In this paper, an analysis of a mathematical model of the coronavirus is carried out by using two fractal-fractional parameters. This dangerous virus infects a person through the mouth, eyes, nose or hands. This makes it so dangerous that no one can get rid of it. One of the main factors contributing to increasing infections of this deadly virus is crowding. We believe that it is necessary to model this effect mathematically to predict the possible outcomes. Hence, the study of neural network-based models related to the spread of this virus can yield new results. This paper also introduces the use of artificial neural networks (ANNs) to approximate the solutions, which is a significant contribution in this regard. We suggest employing this new method to solve a system of integral equations that explain the dynamics of infectious diseases instead of the classical numerical methods. Our study shows that, compared to the Adams-Bashforth algorithm, the ANN is a reliable candidate for solving the problems.
Citation: Hashem Najafi, Abdallah Bensayah, Brahim Tellab, Sina Etemad, Sotiris K. Ntouyas, Shahram Rezapour, Jessada Tariboon. Approximate numerical algorithms and artificial neural networks for analyzing a fractal-fractional mathematical model[J]. AIMS Mathematics, 2023, 8(12): 28280-28307. doi: 10.3934/math.20231447
In this paper, an analysis of a mathematical model of the coronavirus is carried out by using two fractal-fractional parameters. This dangerous virus infects a person through the mouth, eyes, nose or hands. This makes it so dangerous that no one can get rid of it. One of the main factors contributing to increasing infections of this deadly virus is crowding. We believe that it is necessary to model this effect mathematically to predict the possible outcomes. Hence, the study of neural network-based models related to the spread of this virus can yield new results. This paper also introduces the use of artificial neural networks (ANNs) to approximate the solutions, which is a significant contribution in this regard. We suggest employing this new method to solve a system of integral equations that explain the dynamics of infectious diseases instead of the classical numerical methods. Our study shows that, compared to the Adams-Bashforth algorithm, the ANN is a reliable candidate for solving the problems.
[1] | J. Chen, An SIRS epidemic model, Appl. Math. Chin. Univ., 19 (2004), 101–108. http://doi.org/10.1007/s11766-004-0027-8 doi: 10.1007/s11766-004-0027-8 |
[2] | J. Li, Y. Yang, Y. Xiao, S. Liu, A class of Lyapunov functions and the global stability of some epidemic models with nonlinear incidence, J. Appl. Anal. Comput., 6 (2016), 38–46. http://doi.org/10.11948/2016004 doi: 10.11948/2016004 |
[3] | D. Okuonghae, A. Omame, Analysis of a mathematical model for COVID-19 population dynamics in Lagos, Nigeria, Chaos Soliton. Fract., 139 (2020), 110032. https://doi.org/10.1016/j.chaos.2020.110032 doi: 10.1016/j.chaos.2020.110032 |
[4] | A. Zeb, P. Kumar, V. S. Erturk, T. Sitthiwirattham, A new study on two different vaccinated fractional-order COVID-19 models via numerical algorithms, J. King Saud Univ. Sci., 34 (2022), 101914. https://doi.org/10.1016/j.jksus.2022.101914 doi: 10.1016/j.jksus.2022.101914 |
[5] | H. M. Alshehri, A. Khan, A fractional order Hepatitis C mathematical model with Mittag-Leffler kernel, J. Funct. Space., 2021 (2021), 2524027. http://doi.org/10.1155/2021/2524027 doi: 10.1155/2021/2524027 |
[6] | C. T. Deressa, S. Etemad, S. Rezapour, On a new four-dimensional model of memristor-based chaotic circuit in the context of nonsingular Atangana-Baleanu-Caputo operators, Adv. Differ. Equ., 2021 (2021), 444. http://doi.org/10.1186/s13662-021-03600-9 doi: 10.1186/s13662-021-03600-9 |
[7] | P. Kumar, V. S. Erturk, Environmental persistence influences infection dynamics for a butterfly pathogen via new generalised Caputo type fractional derivative, Chaos Soliton. Fract., 144 (2021), 110672. https://doi.org/10.1016/j.chaos.2021.110672 doi: 10.1016/j.chaos.2021.110672 |
[8] | A. Devi, A. Kumar, T. Abdeljawad, A. Khan, Stability analysis of solutions and existence theory of fractional Lagevin equation, Alex. Eng. J., 60 (2021), 3641–3647. https://doi.org/10.1016/j.aej.2021.02.011 doi: 10.1016/j.aej.2021.02.011 |
[9] | R. Zarin, H. Khaliq, A. Khan, D. Khan, A. Akgul, U. W. Humphries, Deterministic and fractional modeling of a computer virus propagation, Res. Phys., 33 (2022), 105130. https://doi.org/10.1016/j.rinp.2021.105130 doi: 10.1016/j.rinp.2021.105130 |
[10] | D. Baleanu, S. Etemad, S. Rezapour, A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions, Bound. Value Probl., 2020 (2020), 64. http://doi.org/10.1186/s13661-020-01361-0 doi: 10.1186/s13661-020-01361-0 |
[11] | C. Thaiprayoon, W. Sudsutad, J. Alzabut, S. Etemad, S. Rezapour, On the qualitative analysis of the fractional boundary value problem describing thermostat control model via $\psi$-Hilfer fractional operator, Adv. Differ. Equ., 2021 (2021), 201. http://doi.org/10.1186/s13662-021-03359-z doi: 10.1186/s13662-021-03359-z |
[12] | S. Hussain, E. N. Madi, H. Khan, H. Gulzar, S. Etemad, S. Rezapour, et al., On the stochastic modeling of COVID-19 under the environmental white noise, J. Funct. Space., 2022 (2022), 4320865. https://doi.org/10.1155/2022/4320865 doi: 10.1155/2022/4320865 |
[13] | A. Mezouaghi, A. Benali, S. Kumar, S. Djilali, A. Zeb, S. Rezapour, Mathematical analysis of a fractional resource-consumer model with disease developed in consumer, Adv. Differ. Equ., 2021 (2021), 487. http://doi.org/10.1186/s13662-021-03642-z doi: 10.1186/s13662-021-03642-z |
[14] | S. Rezapour, B. Tellab, C. T. Deressa, S. Etemad, K. Nonlaopon, H-U-type stability and numerical solutions for a nonlinear model of the coupled systems of Navier BVPs via the generalized differential transform method, Fractal Fract., 5 (2021), 166. https://doi.org/10.3390/fractalfract5040166 doi: 10.3390/fractalfract5040166 |
[15] | N. D. Phuong, F. M. Sakar, S. Etemad, S. Rezapour, A novel fractional structure of a multi-order quantum multi-integro-differential problem, Adv. Differ. Equ., 2020 (2020), 633. https://doi.org/10.1186/s13662-020-03092-z doi: 10.1186/s13662-020-03092-z |
[16] | M. S. Abdo, K. S. Hanan, A. W. Satish, K. Pancha, On a comprehensive model of the novel coronavirus (COVID-19) under Mittag-Leffler derivative, Chaos Soliton. Fract., 135 (2020), 109867. https://doi.org/10.1016/j.chaos.2020.109867 doi: 10.1016/j.chaos.2020.109867 |
[17] | S. Bekiros, D. Kouloumpou, SBDiEM: A new mathematical model of infectious disease dynamics, Chaos Soliton. Fract., 136 (2020), 109828. https://doi.org/10.1016/j.chaos.2020.109828 doi: 10.1016/j.chaos.2020.109828 |
[18] | G. Bocharov, V. Volpert, B. Ludewig, A. Meyerhans, Mathematical immunology of virus infections, Berlin: Springer, 2018. |
[19] | F. Brauer, Mathematical epidemiology: Past, present, and future, Infect. Dis. Model., 2 (2017), 113–127. https://doi.org/10.1016/j.idm.2017.02.001 doi: 10.1016/j.idm.2017.02.001 |
[20] | S. Cakan, Dynamic analysis of a mathematical model with health care capacity for COVID-19 pandemic, Chaos Soliton. Fract., 139 (2020), 110033. https://doi.org/10.1016/j.chaos.2020.110033 doi: 10.1016/j.chaos.2020.110033 |
[21] | S. Etemad, B. Tellab, A. Zeb, S. Ahmad, A. Zada, S. Rezapour, et al., A mathematical model of transmission cycle of CC-Hemorrhagic fever via fractal-fractional operators and numerical simulations, Res. Phys., 40 (2022), 105800. https://doi.org/10.1016/j.rinp.2022.105800 doi: 10.1016/j.rinp.2022.105800 |
[22] | M. Higazy, Novel fractional order SIDARTHE mathematical model of COVID-19 pandemic, Chaos Soliton. Fract., 138 (2020), 110007. https://doi.org/10.1016/j.chaos.2020.110007 doi: 10.1016/j.chaos.2020.110007 |
[23] | R. Din, K. Shah, I. Ahmad, T. Abdeljawad, Study of transmission dynamics of novel COVID-19 by using mathematical model, Adv. Differ. Equ., 2020 (2020), 323. http://doi.org/10.1186/s13662-020-02783-x doi: 10.1186/s13662-020-02783-x |
[24] | S. Kumar, J. Cao, M. Abdel-Aty, A novel mathematical approach of COVID-19 with non-singular fractional derivative, Chaos Soliton. Fract., 139 (2020), 110048. https://doi.org/10.1016/j.chaos.2020.110048 doi: 10.1016/j.chaos.2020.110048 |
[25] | H. Mohammadi, M. K. A. Kaabar, J. Alzabut, A. G. M. Selvam, S. Rezapour, A complete model of Crimean-Congo hemorrhagic fever (CCHF) transmission cycle with nonlocal fractional derivative, J. Funct. Space., 2021 (2021), 1273405. http://doi.org/10.1155/2021/1273405 doi: 10.1155/2021/1273405 |
[26] | O. Torrealba-Rodriguez, R. A. Conde-Gutiérrez, A. L. Hernández-Javiera, Modeling and prediction of COVID-19 in Mexico applying mathematical and computational models, Chaos Soliton. Fract., 138 (2020), 109946. https://doi.org/10.1016/j.chaos.2020.109946 doi: 10.1016/j.chaos.2020.109946 |
[27] | E. Addai, L. Zhang, J. K. K. Asamoah, J. F. Essel, A fractional order age-specific smoke epidemic model, Appl. Math. Model., 119 (2023), 99–118. https://doi.org/10.1016/j.apm.2023.02.019 doi: 10.1016/j.apm.2023.02.019 |
[28] | J. K. K. Asamoah, E. Okyere, E. Yankson, A. A. Opoku, A. Adom-Konadu, E. Acheampong, et al., Non-fractional and fractional mathematical analysis and simulations for Q fever, Chaos Soliton. Fract., 156 (2022), 111821. https://doi.org/10.1016/j.chaos.2022.111821 doi: 10.1016/j.chaos.2022.111821 |
[29] | I. Ahmed, I. A. Baba, A. Yusuf, P. Kumam, W. Kumam, Analysis of Caputo fractional-order model for COVID-19 with lockdown, Adv. Differ. Equ., 2020 (2020), 394. http://doi.org/10.1186/s13662-020-02853-0 doi: 10.1186/s13662-020-02853-0 |
[30] | E. Addai, L. Zhang, A. K. Preko, J. K. K. Asamoah, Fractional order epidemiological model of SARS-CoV-2 dynamism involving Alzheimer's disease, Healthcare Anal., 2 (2022), 100114. https://doi.org/10.1016/j.health.2022.100114 doi: 10.1016/j.health.2022.100114 |
[31] | L. Zhang, E. Addai, J. Ackora-Prah, D. Y. Arthur, J. K. K. Asamoah, Fractional-order Ebola-Malaria coinfection model with a focus on detection and treatment rate, Comput. Math. Method. M., 2022 (2022), 6502598. http://doi.org/10.1155/2022/6502598 doi: 10.1155/2022/6502598 |
[32] | M. Ngungu, E. Addai, A. Adeniji, U. M. Adam, K. Oshinubi, Mathematical epidemiological modeling and analysis of monkeypox dynamism with non-pharmaceutical intervention using real data from United Kingdom, Front. Public Health, 11 (2023), 1101436. http://doi.org/10.3389/fpubh.2023.1101436 doi: 10.3389/fpubh.2023.1101436 |
[33] | W. Ou, C. Xu, Q. Cui, Z. Liu, Y. Pang, M. Farman, et al., Mathematical study on bifurcation dynamics and control mechanism of tri-neuron bidirectional associative memory neural networks including delay, Math. Method. Appl. Sci., 2023, in press. https://doi.org/10.1002/mma.9347 |
[34] | C. Xu, Q. Cui, Z. Liu, Y. Pan, X. Cui, W. Ou, et al., Extended hybrid controller design of bifurcation in a delayed chemostat model, MATCH Commun. Math. Comput. Chem., 90 (2023), 609–648. https://doi.org/10.46793/match.90-3.609X doi: 10.46793/match.90-3.609X |
[35] | C. Xu, D. Mu, Y. Pan, C. Aouiti, L. Yao, Exploring bifurcation in a fractional-order predator-prey system with mixed delays, J. Appl. Anal. Comput., 13 (2023), 1119–1136. http://doi.org/10.11948/20210313 doi: 10.11948/20210313 |
[36] | C. Xu, D. Mu, Z. Liu, Y. Pang, C. Aouiti, O. Tunc, et al., Bifurcation dynamics and control mechanism of a fractional-order delayed Brusselator chemical reaction model, MATCH Commun. Math. Comput. Chem., 89 (2023), 73–106. https://doi.org/10.46793/match.89-1.073X doi: 10.46793/match.89-1.073X |
[37] | C. Xu, X. Cui, P. Li, J. Yan, L. Yao, Exploration on dynamics in a discrete predator-prey competitive model involving time delays and feedback controls, J. Biolog. Dyn., 17 (2023), 2220349. https://doi.org/10.1080/17513758.2023.2220349 doi: 10.1080/17513758.2023.2220349 |
[38] | P. Li, Y. Lu, C. Xu, J. Ren, Insight into Hopf bifurcation and control methods in fractional order BAM neural networks incorporating symmetric structure and delay, Cogn. Comput., 2023. ttps://doi.org/10.1007/s12559-023-10155-2 doi: 10.1007/s12559-023-10155-2 |
[39] | D. Mu, C. Xu, Z. Liu, Y. Pang, Further insight into bifurcation and hybrid control tactics of a chlorine dioxide-iodine-malonic acid chemical reaction model incorporating delays, MATCH Commun. Math. Comput. Chem., 89 (2023), 529–566. https://doi.org/10.46793/match.89-3.529M doi: 10.46793/match.89-3.529M |
[40] | A. Atangana, Fractal-fractional differentiation and integration: connecting fractal calculus and fractional calculus to predict complex system, Chaos Soliton. Fract., 102 (2017), 396–406. https://doi.org/10.1016/j.chaos.2017.04.027 doi: 10.1016/j.chaos.2017.04.027 |
[41] | A. Atangana, S. Qureshi, Modeling attractors of chaotic dynamical systems with fractal-fractional operators, Chaos Soliton. Fract., 123 (2019), 320–337. https://doi.org/10.1016/j.chaos.2019.04.020 doi: 10.1016/j.chaos.2019.04.020 |
[42] | B. Samet, C. Vetro, P. Vetro, Fixed point theorems for $\alpha$-$\psi$-contractive type mappings, Nonlinear Anal.-Theor., 75 (2012), 2154–2165. https://doi.org/10.1016/j.na.2011.10.014 doi: 10.1016/j.na.2011.10.014 |
[43] | A. Granas, J. Dugundji, Fixed point theory, New York: Springer-Verlag, 2003. |
[44] | W. S. McCulloch, W. Pitts, A logical calculus of ideas immanent in nervous activity, Bull. Math. Biophys., 5 (1943), 115–133. http://doi.org/10.1007/BF02478259 doi: 10.1007/BF02478259 |
[45] | F. Rosenblatt, The perceptron: A probabilistic model for information storage and organization in the brain, Psychological Rev., 65 (1958), 386–408. https://psycnet.apa.org/doi/10.1037/h0042519 doi: 10.1037/h0042519 |
[46] | G. Cybenko, Approximation by superpositions of a sigmoidal function, Math. Control Signal., 2 (1989), 303–314. http://doi.org/10.1007/BF02551274 doi: 10.1007/BF02551274 |
[47] | K. Hornik, Approximation capabilities of multilayer feedforward networks, Neural Networks, 4 (1991), 251–257. https://doi.org/10.1016/0893-6080(91)90009-T doi: 10.1016/0893-6080(91)90009-T |
[48] | M. Leshno, V. Y. Lin, A. Pinkus, S. Schocken, Multilayer feedforward networks with a nonpolynomial activation function can approximate any function, Neural Networks, 6 (1993), 861–867. https://doi.org/10.1016/S0893-6080(05)80131-5 doi: 10.1016/S0893-6080(05)80131-5 |
[49] | A. Pinkus, Approximation theory of the MLP model in neural networks, Acta Numer., 8 (1999), 143–195. https://doi.org/10.1017/S0962492900002919 doi: 10.1017/S0962492900002919 |
[50] | Z. Lu, H. Pu, F. Wang, Z. Hu, L. Wang, The expressive power of neural networks: A view from the width, Int. Conf. Neural Inform. Process. Syst., 30 (2017), 6232–6240. |
[51] | P. Kidger, T. Lyons, Universal approximation with deep narrow networks, In: Proceedings of Thirty Third Conference on Learning Theory, PMLR, 125 (2020), 2306–2327. |
[52] | H. Lin, S. S. Jegelka, ResNet with one-neuron hidden layers is a Universal Approximator, Adv. Neural Inform. Process. Syst., 30 (2018), 6169–6178. |
[53] | D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA, 27 (1941), 222–224. https://doi.org/10.1073/pnas.27.4.222 doi: 10.1073/pnas.27.4.222 |
[54] | I. A. Rus, Ulam stabilities of ordinary differential equations in a Banach space, Carpath. J. Math., 26 (2010), 103–107. |