Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Research article Special Issues

n-quasi-A-(m,q)-isometry on a Banach space

  • In this paper, we introduce the class of n-quasi-A-(m,q)-isometry operators on a Banach space X, which represents a generalization of the n-quasi-(m,q)-isometry on a Banach space and the n-quasi-(A,m)-isometry on a Hilbert space. After giving some basic properties of this class of operators, we study the product and the power of such operators in this class.

    Citation: Khadija Gherairi, Zayd Hajjej, Haiyan Li, Hedi Regeiba. n-quasi-A-(m,q)-isometry on a Banach space[J]. AIMS Mathematics, 2023, 8(12): 28308-28321. doi: 10.3934/math.20231448

    Related Papers:

    [1] Khadija Gherairi, Zayd Hajjej, Haiyan Li, Hedi Regeiba . Some properties of n-quasi-(m,q)-isometric operators on a Banach space. AIMS Mathematics, 2023, 8(12): 31246-31257. doi: 10.3934/math.20231599
    [2] Hadi Obaid Alshammari . Higher order hyperexpansivity and higher order hypercontractivity. AIMS Mathematics, 2023, 8(11): 27227-27240. doi: 10.3934/math.20231393
    [3] Soon-Mo Jung, Jaiok Roh . Local stability of isometries on 4-dimensional Euclidean spaces. AIMS Mathematics, 2024, 9(7): 18403-18416. doi: 10.3934/math.2024897
    [4] Lijun Ma, Shuxia Liu, Zihong Tian . The binary codes generated from quadrics in projective spaces. AIMS Mathematics, 2024, 9(10): 29333-29345. doi: 10.3934/math.20241421
    [5] Anas Al-Masarwah, Abd Ghafur Ahmad . Subalgebras of type (α, β) based on m-polar fuzzy points in BCK/BCI-algebras. AIMS Mathematics, 2020, 5(2): 1035-1049. doi: 10.3934/math.2020072
    [6] Uğur Gözütok, Hüsnü Anıl Çoban . Detecting isometries and symmetries of implicit algebraic surfaces. AIMS Mathematics, 2024, 9(2): 4294-4308. doi: 10.3934/math.2024212
    [7] Yang Zhang, Shuxia Liu, Liwei Zeng . A symplectic fission scheme for the association scheme of rectangular matrices and its automorphisms. AIMS Mathematics, 2024, 9(11): 32819-32830. doi: 10.3934/math.20241570
    [8] Yuqi Sun, Xiaoyu Wang, Jing Dong, Jiahong Lv . On stability of non-surjective (ε,s)-isometries of uniformly convex Banach spaces. AIMS Mathematics, 2024, 9(8): 22500-22512. doi: 10.3934/math.20241094
    [9] Su-Dan Wang . The q-WZ pairs and divisibility properties of certain polynomials. AIMS Mathematics, 2022, 7(3): 4115-4124. doi: 10.3934/math.2022227
    [10] Peiying Huang, Yiyuan Zhang . H-Toeplitz operators on the Dirichlet type space. AIMS Mathematics, 2024, 9(7): 17847-17870. doi: 10.3934/math.2024868
  • In this paper, we introduce the class of n-quasi-A-(m,q)-isometry operators on a Banach space X, which represents a generalization of the n-quasi-(m,q)-isometry on a Banach space and the n-quasi-(A,m)-isometry on a Hilbert space. After giving some basic properties of this class of operators, we study the product and the power of such operators in this class.



    The class of m-isometry operators was introduced in 1990 by Agler in [1] and was developed in 1995 by Agler and Stankas in [2,3,4]. A bounded linear operator TL(H) on a Hilbert space H is called an m-isometry, for a positif integer m (that is m1), if

    βm(T):=mk=0(1)k(mk)TkTk=0,

    where T denotes the adjoint operator of T. This latter is equivalent to

    Δm(T,x):=mk=0(1)k(mk)Tkx2=0, xH.

    Some generalizations of this class of operators exist in the literature, like the (A,m)-isometry, which was introduced in 2012 by Saddi and Sid Ahmed [9], for a positif operator A, by

    βm(T,A):=mk=0(1)k(mk)TkATk=0

    or equivalently

    Δm(T,A,x):=mk=0(1)k(mk)A12Tkx2=0, xH.

    We also mention the class of n-quasi-m-isometry on a Hilbert space defined by

    βm,n(T):=mk=0(1)k(mk)Tk+nTk+n=0

    or in an equivalent manner

    Δm,n(T,x):=mk=0(1)k(mk)Tn+kx2=0, xH.

    For more details about these class, please see references [10,11].

    The n-quasi-(A,m)-isometries (which are particular cases of n-quasi-(m,q)-isometries) were thoroughly studied by Agler and Stankus in a series of three papers in which the authors employed the theory of periodic distributions to derive a function theory model for m-isometrics, a disconjugacy theory for a subclass of Toeplitz operators. In addition, they introduced a class of 2-isometrics operators arising from a class of non stationary stochastic processes related to Brownian motion.

    Recently, Sid Ahmed et al. [7] combined these two classes and introduced the n-quasi-(A,m)-isometry on a Hilbert space. Noting that all these works are in a Hilbert space H, a generalization of those on a Banach space X was developed. For example, we can mention the work of Bayart [5], who introduced the (m,q)-isometry, for an integer q1, by

    Δqm(T):=mk=0(1)k(mk)Tkxq=0, xX.

    For q=2, the (m,2)-isometry coincide with the m-isometry defined on a Hilbert space.

    We recall that the (A,m)-isometry was first introduced by Duggal in [6], for any operator AL(X), by

    Δqm(T,A,x):=mk=0(1)k(mk)ATkxq=0, xX.

    In this paper, we will generalize this last class by introducing the n-quasi-A-(m,q)-isometry on a Banach space and present some properties of this class like the product and the powers.

    The main motivation for developing this work lies in the fact of knowing whether the different properties (spectral, product and power) of the n- quasi-(m,q)-isometry on a Banach space and the n-quasi-(A,m)-isometry on a Hilbert space are valid for operators in the new generalized class introduced in Definition 2.1. Note that in our study, we remove the condition of positivity on the operator A, which exists in the Hilbert case.

    The paper is organized as follows. In Section 2, we define our class of n-quasi-A-(m,q)-isometry operators and present its basic properties. The power and the product of such operator belonging to this class are discussed in the last section.

    In this section, we define our new class and give its basic properties.

    Given a Banach space X, we denote by L(X) the class of all the (linear bounded) operators on X. Hereafter, I=IX, R(T) and σap(T) denote the identity operator, the range and the approximate spectrum of an operator TL(X), respectively. We define the class of n-quasi-A-(m,q)-isometry operators by:

    Definition 2.1. Let A,TL(X). T is called n-quasi-A-(m,q)-isometry if and only if

    Qqm,n(T,A,x):=mk=0(1)mk(mk)ATn+kxq=0, xX.

    Remark 2.1. Let A,TL(X). Then T is a n-quasi-A-(m,q)-isometry if and only if T is a A-(m,q)-isometry on ¯R(Tn).

    Indeed, T is a n-quasi-A-(m,q)-isometry if and only if

    0=mk=0(1)mk(mk)ATn+kxq, xX=mk=0(1)mk(mk)ATkTnxq, xX=mk=0(1)mk(mk)ATkyq, y¯R(Tn).

    In the following proposition, we give some spectral properties of the n-quasi-A-(m,q)-isometry operators.

    Proposition 2.1. Let A,TL(X) such that T is a n-quasi-A-(m,q)-isometry. If 0σap(A), then σap(T)=ζ(0,1){0}, where

    ζ(0,1)={xX, x=1}.

    Proof. Let (xp)p such that xp=1 and lim

    Since T is a n -quasi- A - (m, q) -isometry, then

    \begin{eqnarray*} 0& = &\overset{m}{\underset{k = 0}{\sum}}(-1)^{m-k}\binom{m}{k}\Vert AT^{n+k}x_p\Vert^q\\ & = &\overset{m}{\underset{k = 0}{\sum}}(-1)^{m-k}\binom{m}{k}\Vert A(T^{n+k}-\lambda^{n+k})x_p+A\lambda^{n+k}x_p\Vert^q. \end{eqnarray*}

    As \underset{p\to\infty}{\lim}(T-\lambda I)x_p = 0 , then \underset{p\to\infty}{\lim}(T^{n+k}-\lambda^{n+k} I)x_p = 0, for all k = 0, 1, \cdots, m.

    Therefore

    \begin{eqnarray*} 0& = &\underset{p\to\infty}{\lim}\overset{m}{\underset{k = 0}{\sum}}(-1)^{m-k}\binom{m}{k}\Vert A\lambda^{n+k}x_p\Vert^q\\ & = &\vert\lambda\vert^{nq}\overset{m}{\underset{k = 0}{\sum}}(-1)^{m-k}\binom{m}{k}(\vert\lambda\vert^q)^k\underset{p\to\infty}{\lim}\Vert Ax_p\Vert^q\\ & = &\vert\lambda\vert^{nq}(\vert\lambda\vert^q-1)^m\underset{p\to\infty}{\lim}\Vert Ax_p\Vert^q. \end{eqnarray*}

    Since 0\notin\sigma_{ap}(A), then \lambda = 0 or \vert\lambda\vert = 1.

    Proposition 2.2. Let A, T\in \mathcal{L}(X) . If T is an n -quasi- A - (m, q) -isometry, then T is a n_1 -quasi- A - (m, q) -isometry, for all n_1\geq n .

    Proof. Let T be a n -quasi- A - (m, q) -isometry on X . By Remark 2.1, T is a A - (m, q) -isometry on \overline{\mathcal{R}(T^n)} . Since \overline{\mathcal{R}(T^n)}\supset\overline{\mathcal{R}(T^{n_1})} for all n_1\geq n , therefore T is a A - (m, q) -isometry on \overline{\mathcal{R}(T^{n_1})} . According to Remark 2.1, we obtain that T is a n_1 -quasi- A - (m, q) -isometry, for all n_1\geq n .

    In the following proposition, thanks to a suitable condition, we give the inverse sense of the Proposition 2.2.

    Proposition 2.3. Let 1\leq p\leq n-1 such that \overline{\mathcal{R}(T^{p})} = \overline{\mathcal{R}(T^{p+1})} . If T is a n -quasi- A - (m, q) -isometry, then T is a p -quasi- A - (m, q) -isometry.

    Proof. Thanks to the hypothesis \overline{\mathcal{R}(T^p)} = \overline{\mathcal{R}(T^{p+1})} , it follows that \overline{\mathcal{R}(T^p)} = \overline{\mathcal{R}(T^{n})} . Since T is a n -quasi- A - (m, q) -isometry on X , then T is a A - (m, q) -isometry on \overline{\mathcal{R}(T^n)} = \overline{\mathcal{R}(T^p)} . Therefore, T is a p -quasi- A - (m, q) -isometry.

    As in the Hilbert case, we have the following result.

    Proposition 2.4. Let T\in\mathcal{L}(X) be a n -quasi- A - (m, q) -isometry. Then T is a n -quasi- A - (\ell, q) -isometry for all \ell\geq m.

    Proof.

    \begin{eqnarray*} \mathcal{Q}_{m+1,n}^q(T,A,x)& = &\sum\limits_{k = 0}^{m+1}(-1)^{m+1-k}\binom{m+1}{k}\Vert AT^{n+k}x\Vert^q\\ & = &(-1)^{m+1}\Vert AT^{n}x\Vert^q+\Vert AT^{n+m+1}x\Vert^q\\ &&+\sum\limits_{k = 1}^{m}(-1)^{m+1-k}\left[\binom{m}{k}+\binom{m}{k-1}\right] \Vert AT^{n+k}x\Vert^q\\ & = & -(-1)^{m}\Vert AT^{n}x\Vert^q-\sum\limits_{k = 1}^{m}(-1)^{m-k}\binom{m}{k}\Vert AT^{n+k}x\Vert^q\\ &&+\sum\limits_{k = 1}^{m}(-1)^{m+1-k}\binom{m}{k-1} \Vert AT^{n+k}x\Vert^q+\Vert AT^{n+m+1}x\Vert^q\\ & = & -\mathcal{Q}_{m,n}^q(T,A,x)+\sum\limits_{k = 0}^{m-1}(-1)^{m-k}\binom{m}{k} \Vert AT^{n+1+k}x\Vert^q\\ &&+\Vert AT^{n+1+m}x\Vert^q\\ & = &\mathcal{Q}_{m,n+1}^q(T,A,x)-\mathcal{Q}_{m,n}^q(T,A,x)\\ & = &0. \end{eqnarray*}

    Example 2.1. Let T, A\in\mathcal{L}(X) , where X = \ell^q(\mathbb{N}) , defined by

    T\alpha_n = w_n\alpha_{n}\text{ and } A\alpha_n = \alpha_{n+1},

    where w_n = \left(\frac{n+1}{n}\right)^{\frac{1}{q}} . By simple calculations, we get that T is a 2 -quasi- A - (2, q) -isometry but it is not a 2 -quasi- A - (1, q) -isometry. Indeed, we have

    \begin{eqnarray*} \mathcal{Q}_{2,2}^q(T,A,\alpha_n)& = &\Vert AT^4\alpha_n\Vert^q-2\Vert AT^3\alpha_n\Vert^q+\Vert AT^2\alpha_n\Vert^q\\ & = &\underset{n\geq1}{\sum}\left(\vert w_nw_{n+1}w_{n+2}w_{n+4}\vert^q-2\vert w_nw_{n+1}w_{n+2}\vert^q+\vert w_nw_{n+1}\vert^q\right)\vert\alpha_{n+1}\vert^q\\ & = &\underset{n\geq1}{\sum}\left(\frac{n+4}{n}-2\frac{n+3}{n}+\frac{n+2}{n}\right)\vert\alpha_{n+1}\vert^q\\ & = &0, \end{eqnarray*}

    and

    \begin{eqnarray*} \mathcal{Q}_{1,2}^q(T,A,\alpha_n)& = &\Vert AT^3\alpha_n\Vert^q-\Vert AT^2\alpha_n\Vert^q\\ & = &\underset{n\geq1}{\sum}\left(\vert w_nw_{n+1}w_{n+2}\vert^q-\vert w_nw_{n+1}\vert^q\right)\vert\alpha_{n+1}\vert^q\\ & = &\underset{n\geq1}{\sum}\left(\frac{n+3}{n}-\frac{n+2}{n}\right)\vert\alpha_{n+1}\vert^q\\ & = &\underset{n\geq1}{\sum}\frac{\vert\alpha_{n+1}\vert^q}{n}\\ &\ne&0. \end{eqnarray*}

    Proposition 2.5. Let A, T\in\mathcal{L}(X) such that T is a n -quasi- A - (m, q) -isometry. Then, for all p\geq0 , we have

    (1) \Vert AT^{n+p}x\Vert^q = \sum\limits_{k = 0}^{m-1}\binom{p}{k}\mathcal{Q}_{k, n}^q(T, A, x) .

    (2) \mathcal{Q}_{m-1, n}^q(T, A, x) = \underset{p\to\infty}{\lim}\frac{\Vert AT^{n+p}x\Vert^q}{\binom{p}{m-1}}\geq0 .

    Proof. (1) By induction, we prove that, for all p\geq0 ,

    \begin{eqnarray*} \Vert AT^{n+p}x\Vert^q = \sum\limits_{k = 0}^{p}\binom{p}{k}\mathcal{Q}_{k,n}^q(T,A,x). \end{eqnarray*}

    For p = 0 , we infer that

    \begin{eqnarray*} \sum\limits_{k = 0}^{0}\binom{0}{k}\mathcal{Q}_{k,n}^q(T,A,x)& = &\mathcal{Q}_{0,n}^q(T,A,x)\\ & = &\Vert AT^{n}x\Vert^q. \end{eqnarray*}

    We suppose that \Vert AT^{n+j}x\Vert^q = \underset{k = 0}{\overset{j}{\sum\limits}}\binom{j}{k}\mathcal{Q}_{k, n}^q(T, A, x) for all j\leq p.

    We know that

    \begin{eqnarray*} & &\Vert AT^{n+p+1}x\Vert^q\\& = &\mathcal{Q}_{p+1,n}^q(T,A,x)-\sum\limits_{k = 0}^{p}(-1)^{p+1-k}\binom{p+1}{k}\Vert AT^{n+k}x\Vert^q\\ & = &\mathcal{Q}_{p+1,n}^q(T,A,x)-\sum\limits_{k = 0}^{p}(-1)^{p+1-k}\binom{p+1}{k}\sum\limits_{j = 0}^k\binom{k}{j}\mathcal{Q}_{j,n}^q(T,A,x)\\ & = &\mathcal{Q}_{p+1,n}^q(T,A,x)-\sum\limits_{j = 0}^p\mathcal{Q}_{j,n}^q(T,A,x)\sum\limits_{k = j}^{p}(-1)^{p+1-k}\binom{p+1}{k}\binom{k}{j}\\ & = &\mathcal{Q}_{p+1,n}^q(T,A,x)-\sum\limits_{j = 0}^p\binom{p+1}{j}\mathcal{Q}_{j,n}^q(T,A,x)\underset{ = -1}{\underbrace{\sum\limits_{k = j}^{p}(-1)^{p+1-k}\binom{p+1-j}{k-j}}}\\ & = &\mathcal{Q}_{p+1,n}^q(T,A,x)+\sum\limits_{j = 0}^p\binom{p+1}{j}\mathcal{Q}_{j,n}^q(T,A,x)\\ & = &\sum\limits_{j = 0}^{p+1}\binom{p+1}{j}\mathcal{Q}_{j,n}^q(T,A,x). \end{eqnarray*}

    Then, for all p\geq0 , we have that \Vert AT^{n+p}x\Vert^q = \underset{k = 0}{\overset{p}{\sum\limits}}\binom{p}{k}\mathcal{Q}_{k, n}^q(T, A, x) .

    Since T is a n -quasi- A - (m, q) -isometry on X , then, by Proposition 2.4, we obtain that

    \mathcal{Q}_{k,n}^q(T,A,x) = 0,\ \text{ for all } k\geq m.

    Hence, for all p\geq0 , we get that

    \Vert AT^{n+p}x\Vert^q = \underset{k = 0}{\overset{m-1}{\sum\limits}}\binom{p}{k}\mathcal{Q}_{k,n}^q(T,A,x).

    (2) We know, by assertion (1), that

    \begin{eqnarray*} \Vert AT^{n+p}x\Vert^q& = &\sum\limits_{k = 0}^{m-1}\binom{p}{k}\mathcal{Q}_{k,n}^q(T,A,x)\\ & = &\binom{p}{m-1}\mathcal{Q}_{m-1,n}^q(T,A,x)+\sum\limits_{k = 0}^{m-2}\binom{p}{k}\mathcal{Q}_{k,n}^q(T,A,x). \end{eqnarray*}

    Dividing both sides by \binom{p}{m-1}\neq0 , we see that

    \mathcal{Q}_{m-1,n}^q(T,A,x) = \frac{1}{\binom{p}{m-1}}\Vert AT^{n+p}x\Vert^q-\frac{1}{\binom{p}{m-1}}\sum\limits_{k = 0}^{m-2}\binom{p}{k}\mathcal{Q}_{k,n}^q(T,A,x).

    Upon taking the limit as p\rightarrow \infty , we know that \underset{p\to\infty}{\lim}\frac{\binom{p}{k}}{\binom{p}{m-1}} = 0 , for all k = 0, 1, ..., m-2 . Therefore, since \Vert AT^{n+p}x\Vert^q\geq0 , it holds that

    \mathcal{Q}_{m-1,n}^q(T,A,x) = \underset{p\to\infty}{\lim}\frac{\Vert AT^{n+p}x\Vert^q}{\binom{p}{m-1}}\geq0.

    In this section, we study the product and power of an n -quasi- A - (m, q) -isometry operators.

    Let n^{(k)} be the (descending Pochhammer) symbol defined by:

    n^{(k)} = \left\{ \begin{array}{cc} 0&if\ n = 0,\\ 0& if\ n > 0\ and \ k > n,\\ k!\binom{n}{k}& if\ n > 0\ and\ k\leq n. \end{array} \right.

    Proposition 3.1. T is a n -quasi- A - (m, q) -isometry if and only if we have

    \Vert AT^{n+p}x\Vert = \overset{m-1}{\underset{j = 0}{\sum\limits}}(-1)^{m-j-1}\frac{p(p-1)\cdots\overbrace{(p-j)}\cdots(p-m+1)}{j!(m-j-1)!}\Vert AT^{j+n}x\Vert^q,

    for all p\geq0 and all x \in X , where \overbrace{(p-j)} denotes that the factor (p -j) is omitted.

    Proof. T is a n -quasi- A - (m, q) -isometry if and only if

    \begin{eqnarray*} \Vert AT^{n+p}x\Vert^q& = &\overset{m-1}{\underset{k = 0}{\sum}}\binom{p}{k}\mathcal{Q}_{k,n}^q(T,A,x)\\ & = &\overset{m-1}{\underset{k = 0}{\sum}}\binom{p}{k}\overset{k}{\underset{j = 0}{\sum}}(-1)^{k-j}\binom{k}{j}\Vert AT^{n+j}x\Vert^q\\ & = &\overset{m-1}{\underset{j = 0}{\sum}}\Vert AT^{n+j}x\Vert^q\overset{m-1}{\underset{k = j}{\sum}}(-1)^{k-j}\binom{p}{k}\binom{k}{j}. \end{eqnarray*}

    By [12, Lemma 2.3], we have

    \overset{m-1}{\underset{k = j}{\sum\limits}}(-1)^{k-j}\binom{p}{k}\binom{k}{j} = (-1)^{m-j-1}\frac{p(p-1)\cdots\overbrace{(p-j)}\cdots(p-m+1)}{j!(m-j-1)!}.

    Then,

    \Vert AT^{n+p}x\Vert = \overset{m-1}{\underset{j = 0}{\sum\limits}}(-1)^{m-j-1}\frac{p(p-1)\cdots\overbrace{(p-j)}\cdots(p-m+1)}{j!(m-j-1)!}\Vert AT^{j+n}x\Vert^q.

    Lemma 3.1. Let T be a n -quasi- A - (m, q) -isometry and \ell > m\geq1 . For all t\in\{0, \cdots, \ell-2\} , we have

    \underset{j = 0}{\overset{m+\ell-1}{\sum\limits}}(-1)^{m+\ell-1-j}\binom{m+\ell-1}{j}\underset{i = 0}{\overset{t}{\prod\limits}}(j-i)\Vert AT^{j+n}x\Vert^q = 0.

    Proof. Let t\in\{0, \cdots, \ell-2\} , we have

    \begin{eqnarray*} \binom{m+\ell-1}{j}\underset{i = 0}{\overset{t}{\prod}}(j-i)& = &\frac{(m+\ell-1)!}{j!(m+\ell-1-j)!}j(j-1)\cdots(j-t)\\ & = &\frac{(m+\ell-t-2)!\underset{i = 0}{\overset{t}{\prod\limits}}(m+\ell+i)}{(j-t-1)!(m+\ell-1-j)!}\\ & = &\binom{m+\ell-t-2}{j-t-1}\underset{i = 1}{\overset{t+1}{\prod}}(m+\ell-i). \end{eqnarray*}

    Then

    \begin{eqnarray*} & &\underset{j = 0}{\overset{m+\ell-1}{\sum}}(-1)^{m+\ell-1-j}\binom{m+\ell-1}{j}\underset{i = 0}{\overset{t}{\prod}}(j-i)\Vert AT^{j+n}x\Vert^q\\ & = &\underset{j = 0}{\overset{m+\ell-1}{\sum}}(-1)^{m+\ell-1-j}\binom{m+\ell-t-2}{j-t-1}\underset{i = 1}{\overset{t+1}{\prod}}(m+\ell-i)\Vert AT^{j+n}x\Vert^q\\ & = &\underset{i = 1}{\overset{t+1}{\prod}}(m+\ell-i)\left(\underset{j = t+1}{\overset{m+\ell-1}{\sum}}(-1)^{m+\ell-1-j}\binom{m+\ell-t-2}{j-t-1}\Vert AT^{j+n}x\Vert^q\right)\\ & = &\underset{i = 1}{\overset{t+1}{\prod}}(m+\ell-i)\left(\underset{j = 0}{\overset{m+\ell-t-2}{\sum}}(-1)^{m+\ell-t-2-j}\binom{m+\ell-t-2}{j}\Vert AT^{j+n}(T^{t+1}x)\Vert^q\right)\\ & = &0. \end{eqnarray*}

    Lemma 3.2. Let T be a n -quasi- A - (m, q) -isometry, p\geq0 and \ell\geq m\geq1 . Then, there exists a finite sequence (a_{j, i})_{i = 0}^{m-1} such that

    \Vert AT^{p+n}x\Vert^q = \sum\limits_{k = 0}^{m-1}\frac{(-1)^{m-1-k}}{k!(m-k-1)!}\left[a_{j,0}+\underset{i = 1}{\overset{m-1}{\sum\limits}}a_{j,i}\underset{t = 0}{\overset{i-1}{\prod\limits}}(p-t)\right]\Vert AT^{n+k}x\Vert^q ,

    for j = 0, 1, ..., \ell-1.

    Proof. By using [13], there exists a finite sequence (a_{j, i})_{i = 0}^{m-1} such that

    p(p-1)\cdots\overbrace{(p-j)}\cdots(p-m+1) = a_{j,0}+\underset{i = 1}{\overset{m-1}{\sum\limits}}a_{j,i}\underset{t = 0}{\overset{i-1}{\prod\limits}}(p-t).

    Since T is a n -quasi- A - (m, q) -isometry, then by using Proposition 3.1, we obtain that

    \begin{eqnarray*} & &\Vert AT^{n+p}x\Vert^q\\ & = &\overset{m-1}{\underset{j = 0}{\sum}}\frac{(-1)^{m-j-1}}{j!(m-j-1)!}\left[p(p-1)\cdots\overbrace{(p-j)}\cdots(p-m+1)\right]\Vert AT^{j+n}x\Vert^q\\ & = &\overset{m-1}{\underset{j = 0}{\sum}}\frac{(-1)^{m-j-1}}{j!(m-j-1)!}\left[a_{j,0}+\underset{i = 1}{\overset{m-1}{\sum}}a_{j,i}\underset{t = 0}{\overset{i-1}{\prod}}(p-t)\right]\Vert AT^{j+n}x\Vert^q. \end{eqnarray*}

    Theorem 3.1. Let n_1, \, n_2, \, m, \, l be positive integers and T, S\in\mathcal{L}(X) . If T is a n_1 -quasi- A - (m, q) -isometry and S is a n_2 -quasi- A - (l, q) -isometry such that ST = TS , then TS is a n -quasi- A - (m+l-1, q) -isometry, with n = \max(n_1, n_2) .

    Proof. We have

    \begin{eqnarray*} \mathcal{Q}_{m+l-1,n}^q(TS,A,x)& = &\sum\limits_{k = 0}^{m+l-1}(-1)^{m+l-1-k}\binom{m+l-1}{k}\Vert A(TS)^{n+k}x\Vert^q\\ & = &\sum\limits_{k = 0}^{m+l-1}(-1)^{m+l-1-k}\binom{m+l-1}{k}\Vert A T^{n+k}\left( S^{n+k}x\right)\Vert^q. \end{eqnarray*}

    Using Lemma 3.2, we see that

    \begin{eqnarray*} &&\mathcal{Q}_{m+l-1,n}^q(TS,A,x) = \sum\limits_{k = 0}^{m+l-1}(-1)^{m+l-1-k}\binom{m+l-1}{k}\overset{m-1}{\underset{j = 0}{\sum}}\frac{(-1)^{m-j-1}}{j!(m-j-1)!}\\ &&\times\left[a_{j,0}+\underset{i = 1}{\overset{m-1}{\sum}}a_{j,i}\underset{t = 0}{\overset{i-1}{\prod}}(p-t)\right]\Vert A T^{n+j}\left( S^{n+k}x\right)\Vert^q\\ & = &\overset{m-1}{\underset{j = 0}{\sum}}\frac{(-1)^{m-j-1}}{j!(m-j-1)!}\sum\limits_{k = 0}^{m+l-1}(-1)^{m+l-1-k}\binom{m+l-1}{k}\left[a_{j,0}+\underset{i = 1}{\overset{m-1}{\sum}}a_{j,i}\underset{t = 0}{\overset{i-1}{\prod}}(p-t)\right]\\ & &\times\Vert A T^{n+j}\left( S^{n+k}x\right)\Vert^q\\ & = &\overset{m-1}{\underset{j = 0}{\sum}}\frac{(-1)^{m-j-1}}{j!(m-j-1)!}a_{j,0}\sum\limits_{k = 0}^{m+l-1}(-1)^{m+l-1-k}\binom{m+l-1}{k}\Vert A S^{n+k}\left( T^{n+j}x\right)\Vert^q\\ &&+\overset{m-1}{\underset{j = 0}{\sum}}\frac{(-1)^{m-j-1}}{j!(m-j-1)!}\underset{i = 1}{\overset{m-1}{\sum}}a_{j,i}\sum\limits_{k = 0}^{m+l-1}(-1)^{m+l-1-k}\binom{m+l-1}{k}\\ & &\times\underset{t = 0}{\overset{i-1}{\prod}}(p-t)\Vert A S^{n+k}\left( T^{n+j}x\right)\Vert^q. \end{eqnarray*}

    Since S is a n_2 -quasi- A - (l, q) -isometry, then according to Proposition 2.4, we get that S is a n -quasi- A - (m+l-1, q) -isometry. Hence,

    \overset{m-1}{\underset{j = 0}{\sum\limits}}\frac{(-1)^{m-j-1}}{j!(m-j-1)!}a_{j,0}\underset{ = 0}{\underbrace{\sum\limits_{k = 0}^{m+l-1}(-1)^{m+l-1-k}\binom{m+l-1}{k}\Vert A S^{n+k}\left( T^{n+j}x\right)\Vert^q}} = 0.

    Since i = 1, ..., m-1 , then, by using Lemma 3.1, we infer that

    \sum\limits_{k = 0}^{m+l-1}(-1)^{m+l-1-k}\binom{m+l-1}{k}\underset{t = 0}{\overset{i-1}{\prod\limits}}(p-t)\Vert A S^{n+k}\left( T^{n+j}x\right)\Vert^q = 0.

    Consequently, one obtains that

    \overset{m-1}{\underset{j = 0}{\sum\limits}}\frac{(-1)^{m-j-1}}{j!(m-j-1)!}\underset{i = 1}{\overset{m-1}{\sum\limits}}a_{j,i}\underset{ = 0}{\underbrace{\sum\limits_{k = 0}^{m+l-1}(-1)^{m+l-1-k}\binom{m+l-1}{k}\underset{t = 0}{\overset{i-1}{\prod\limits}}(p-t)\Vert A S^{n+k}\left( T^{n+j}x\right)\Vert^q}} = 0,

    which gives that

    \mathcal{Q}_{m+l-1,n}^q(TS,A,x) = 0.

    The following example shows that Theorem 3.1 is not necessarily true if S and T are not commuting.

    Example 3.1. We consider the operators on the two dimensional \left(\mathbb{R}^2, \Vert.\Vert_2\right).

    T = \left( \begin{array}{cc} 1 & 1 \\ 0 & 1 \\ \end{array} \right), \ \ S = \left( \begin{array}{cc} 1 & 0 \\ 1 & 1 \\ \end{array} \right)\ \mbox{and}\ A = \left( \begin{array}{cc} 1 & 1 \\ 1 & 2 \\ \end{array} \right).

    Note that ST\neq TS . Moreover, by a direct computation, we show that T and S are quasi- A - (3, 2) -isometry. However neither TS nor ST is a quasi- A - (5, 2) -isometry.

    Corollary 3.1. Let n_1, \, n_2, \, m, \, l be positive integers and T, S, A_1, A_2\in\mathfrak{L}(X) such that TS = ST, A_1A_2 = A_2A_1, TA_1 = A_1T and SA_2 = A_2S . If T is a n_1 -quasi- A_1 - (m, q) -isometry and S is a n_2 -quasi- A_2 - (l, q) -isometry, then TS is a n -quasi- A_1A_2 - (m+l-1, q) -isometry, with n = \max(n_1, n_2) .

    Proof. Following the same steps as in the proof of Theorem 3.1, we can prove that

    \mathcal{Q}_{m+l-1,n}^q(TS,A_1A_2,x) = 0.

    Indeed, we have

    \begin{eqnarray*} \mathcal{Q}_{m+l-1,n}^q(TS,A_1A_2,x)& = &\sum\limits_{k = 0}^{m+l-1}(-1)^{m+l-1-k}\binom{m+l-1}{k}\Vert A_1A_2(TS)^{n+k}x\Vert^q\\ & = &\sum\limits_{k = 0}^{m+l-1}(-1)^{m+l-1-k}\binom{m+l-1}{k}\Vert A_1 T^{n+k}\left( A_2S^{n+k}x\right)\Vert^q. \end{eqnarray*}

    Theorem 3.2. Let T be a n -quasi- A - (m, q) -isometry. Then, for each positive integer k , T^k is a n -quasi- A - (m, q) -isometry.

    Proof.

    \begin{eqnarray*} \mathcal{Q}_{m,n}^q(T^k,A,x)& = &\sum\limits_{j = 0}^{m}(-1)^{m-j}\binom{m}{j}\Vert A\left(T^k\right)^{n+j}x\Vert^q\\ & = &\sum\limits_{j = 0}^{m}(-1)^{m-j}\binom{m}{j}\Vert AT^{kn+kj}x\Vert^q\\ & = &\sum\limits_{j = 0}^{m}(-1)^{m-j}\binom{m}{j}\sum\limits_{i = 0}^{m-1}\binom{kj}{i}\mathcal{Q}_{i,kn}^q(T,A,x)\\ & = &\sum\limits_{i = 0}^{m-1}\frac{1}{i!}\left[\sum\limits_{j = 0}^{m}(-1)^{m-j}\binom{m}{j}(kj)^{(i)}\right]\mathcal{Q}_{i,kn}^q(T,A,x). \end{eqnarray*}

    According to [14, Lemma 1], we have \sum\limits_{j = 0}^{m}(-1)^{m-j}\binom{m}{j}(kj)^{(i)} = 0 for each i = 0, 1, ..., m-1 . It follows that \mathcal{Q}_{m, n}^q(T^k, A, x) = 0 .

    The converse of Theorem 3.2 is not true in general as shown in the following example.

    Example 3.2. Let A = \left(\begin{array}{ccc} 1 & 0 & 1\\ 0 & 1 & 1\\ 1 & 1 & 0 \end{array} \right). It is not difficult to prove that the operator T = \left(\begin{array}{ccc} 0 & 1 & 1\\ 0 & 0 & 1\\ 0 & 0 & 0 \end{array} \right) defined in \left(\mathbb{R}^3, \Vert.\Vert_2\right) satisfies T^3 is a quasi- A - (3, 2) -isometry but T is not a quasi- A - (3, 2) -isometry.

    Proposition 3.2. Let T\in\mathcal{L}(X) and n_1, \, n_2, \, r, \, s, \, m, \, l be positive integers. If T^r is a n_1 -quasi- A - (m, q) -isometry and T^s is a n_2 -quasi- A - (l, q) -isometry, then T^t is a n_0 -quasi- A - (p, q) -isometry, where t is the greatest common divisor of r and s , n_0 = \max(n_1, n_2) and p = \min(m, \ l).

    Proof. Let's put a_j = \Vert A T^{n+j}x\Vert^q, \; \forall\; j\geq0 . Since T^r is a n_1 -quasi- A - (m, q) -isometry and T^s is a n_2 -quasi- A - (l, q) -isometry, then T^r is a n_0 -quasi- A - (m, q) -isometry and T^s is a n_0 -quasi- A - (l, q) -isometry. Hence,

    \sum\limits_{j = 0}^m(-1)^{m-j}\binom{m}{j}a_{j+n_0r} = 0\quad\mbox{and}\quad\sum\limits_{j = 0}^l(-1)^{l-j}\binom{l}{j}a_{j+n_0s} = 0.

    By [15, Lemma 3.15], we infer that

    \sum\limits_{j = 0}^p(-1)^{p-j}\binom{p}{j}a_{j+n_0t} = 0,

    which ends the proof.

    As an immediate consequence of Proposition 3.2, we have the following result.

    Corollary 3.2. Let T, A \in\mathcal{L}(X) and r, s, m, n, l be positive integers. Then, the following properties hold.

    (1) If T is a n -quasi- A - (m, q) -isometry such that T^s is a n -quasi- A - (1, q) -isometry, then T is a n -quasi- A - (1, q) -isometry.

    (2) If T^r and T^{r+1} are a n -quasi- A - (m, q) -isometries, then T is a n -quasi- A - (m, q) -isometry.

    (3) If T^r is a n -quasi- A - (m, q) -isometry and T^{r+1} is a n -quasi- A - (l, q) -isometry with m < l , then T is a n -quasi- A - (m, q) -isometry.

    As an immediate consequence of Proposition 3.2, Theorem 3.1 and Corollary 3.1, we have the following result.

    Corollary 3.3. Let n_1, \, n_2, \, r, \, s, \, m, \, l be positive integers and T, S, A, A_1, A_2\in\mathcal{L}(X) . Let n = \max(n_1, n_2) . The following properties hold true.

    (1) If T is a n_1 -quasi- A - (m, q) -isometry and S is a n_2 -quasi- A - (l, q) -isometry such that ST = TS , then T^rS^s is a n -quasi- A - (m+l-1, q) -isometry.

    (2) If T is a n_1 -quasi- A_1 - (m, q) -isometry and S is a n_2 -quasi- A_2 - (l, q) -isometry such that TS = ST , A_1A_2 = A_2A_1 , TA_1 = A_1T and SA_2 = A_2S , then T^rS^s is a n -quasi- A_1A_2 - (m+l-1, q) -isometry.

    We focus on some properties of a new class of operators called n -quasi- A - (m, q) -isometry operators. First, we give spectral properties and relationship between n -quasi- A - (m, q) -isometry and p -quasi- A - (m, q) -isometry. Second, the power and product of such operators have been investigated. As a future work, we can generalize our study on a metric, dislocated metric or dislocated quasi metric space (see references [8,16,17]).

    The authors declare that they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work is supported by Researchers Supporting Project number (RSPD2023R736), King Saud University, Riyadh, Saudi Arabia.

    The authors declare that there is no conflict of interest



    [1] J. Agler, A disconjugacy theorem for Toeplitz operators, Am. J. Math., 112 (1990), 1–14. https://doi.org/10.2307/2374849 doi: 10.2307/2374849
    [2] J. Agler, M. Stankus, m-isometric transformations of Hilbert space, I, Integr. Equat. Oper. Th., 21 (1995), 383–429. https://doi.org/10.1007/BF01222016 doi: 10.1007/BF01222016
    [3] J. Agler, M. Stankus, m-isometric transformations of Hilbert space, II, Integr. Equat. Oper. Th., 23 (1995), 1–48. https://doi.org/10.1007/BF01261201 doi: 10.1007/BF01261201
    [4] J. Agler, M. Stankus, m-isometric transformations of Hilbert space, III, Integr. Equat. Oper. Th., 24 (1996), 379–421. https://doi.org/10.1007/BF01191619 doi: 10.1007/BF01191619
    [5] F. Bayart, m-isometries on Banach spaces, Math. Nachr., 284 (2011), 2141–2147. https://doi.org/10.1002/mana.200910029
    [6] B. P. Duggal, Tensor product of n-isometries III, Funct. Anal. Approx. Comput., 4 (2012), 61–67.
    [7] M. Guesba, E. M. O. Beiba, O. A. M. S. Ahmed, n-quasi-(A, m)-isometric operators on a Hilbert space, Bull. Math. Anal. Appl., 12 (2020), 8–26.
    [8] Humaira, M. Sarwar, P. Kumam, Common fixed point results for fuzzy mappings on complex-valued metric spaces with homotopy results, Symmetry, 11 (2019), 61. https://doi.org/10.3390/sym11010061 doi: 10.3390/sym11010061
    [9] A. Saddi, O. A. M. S. Ahmed, A-m-isometric operators in semi-Hilbertian spaces, Linear Algebra Appl., 436 (2012), 3930–3942. https://doi.org/10.1016/j.laa.2010.09.012 doi: 10.1016/j.laa.2010.09.012
    [10] S. Mecheri, T. Prasad, On n-quasi-m-isometric operators, Asian-Eur. J. Math., 9 (2016), 1650073. https://doi.org/10.1142/S179355711650073X doi: 10.1142/S179355711650073X
    [11] O. A. M. S. Ahmed, A. Saddi, K. Gherairi, Some results on higher orders quasi-isometries, Hacet. J. Math. Stat., 49 (2020), 1315–1333. https://doi.org/10.15672/hujms.532964 doi: 10.15672/hujms.532964
    [12] T. Bermúdez, A. Martinón, (m, q)-isomotries on metric, J. Operat. Theor., 72 (2014), 313–328.
    [13] T. Bermúdez, A. Martinón, J. A. Noda, Products of m-isometries, Linear Algebra Appl., 438 (2013), 80–86. https://doi.org/10.1016/j.laa.2012.07.011 doi: 10.1016/j.laa.2012.07.011
    [14] M. F. Ahmadi, Powers of A-m-Isometric operators and their supercyclicity, B. Malays. Math. Sci. Soc., 39 (2016), 901–911. https://doi.org/10.1007/s40840-015-0201-6 doi: 10.1007/s40840-015-0201-6
    [15] K. Hedayatian, A. M. Moghaddam, Some proprties of the spherical m-isometries, J. Operat. Theor., 79 (2018), 55–77. http://dx.doi.org/10.7900/jot.2016oct31.2149 doi: 10.7900/jot.2016oct31.2149
    [16] M. U. Rahman, M. Sarwar, Fixed point results in dislocated quasi-metric spaces, Int. Math. Forum, 9 (2014), 677–682. http://dx.doi.org/10.12988/imf.2014.4226 doi: 10.12988/imf.2014.4226
    [17] M. Sarwar, M. B. Zada, İ. M. Erha, Common fixed point theorems of integral type contraction on metric spaces and its applications to system of functional equations, Fixed Point Theory A., 2015 (2015), 1–15. https://doi.org/10.1186/s13663-015-0466-3 doi: 10.1186/s13663-015-0466-3
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1233) PDF downloads(85) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog