.org/10.1007/BF01191619 doi: 10.1007/BF01191619
    [5] F. Bayart, $m$-isometries on Banach spaces, Math. Nachr., 284 (2011), 2141–2147. https://doi.org/10.1002/mana.200910029
    [6] B. P. Duggal, Tensor product of $n$-isometries III, Funct. Anal. Approx. Comput., 4 (2012), 61–67.
    [7] M. Guesba, E. M. O. Beiba, O. A. M. S. Ahmed, $n$-quasi-$(A, m)$-isometric operators on a Hilbert space, Bull. Math. Anal. Appl., 12 (2020), 8–26.
    [8] Humaira, M. Sarwar, P. Kumam, Common fixed point results for fuzzy mappings on complex-valued metric spaces with homotopy results, Symmetry, 11 (2019), 61. https://doi.org/10.3390/sym11010061 doi: 10.3390/sym11010061
    [9] A. Saddi, O. A. M. S. Ahmed, $A$-$m$-isometric operators in semi-Hilbertian spaces, Linear Algebra Appl., 436 (2012), 3930–3942. https://doi.org/10.1016/j.laa.2010.09.012 doi: 10.1016/j.laa.2010.09.012
    [10] S. Mecheri, T. Prasad, On $n$-quasi-$m$-isometric operators, Asian-Eur. J. Math., 9 (2016), 1650073. https://doi.org/10.1142/S179355711650073X doi: 10.1142/S179355711650073X
    [11] O. A. M. S. Ahmed, A. Saddi, K. Gherairi, Some results on higher orders quasi-isometries, Hacet. J. Math. Stat., 49 (2020), 1315–1333. https://doi.org/10.15672/hujms.532964 doi: 10.15672/hujms.532964
    [12] T. Bermúdez, A. Martinón, $(m, q)$-isomotries on metric, J. Operat. Theor., 72 (2014), 313–328.
    [13] T. Bermúdez, A. Martinón, J. A. Noda, Products of $m$-isometries, Linear Algebra Appl., 438 (2013), 80–86. https://doi.org/10.1016/j.laa.2012.07.011 doi: 10.1016/j.laa.2012.07.011
    [14] M. F. Ahmadi, Powers of $A$-$m$-Isometric operators and their supercyclicity, B. Malays. Math. Sci. Soc., 39 (2016), 901–911. https://doi.org/10.1007/s40840-015-0201-6 doi: 10.1007/s40840-015-0201-6
    [15] K. Hedayatian, A. M. Moghaddam, Some proprties of the spherical $m$-isometries, J. Operat. Theor., 79 (2018), 55–77. http://dx.doi.org/10.7900/jot.2016oct31.2149 doi: 10.7900/jot.2016oct31.2149
    [16] M. U. Rahman, M. Sarwar, Fixed point results in dislocated quasi-metric spaces, Int. Math. Forum, 9 (2014), 677–682. http://dx.doi.org/10.12988/imf.2014.4226 doi: 10.12988/imf.2014.4226
    [17] M. Sarwar, M. B. Zada, İ. M. Erha, Common fixed point theorems of integral type contraction on metric spaces and its applications to system of functional equations, Fixed Point Theory A., 2015 (2015), 1–15. https://doi.org/10.1186/s13663-015-0466-3 doi: 10.1186/s13663-015-0466-3
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(872) PDF downloads(81) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog