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1. Introduction

In the past, humans knew of different types of deadly epidemics, among which we can mention
influenza, malaria and cholera. In fact, the main reason for the spread of such diseases in the first stage
was the insufficient development of medicine. At that time, the researchers noted that the acquired
immunity may disappear after a certain period of time, depending on the nature of the epidemic, which
puts community members at potential risk (see [1,2]), and it was also noted in some cases that patients
who recovered from the disease can mix with other uninfected individuals, believing that they have
acquired antibodies that prevent them from transmitting infection. This has led to the recording of
many injuries and a large number of deaths as a result of these diseases. But, with the passage of time,
humans became able to overcome them thanks to scientific development, especially in the medical
field.

As we all know, a new virus called the coronavirus recently appeared, which has caused a wide
range of infections, among which the symptoms are colds, fever, fatigue, etc. This epidemic has also
led to a very large death toll. This caused the researchers to compete with time and try to make new
medical discoveries that reduce the severity and danger of the virus. On February 12, 2020, the disease
due to this virus was officially named COVID-19 by the World Health Organization. This epidemic
also has a simple mechanism of disease spread, i.e., through the sneezing or coughing of the infected
person, which result in transmission to people close to it, as droplets quickly enter their bodies through
the nose and mouth; then, the virus in their lungs begins to damage their respiratory system.

Some studies have concluded that infected surfaces are also a means of transmission of the
virus, which has different lifespans depending on the nature of these different surfaces. The World
Health Organization has also provided many tips and instructions, especially regarding the methods of
spreading this virus and how to prevent it.

With the great development of fractional calculus, many researchers have applied it in most
of their new studies, especially with the recent emergence of viruses and infectious diseases; this
has become an interesting topic for researchers. What follows is a set of articles that feature
diverse mathematical models, covering a wide range of topics, such as the spread and control
of diseases like COVID-19 [3, 4], hepatitis C [5] and chaotic circuits [6], as well as models
for the environmental persistence of infections [7], Langevin systems [8], computer viruses [9],
thermostat control models [10, 11], stochastic models [12], resource-consumer dynamics [13], Navier
systems [14], quantum systems [15], etc.

It should be noted that there are still many studies that have been purposed to make predictions for
this epidemic, and they involve the use of several mathematical models, such as differential equations
with integer and fractional orders with various definitions (see [16–26] and the references cited therein).

The primary focus of this work is on developing a model that utilizes the fractal-fractional structure
under the conditions of two fractional order and fractal dimensions. In epidemic models, the incidence
rates, which reflect the rate of new infections per unit of time, play a critical role in determining the
extent of disease spread. Therefore, we employ βS I and its extension βS I/(1 + αI) to account for this
important factor.

The references discussed in this collection encompass a wide spectrum of mathematical models
and epidemiological studies aimed at comprehending and effectively managing various infectious
diseases. In [27], the authors introduce a nonlinear fractional mathematical model to address a
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smoke epidemic affecting multiple age groups; they employed the Atangana-Baleanu-Caputo fractional
derivative. Another previous article [28] focuses on the transmission dynamics of Q fever in livestock,
with an emphasis on the role of ticks in disease spread and the proposal of management strategies.
In [29], a fractional-order mathematical model is developed to evaluate the impact of lockdown
measures on the spread of a virus; this was achieved by utilizing a system of nonlinear fractional-order
differential equations. Addai et al. [30] investigated the transmission dynamics of the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) through the use of a Caputo-Fabrizio fractional-
order epidemiological model; they explored its potential connection with Alzheimer’s disease. In [31],
the co-infection of Ebola virus and malaria in impoverished areas is the primary focus, particularly in
regions burdened by high malaria prevalence and sporadic Ebola virus epidemics. Finally, Ngungu et
al. [32] presented a mathematical model to examine the transmission of monkeypox virus under non-
pharmaceutical interventions; their study included detailed exploration of key mathematical properties,
like the positivity, invariance and boundedness of solutions, using real-time data. Together, these
studies significantly contribute to our comprehension of infectious disease dynamics and provide
valuable insights into strategies for their management and prevention.

In this work, we utilize fractal-fractional analysis to characterize the crowding effects of COVID-
19 through the use of a mathematical model, which is taken as a classical SIR model described by
the following system with a recruitment rate µN for susceptible persons, along with the nonlinear
incidence rate βS I/(1 +αI). The model being examined is separated into three distinct categories: The
susceptible class is denoted as S , the infected class is denoted as I and the recovered class is denoted
as R: 

dS (t)
dt

= µN(t) −
βS (t)I(t)
1 + αI(t)

− µS (t),

dI(t)
dt

=
βS (t)I(t)
1 + αI(t)

− (γ + µ)I(t),

dR(t)
dt

= γI(t) − µR(t).

(1.1)

The force of infection of the disease and the crowding effect are represented by βI and 1
1+αI ,

respectively. Additionally, the parameters µ, γ and β are used to denote the death rate, recovery rate
and infection rate, respectively. The total constant population is expressed by N such that

N(t) = S (t) + I(t) + R(t), (1.2)

with

N(0) = S (0) + I(0) + R(0) (1.3)

and

S (0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0.

In view of the standard model (1.1), we will turn to the following fractal-fractional-order mathematical
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model for the spread of COVID-19

FFPD
%,ν
0,t S (t) = µN(t) −

βS (t)I(t)
1 + αI(t)

− µS (t),

FFPD
%,ν
0,t I(t) =

βS (t)I(t)
1 + αI(t)

− (γ + µ)I(t),

FFPD
%,ν
0,t R(t) = γI(t) − µR(t),

(1.4)

endowed with the initial conditions

S (0) = S 0, I(0) = I0, R = R0.

The fractal-fractional derivative, denoted as FFPD
%,ν
0,t , utilizes a power-law type kernel and is

characterized by both a fractional order % ∈ (0, 1] and a fractal dimension ν ∈ (0, 1], which is recalled
in the sequel. It is worth noting that the model (1.4) employs only non-negative parameters, and the
state functions of the model are defined by

N(t) = S (t) + I(t) + R(t),

where N(t) represents the total population at time t ∈ O := [0,T ] and T > 0.

After the development of some theorems on the existence and stability of solutions, two approaches,
i.e., the (classic) Adams-Bashforth approach and (new) artificial neural network approach, have been
proposed for the numerical approximation of the fractal-fractional SIR problem’s solutions. We will
analyze the numerical and graphical results obtained via each of these two methods. The main novelty
of this paper is that we have tried to use a new tool to approximate the solutions of the given system.
This method is based on the artificial neural network, which is applied in a fractal-fractional model
for the first time. Our results proved that these findings are more accurate than the ones obtained
via the standard Adams-Bashforth method. In general, we wanted to apply this method to a well-
known mathematical model of diseases, i.e., COVID-19, since it still receives the attention of many
researchers.

Artificial neural networks serve as a robust tool for approximating solutions to a variety of
mathematical problems, including partial differential equations, differential equations, and ordinary
differential equations. By leveraging insights from density results for the specific function spaces,
we construct a function, as described by (4.1), within this research paper. Next, we will fine-tune
the network’s weights through an optimization process, optimizing its parameters to achieve a more
precise fit for our problem. For more information, and to find new applications, we refer the reader to
some newly published papers, namely, [33–39].

The rest of the paper is divided into several sections. In the next section of the paper, we provide
the problem’s definition, along with a discussion on the existence and uniqueness of the solution
and its stability. Following this section, we concentrate on the application of the classical Adams-
Bashforth method to approximate the solutions of the problem (1.4). Section 4 was constructed to
use the artificial neural network architecture to approximate the same solution of the fractal-fractional
SIR problem (1.4) from a new perspective. To realize, we begin this section by giving a historical
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background that describes these artificial neural networks, along with the corresponding algorithms of
the method. Next, we apply the method to the given SIR problem and establish a graphical illustration
of the approximate solutions. Finally, this paper is concluded with a paragraph containing the main
results with some perspectives.

2. Mathematical study of the SIR problem

2.1. Fractal-fractional operators and fixed-point theorems

To start our work, we first introduce some essential details about the fractal-fractional operators [40,
41] and fixed-point theorems, which will be employed in the subsequent analysis.

Definition 2.1. [40, 41] Assume that Z is a continuously differentiable function with the fractal
dimension on an open interval (a, b) with a fixed order ν. Then, the fractal-fractional derivative of Z
with order %, via the power-law type kernel, can be defined by using the Riemann-Liouville structure
as follows:

FFPD
%,ν
a,tZ(t) =

1
Γ(n − %)

d
dtν

∫ t

a
(t − ϑ)n−%−1Z(ϑ) dϑ, (n − 1 < %, ν ≤ n ∈ N),

where the fractal derivative is
dZ(ϑ)

dϑν
= lim

t→ϑ

Z(t) −Z(ϑ)
tν − ϑν

.

When ν = 1, the fractal-fractional derivative denoted as FFPD%,ν
a,t reduces to the standard fractional

Riemann-Liouville derivative of order %, which is denoted as RLD%
a,t.

Definition 2.2. [40, 41] If Z is a continuous function defined on (a, b), the fractal-fractional integral
of Z with the fractional order % and the fractal order ν, via the power-law type kernel, is defined as
follows:

FFPI
%,ν
a,tZ(t) =

ν

Γ(%)

∫ t

a
ϑν−1(t − ϑ)%−1Z(ϑ) dϑ. (2.1)

Take Ψ as a subclass of the functions k : [0,∞) → [0,∞) that are non-decreasing so that, for each
t > 0,

∞∑
s=1

(k(t))s < ∞, k(t) < t.

Definition 2.3. [42] Assume that the normed space is denoted byX, and thatZ : X → X is a self-map
and σ : X2 → R+. Then, we have the following:

(i) Z is σ-k-contraction, if for v1, v2 ∈ X,

σ(v1, v2)d(Zv1,Zv2) ≤ k(d(v1, v2)).

(ii) Z is σ-admissible if σ(v1, v2) ≥ 1 yields σ(Zv1,Zv2) ≥ 1.

Theorem 2.4. [42] Suppose that (X, d) is a metric space which is complete, σ : X × X → R, k ∈ Ψ
andZ : X → X is a σ-k-contraction. Let the following be true:
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(i) Z is σ-admissible on X;
(ii) σ(v0,Zv0) ≥ 1 for some v0 ∈ X;

(iii) If {vn} ⊆ X is an arbitrary sequence with vn → v and σ(vn, vn+1) ≥ 1, ∀ n ≥ 1, then σ(vn, v) ≥
1, ∀ n ≥ 1.

Then, there is a fixed point forZ.

Theorem 2.5. [43] Given a Banach space X, a bounded convex closed subset E of X and an open set
O containing 0 and that is also contained in E, if G : Ō → E is a continuous and compact mapping,
then either

(i) G admits a fixed point belonging to Ō, or
(ii) ∃v ∈ ∂O and µ ∈ (0, 1) so that v = µG(v).

2.2. Reformulation of the model using integral equations

For the study of a biological model, one tends to question whether such a dynamic problem really
exists. To answer this question, we use the theory of the fixed point. So, here, we apply this theory
to our fractal-fractional problem (1.4). For a qualitative study, we consider the Banach space (X, ‖.‖X)
such that X = K × K × K, with K = C(O,R) and

‖φ‖X = ‖
(
S , I,R

)
‖X

= max
{
|S (t)| + |I(t)| + |R(t)| : t ∈ O

}
.

Now, we write the other sides of the equations in the system (1.4) as follows:
Z1

(
t, S (t), I(t),R(t)

)
= µN(t) − βS (t)I(t)

1+αI(t) − µS (t),

Z2
(
t, S (t), I(t),R(t))

)
=

βS (t)I(t)
1+αI(t) − (γ + µ)I(t),

Z3
(
t, S (t), I(t),R(t))

)
= γI(t) − µR(t).

(2.2)

Thanks to the differentiability of the integral, we can reformulate the given problem (1.4) as follows:
RLD

%
0,tS (t) = νtν−1Z1

(
t, S (t), I(t),R(t)

)
,

RLD
%
0,tI(t) = νtν−1Z2

(
t, S (t), I(t),R(t)

)
,

RLD
%
0,tR(t) = νtν−1Z3

(
t, S (t), I(t),R(t)

)
.

(2.3)

By exploiting (2.3) and for each t ∈ O, the initial value problem given by
RLD

%
0,tφ(t) = νtν−1Z

(
t, φ(t)

)
, %, ν ∈ (0, 1],

φ(0) = φ0

(2.4)

can be written instead of the extended main system (1.4) so that

φ(t) =
(
S (t), I(t),R(t)

)T
,
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φ0 =
(
S (0), I(0),R(0)

)T (2.5)

and

Z
(
t, φ(t)

)
=


Z1

(
t, S (t), I(t),R(t)

)
,

Z2
(
t, S (t), I(t),R(t)

)
,

Z3
(
t, S (t), I(t),R(t)

)
.

(2.6)

Now, by applying the fractal-fractional integral defined by (2.1) to both side of the differential
equation (2.4), it becomes

φ(t) = φ(0) +
ν

Γ(%)

∫ t

0
ϑν−1(t − ϑ)%−1Z

(
ϑ, φ(ϑ)

)
dϑ. (2.7)

Consequently, the non-compact form of the integral equation (2.7) is given by

S (t) = S 0 +
ν

Γ(%)

∫ t

0
ϑν−1(t − ϑ)%−1Z1

(
ϑ, S (ϑ), I(ϑ),R(ϑ)

)
dϑ,

I(t) = I0 +
ν

Γ(%)

∫ t

0
ϑν−1(t − ϑ)%−1Z2

(
ϑ, S (ϑ), I(ϑ),R(ϑ)

)
dϑ,

R(t) = R0 +
ν

Γ(%)

∫ t

0
ϑν−1(t − ϑ)%−1Z3

(
ϑ, S (ϑ), I(ϑ),R(ϑ)

)
dϑ.

(2.8)

For the continuation of our study, we define the operator G : X → X by

G(φ(t)) = φ(0) +
ν

Γ(%)

∫ t

0
ϑν−1(t − ϑ)%−1Z

(
ϑ, φ(ϑ)

)
dϑ. (2.9)

2.3. Existence of solutions

Now, based on the information reported in the previous sections, we can begin to state the first
existence result.

Theorem 2.6. Let there be a continuous function Ξ : R2 → R, a non-decreasing function k ∈ Ψ and a
continuous functionZ : O × X → X satisfying the following three hypotheses:
(Cond1) For each φ1, φ2 ∈ X and t ∈ O,∣∣∣Z(t, φ1(t)) −Z(t, φ2(t))

∣∣∣ ≤ δk(|φ1(t) − φ2(t)|
)
,

such that δ =
Γ(ν + %)

νT ν+%−1Γ(ν)
and Ξ

(
φ1(t), φ2(t)

)
≥ 0.

(Cond2) There exists φ0 ∈ X that satisfies the following for any t ∈ O :

Ξ
(
φ0(t),G

(
φ0(t)

))
≥ 0;

also, for any φ1, φ2 ∈ X and t ∈ O, we have

Ξ
(
φ1(t), φ2(t)

)
≥ 0 =⇒ Ξ

(
G
(
φ1(t)

)
,G

(
φ2(t)

))
≥ 0.
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(Cond3) For each sequence {φn}n≥1 in X which converges to φ and

Ξ
(
φn(t), φn+1(t)

)
≥ 0,

∀ t ∈ O, the inequality
Ξ
(
φn(t), φ(t)

)
≥ 0

holds.
Then, the given fractal-fractional model (1.4) admits at least one solution.

Proof. Let φ1, φ2 ∈ X, where Ξ
(
φ1(t), φ2(t)

)
≥ 0 for any t ∈ O. Then, as a result of exploiting the

definition of the beta function, the following estimates hold:

∣∣∣G(φ1(t)
)
− G

(
φ2(t)

)∣∣∣ ≤ ν

Γ(%)

∫ t

0
ϑν−1(t − ϑ)%−1

∣∣∣Z(
ϑ, φ1(ϑ)

)
−Z

(
ϑ, φ2(ϑ)

)∣∣∣dϑ
≤

νδ

Γ(%)

∫ t

0
ϑν−1(t − ϑ)%−1k

(∣∣∣φ1(ϑ) − φ2(ϑ)
∣∣∣)dϑ

≤
νδk

(
‖φ1 − φ2‖X

)
Γ(%)

∫ t

0
ϑν−1(t − ϑ)%−1dϑ

≤
νδT ν+%−1B(ν, %)

Γ(%)
k
(
‖φ1 − φ2‖X

)
= k

(
‖φ1 − φ2‖X

)
.

Hence, ∥∥∥G(φ1) − G(φ2)
∥∥∥
X
≤ k

(
‖φ1 − φ2‖X

)
.

Now, for any φ1, φ2 ∈ X, we consider the function σ : X × X → [0,+∞), defined as follows:

σ(φ1, φ2) =


1 if Ξ

(
φ1(t), φ2(t)

)
≥ 0,

0 otherwise.

Then, for any φ1, φ2 ∈ X, we will get

σ(φ1, φ2)d
(
G(φ1),G(φ2)

)
≤ k

(
d(φ1, φ2)

)
.

Consequently, G is a σ-k-contraction. To show that G is σ-admissible, let φ1, φ2 ∈ X be arbitrary with
σ(φ1, φ2) ≥ 1. In view of the definition of the function σ, we can write

Ξ
(
φ1(t), φ2(t)

)
≥ 0.

Therefore, from the hypothesis (Cond2), we have

Ξ
(
G
(
φ1(t)

)
,G

(
φ2(t)

))
≥ 0.

Again, by definition of the function σ, we deduce that σ
(
G
(
φ1

)
,G

(
φ2

))
≥ 1. This means that G is

σ-admissible.
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In addition, (Cond2) guarantees that there is a φ0 ∈ X that satisfies that Ξ
(
φ0(t),G

(
φ0(t)

))
≥ 0, ∀ t ∈

O. Obviously, σ
(
φ0,G

(
φ0

))
≥ 1.

Now, assume that {φn}n≥1 ⊆ X converges to φ and satisfies, for all n ≥ 1, σ
(
φn, φn+1

)
≥ 1. From the

definition of the function σ, we get
Ξ
(
φn(t), φn+1(t)

)
≥ 0.

So, the hypothesis (Cond3) leads to
Ξ
(
φn(t), φ(t)

)
≥ 0.

This implies that σ
(
φn, φ

)
≥ 1 for any n ≥ 1. As a result, Theorem 2.4 satisfies condition (iii).

Consequently, Theorem 2.4 holds under the given assumptions. Therefore, G has a fixed point φ∗ ∈ X
that gives the result that φ∗ =

(
S ∗, I∗,R∗

)T is a solution of the model (1.4); and this ends the proof. �

Now, we apply the Leray-Schauder nonlinear alternative to demonstrate that, under some
assumptions, there is a solution of the considered fractal-fractional model of (1.4) for O.

Theorem 2.7. LetZ ∈ C(O × X,X) and
(HY1) there exist ϕ ∈ L1(O, [0,+∞)) and an increasing map B ∈ C([0,+∞), (0,+∞)) with

∀t ∈ O, and φ ∈ X,
∣∣∣B(t, φ(t))

∣∣∣ ≤ ϕ(t)B
(
|φ(t)|

)
;

(HY2) ∃α > 0 such that

α > φ0 +
νT ν+%−1Γ(ν)

Γ(ν + %)
ϕ∗0B(α), (2.10)

with ϕ∗0 = sup
t∈O
|ϕ(t)|.

Then the fractal-fractional problem (2.4) has a solution. Consequently, the given fractal-fractional
model of (1.4) possesses a solution on O.

Proof. To initiate the proof, it is necessary to introduce the operator G, as defined in (2.9), and the
closed ball.

Γε = {φ ∈ X : ‖φ‖X ≤ ε}.

First, the continuity ofZ comes from that ofG.Now, from the condition (HY1), we have the following,
for φ ∈ Γε: ∣∣∣G(φ(t)

)∣∣∣ ≤ |φ(0)| +
ν

Γ(%)

∫ t

0
ϑν−1(t − ϑ)%−1

∣∣∣Z(
ϑ, φ(ϑ)

)∣∣∣dϑ
≤ φ0 +

ν

Γ(%)

∫ t

0
ϑν−1(t − ϑ)%−1ϕ(ϑ)B

(
|φ(ϑ)|

)
dϑ

≤ φ0 +
νT ν+%−1B(ν, %)

Γ(%)
ϕ∗0B

(
‖φ‖X

)
≤ φ0 +

νT ν+%−1Γ(ν)
Γ(ν + %)

ϕ∗0B(ε).

Therefore, we obtain

‖Gφ‖X ≤ φ0 +
νT ν+%−1Γ(ν)

Γ(ν + %)
ϕ∗0B(ε) < +∞. (2.11)
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Therefore, the operator G is bounded in the uniform sense on X. To prove the equicontinuity of G, we
select two points t, τ ∈ [0,T ] such that t < τ, and we take an arbitrary φ ∈ Γε. By considering

Z∗ = sup
(t,φ)∈O×Γε

∣∣∣Z(t, φ(t))
∣∣∣ < +∞,

we have ∣∣∣G(φ(τ)
)
− G

(
φ(t)

)∣∣∣ =

∣∣∣∣∣ ν

Γ(%)

∫ τ

0
ϑν−1(t − ϑ)%−1Z

(
ϑ, φ(ϑ)

)
dϑ

−
ν

Γ(%)

∫ t

0
ϑν−1(t − ϑ)%−1Z

(
ϑ, φ(ϑ)

)
dϑ

∣∣∣∣∣
≤

νZ∗

Γ(%)

∣∣∣∣∣ ∫ τ

0
ϑν−1(t − ϑ)%−1dϑ −

∫ t

0
ϑν−1(t − ϑ)%−1dϑ

∣∣∣∣∣
≤

νZ∗B(ν, %)
Γ(%)

(
τν+%−1 − tν+%−1

)
=

νZ∗Γ(ν)
Γ(ν + %)

(
τν+%−1 − tν+%−1

)
. (2.12)

As τ approaches t, the expression on the right-hand side of (2.12) tends to 0 regardless of the choice
of φ, i.e.,

‖G
(
φ(τ)

)
− G

(
φ(t)

)
‖X → 0

as τ → t. This guarantees that G is equicontinuous. After applying the Arzelà-Ascoli theorem, it is
confirmed that G is compact on Γε. Therefore, all assumptions of Theorem 2.5 are met for G, implying
that either (i) or (ii) is held. Additionally, we are aware that there is some α > 0 because of (HY2),
with

φ0 +
νT ν+%−1Γ(ν)

Γ(ν + %)
ϕ∗0B(α) < α. (2.13)

Next, we define
U = {φ ∈ X : ‖φ‖X < α}.

We will now suppose that there exist φ ∈ ∂U and µ ∈ (0, 1) subject to φ = µG(φ). For such a selection
of φ and µ, one can prove, by (2.13), that

α = ‖φ‖X = µ‖Gφ‖X < φ0 +
νT ν+%−1Γ(ν)

Γ(ν + %)
ϕ∗0B

(
‖φ‖X

)
< φ0 +

νT ν+%−1Γ(ν)
Γ(ν + %)

ϕ∗0B(α) < α,

and this is not possible. As a result, we have shown that the consequence (ii) is impossible, and that,
by Theorem 2.5, there exists a fixed point of G in U, which corresponds to a solution of the fractal-
fractional model (1.4). Thus, this ends the proof. �

2.4. Uniqueness result

To show the uniqueness property in relation to the solution of the fractal-fractional model (1.4), we
utilize the fact that the functionsZi(i = 1, 2, 3), defined in (2.2), satisfy the Lipschitz condition.
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Lemma 2.8. Suppose that S , I,R, S ∗, I∗,R∗ ∈ Π = C(O,R), and assume the following:
(PR1) ‖S ‖ ≤ γ1, ‖I‖ ≤ γ2 and ‖R‖ ≤ γ3 for some constants γ1, γ2, γ3 > 0.
Then,Z1,Z2,Z3 given by (2.2) satisfy the Lipschitz condition if

`1 = βγ2, `2 = βγ1 + γ + µ, `3 = µ. (2.14)

Proof. We start withZ1. For any S , S ∗ ∈ Π = C(O,R), we get∥∥∥Z1
(
t, S (t), I(t),R(t)

)
−Z1

(
t, S ∗(t), I(t),R(t)

∥∥∥
=

∥∥∥∥∥(µ(I(t) + R(t)) −
βS (t)I(t)
1 + αI(t)

)
−

(
µ(I(t) + R(t)) −

βS ∗(t)I(t)
1 + αI(t)

)∥∥∥∥∥
≤ β‖I(t)‖

∥∥∥S (t) − S ∗(t)
∥∥∥

≤ βγ2

∥∥∥S (t) − S ∗(t)
∥∥∥

= `1

∥∥∥S (t) − S ∗(t)
∥∥∥.

Hence,Z1 is Lipschitz with respect to the function S with the constant `1. Regarding the functionZ2,
for each I, I∗ ∈ Π = C(O,R),∥∥∥Z2

(
t, S (t), I(t),R(t)

)
−Z2

(
t, S (t), I∗(t),R(t)

∥∥∥
=

∥∥∥∥∥(βS (t)I(t)
1 + αI(t)

− (γ + µ)I(t)
)
−

(
βS (t)I∗(t)
1 + αI∗(t)

− (γ + µ)I∗(t)
)∥∥∥∥∥

≤

∥∥∥∥∥βS (t)
I(t) − I∗(t)

(1 + αI(t))(1 + αI∗(t))
− (γ + µ)(I(t) − I∗(t))

∥∥∥∥∥
≤ (β‖S (t)‖ + γ + µ)

∥∥∥I(t) − I∗(t)
∥∥∥

≤ (βγ1 + γ + µ)
∥∥∥I(t) − I∗(t)

∥∥∥
= `2

∥∥∥I(t) − I∗(t)
∥∥∥.

This implies thatZ2 is Lipschitz with respect to I with the constant `2. For every R,R∗ ∈ Π = C(O,R),
we have ∥∥∥Z3

(
t, S (t), I(t),R(t)

)
−Z3

(
t, S (t), I(t),R∗(t)

∥∥∥
=

∥∥∥(γI(t) − µR(t)
)
−

(
γI(t) − µR∗(t))

)∥∥∥
≤ µ‖R(t) − R∗(t)‖
= `3‖R(t) − R∗(t)‖.

Then,Z3 is Lipschitz with respect to the function R with the constant `3. The above results confirm that
the three functions Z1,Z2,Z3 satisfy the Lipscitz condition with the constants `1, `2, `3, respectively.

�

Here, we utilize the results obtained in Lemma 2.8 to establish a criterion for the uniqueness of
solutions to the given fractal-fractional system (1.4).

Theorem 2.9. If the condition (PR1) is satisfied, then (1.4) has a unique solution if

νT ν+%−1Γ(ν)
Γ(ν + %)

`i < 1, i ∈ {1, 2, 3}. (2.15)
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Proof. Let us suppose that the conclusion is not true; that is, there is another solution to the fractal-
fractional system (1.4). Let

(
S ∗, I∗,R∗

)
be a solution with the initial condition

(
S 0, I0,R0

)
such that,

by (2.8), we have

S ∗(t) = S 0 +
ν

Γ(%)

∫ t

0
ϑν−1(t − ϑ)%−1Z1

(
ϑ, S ∗(ϑ), I(ϑ),R(ϑ)

)
dϑ,

I∗(t) = I0 +
ν

Γ(%)

∫ t

0
ϑν−1(t − ϑ)%−1Z2

(
ϑ, S (ϑ), I∗(ϑ),R(ϑ)

)
dϑ

and

R∗(t) = R0 +
ν

Γ(%)

∫ t

0
ϑν−1(t − ϑ)%−1Z3

(
ϑ, S (ϑ), I(ϑ),R∗(ϑ)

)
dϑ.

We are now able to provide the following estimation:

∣∣∣S (t) − S ∗(t)
∣∣∣ ≤ ν

Γ(%)

∫ t

0
ϑν−1(t − ϑ)%−1

∣∣∣∣Z1
(
ϑ, S (ϑ), I(ϑ),R(ϑ)

)
−Z1

(
ϑ, S ∗(ϑ), I(ϑ),R(ϑ)

)∣∣∣∣ dϑ
≤

ν

Γ(%)
`1

∥∥∥Sc − S
∗
c

∥∥∥ ∫ t

0
ϑν−1(t − ϑ)%−1 dϑ

≤
νT ν+%−1Γ(ν)

Γ(ν + %)
`1

∥∥∥S − S ∗
∥∥∥.

This gives [
1 −

νT ν+%−1Γ(ν)
Γ(ν + %)

`1

]∥∥∥S − S ∗
∥∥∥ ≤ 0.

Consequently, by using (2.15), we can deduce that
∥∥∥S − S ∗

∥∥∥ = 0, which implies that S = S ∗. Similarly,
we get [

1 −
νT ν+%−1Γ(ν)

Γ(ν + %)
`2

]∥∥∥I − I∗
∥∥∥ ≤ 0.

This leads to the conclusion that
∥∥∥I − I∗

∥∥∥ equals zero; hence, I = I∗. Using analogous reasoning, we
arrive at [

1 −
νT ν+%−1Γ(ν)

Γ(ν + %)
`3

]∥∥∥R − R∗
∥∥∥ ≤ 0.

Therefore,
∥∥∥R − R∗

∥∥∥ = 0 and, consequently, R = R∗. Then,

(
S , I,R

)
=

(
S ∗, I∗,R∗

)
.

Therefore, we have established the uniqueness of the solution to the fractal-fractional model (1.4);
thus, the proof is concluded. �
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2.5. Stability results

The focus of this section is to investigate various types of stability, including the Ulam-Hyers,
generalized Ulam-Hyers, Ulam-Hyers-Rassias and generalized Ulam-Hyers-Rassias stability, for
solutions of the fractal-fractional model (1.4).

Definition 2.10. [53,54] If there is MZi > 0, i ∈ 1, 2, 3 such that, for all εi > 0 and each
(
S ∗, I∗,R∗

)
∈ X

satisfying the following conditions:

∣∣∣∣FFPD%,ν
0,t S

∗(t) −Z1
(
t, S ∗(t), I∗(t),R∗(t)

)∣∣∣∣ < ε1,∣∣∣∣FFPD%,ν
0,t I∗(t) −Z2

(
t, S ∗(t), I∗(t),R∗(t)

)∣∣∣∣ < ε2,∣∣∣∣FFPD%,ν
0,t R

∗(t) −Z3
(
t, S ∗(t), I∗(t),R∗(t)

)∣∣∣∣ < ε3,

(2.16)

there is
(
S , I,R

)
∈ X as a solution for (1.4) with

∣∣∣∣S ∗(t) − S (t)
∣∣∣∣ ≤ MZ1ε1,∣∣∣∣I∗(t) − I(t)

∣∣∣∣ ≤ MZ2ε2,∣∣∣∣R∗(t) − R(t)
∣∣∣∣ ≤ MZ3ε3;

then, the fractal-fractional system (1.4), is Ulam-Hyers-stable.

Definition 2.11. [53, 54] The fractal-fractional model (1.4) is said to have generalized Ulam-Hyers
stability if there exist continuous functions MZi : R+ → R+ (i ∈ 1, 2, 3) with MZi(0) = 0 such that, for
all εi > 0 and each

(
S ∗, I∗,R∗

)
∈ X satisfying (2.16), ∃

(
S , I,R

)
∈ X as a solution of (1.4), with

∣∣∣∣S ∗(t) − S (t)
∣∣∣∣ ≤ MZ1(ε1),∣∣∣∣I∗(t) − I(t)

∣∣∣∣ ≤ MZ2(ε2),∣∣∣∣R∗(t) − R(t)
∣∣∣∣ ≤ MZ3(ε3).

Remark 2.12. The triplet
(
S , I ,R

)
∈ X is a solution of (2.10) if and only if ∃ ζ1, ζ2, ζ3 ∈ C(O,R),

dependent on S ∗, I∗,R∗, respectively such that for all t ∈ O, we have the following:
(i)

∣∣∣ζi(t)
∣∣∣ < εi (i ∈ {1, 2, 3}),

(ii) 
FFPD

%,ν
0,t S

∗(t) = Z1
(
t, S ∗(t), I∗(t),R∗(t)

)
+ ζ1(t),

FFPD
%,ν
0,t I∗(t) = Z2

(
t, S ∗(t), I∗(t),R∗(t)

)
+ ζ2(t),

FFPD
%,ν
0,t R

∗(t) = Z3
(
t, S ∗(t), I∗(t),R∗(t)

)
+ ζ3(t).

Definition 2.13. [53,54] The fractal-fractional system of the COVID-1 model (1.4) is said to be Ulam-
Hyers-Rassias-stable with respect to Φi (i ∈ {1, 2, 3}) if there exist positive real constants M(Zi,Φi) so
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that, for all εi > 0 and all
(
S ∗, I∗,R∗

)
∈ X satisfying the following:

∣∣∣∣FFPD%,ν
0,t S

∗(t) −Z1
(
t, S ∗(t), I∗(t),R∗(t)

)∣∣∣∣ < ε1Φ1(t),∣∣∣∣FFPD%,ν
0,t I∗(t) −Z2

(
t, S ∗(t), I∗(t),R∗(t)

)∣∣∣∣ < ε2Φ2(t),∣∣∣∣FFPD%,ν
0,t R

∗(t) −Z3
(
t, S ∗(t), I∗(t),R∗(t)

)∣∣∣∣ < ε3Φ3(t),

(2.17)

there is
(
S , I,R

)
∈ X as a solution of (1.4), with

∣∣∣∣S ∗(t) − S (t)
∣∣∣∣ ≤ ε1M(Z1,Φ1)Φ1(t),∣∣∣∣I∗(t) − I(t)

∣∣∣∣ ≤ ε2M(Z2,Φ2)Φ2(t),∣∣∣∣R∗(t) − R(t)
∣∣∣∣ ≤ ε3M(Z3,Φ3)Φ3(t).

Definition 2.14. [53,54] The fractal-fractional system of COVID-19 model (1.4) is generalized Ulam-
Hyers-Rassias-stable with respect to Φi (i ∈ {1, 2, 3}) if there exist positive real constants M(Zi,Φi) so
that, for all

(
S ∗, I∗,R∗

)
∈ X satisfying the following:

∣∣∣∣FFPD%,ν
0,t S

∗(t) −Z1
(
t, S ∗(t), I∗(t),R∗(t)

)∣∣∣∣ < Φ1(t),∣∣∣∣FFPD%,ν
0,t I∗(t) −Z2

(
t, S ∗(t), I∗(t),R∗(t)

)∣∣∣∣ < Φ2(t),∣∣∣∣FFPD%,ν
0,t R

∗(t) −Z1
(
t, S ∗(t), I∗(t),R∗(t)

)∣∣∣∣ < Φ3(t),

there is
(
S , I,R

)
∈ X as a solution of (1.4), with

∣∣∣∣S ∗(t) − S (t)
∣∣∣∣ ≤ M(Z1,Φ1)Φ1(t),∣∣∣∣I∗(t) − I(t)

∣∣∣∣ ≤ M(Z2,Φ2)Φ2(t),∣∣∣∣R∗(t) − R(t)
∣∣∣∣ ≤ M(Z3,Φ3)Φ3(t).

Note that, if we take Φi(t) = 1, then Definition 2.13 gives the Ulam-Hyers property for the stability
of solutions.

Remark 2.15. It should be noticed that
(
S ∗, I∗,R∗

)
∈ X is a solution for (2.11) if and only if there exist

ζ1, ζ2, ζ3 ∈ C(O,R) (depending respectively on S ∗, I∗,R∗ ) such that, for all t ∈ O, (i)
∣∣∣ζi(t)

∣∣∣ < εiΦi(t),
(i ∈ {1, 2, 3}), and (ii) we have the following:

FFPD
%,ν
0,t S

∗(t) = Z1
(
t, S ∗(t), I∗(t),R∗(t)

)
+ ζ1(t),

FFPD
%,ν
0,t I∗(t) = Z2

(
t, S ∗(t), I∗(t),R∗(t)

)
+ ζ2(t),

FFPD
%,ν
0,t R

∗(t) = Z3
(
t, S ∗(t), I∗(t),R∗(t)

)
+ ζ3(t).

Here, we examine the Ulam-Hyers stability of the fractal-fractional model described by (1.4).
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Theorem 2.16. Suppose that the condition (PR1) holds. Then, the fractal-fractional system (1.4)
is stable under the Ulam-Hyers criterion on the interval O = [0,T ]; thus, it can be considered as
generalized Ulam-Hyers-stable if

νT ν+%−1Γ(ν)
Γ(ν + %)

`i < 1, i ∈ {1, 2, 3},

where `i is defined by (2.14).

Proof. Let ε1 > 0 and S ∗ ∈ Π such that∣∣∣∣FFPD%,ν
0,t S

∗(t) −Z1
(
t, S ∗(t), I∗(t),R∗(t)

)∣∣∣∣ < ε1.

Then, in view of Remark 2.12, we can find a function ζ1(t) satisfying

FFPD
%,ν
0,t S

∗(t) = Z1
(
t, S ∗(t), I∗(t),R∗(t)

)
+ ζ1(t),

with |ζ1(t)| ≤ ε1. This gives

S ∗(t) = S 0 +
ν

Γ(%)

∫ t

0
ϑν−1(t − ϑ)%−1Z1

(
ϑ, S ∗(ϑ), I∗(ϑ),R∗(ϑ)

)
dϑ

+
ν

Γ(%)

∫ t

0
ϑν−1(t − ϑ)%−1ζ1(ϑ) dϑ.

From Theorem 2.9, consider the unique solution S ∈ Π to the given fractal-fractional system (1.4).
Then,

S (t) = S 0 +
ν

Γ(%)

∫ t

0
ϑν−1(t − ϑ)%−1Z1

(
ϑ, S (ϑ), I(ϑ),R(ϑ)

)
dϑ.

Then, ∣∣∣S ∗(t) − S (t)
∣∣∣ ≤ ν

Γ(%)

∫ t

0
ϑν−1(t − ϑ)%−1

×
∣∣∣Z1

(
ϑ, S ∗(ϑ), I∗(ϑ),R∗(ϑ)

)
−Z1

(
ϑ, S (ϑ), I(ϑ),R(ϑ)

)∣∣∣ dϑ
+

ν

Γ(%)

∫ t

0
ϑν−1(t − ϑ)%−1|ζ1(ϑ)| dϑ

≤
νT ν+%−1Γ(ν)

Γ(ν + %)
`1

∥∥∥S ∗ − S
∥∥∥ +

νT ν+%−1Γ(ν)
Γ(ν + %)

ε1.

Therefore, ∥∥∥S ∗ − S
∥∥∥ ≤ νT ν+%−1Γ(ν)

Γ(ν + %) − νT ν+%−1Γ(ν)`1
ε1.

By setting MZ1 =
νT ν+%−1Γ(ν)

Γ(ν+%)−νT ν+%−1Γ(ν)`1
, it follows that

∥∥∥S ∗ − S
∥∥∥ ≤ MZ1ε1. Similarly, we can obtain∥∥∥I∗ − I

∥∥∥ ≤ MZ2ε2,
∥∥∥R∗ − R

∥∥∥ ≤ MZ3ε3,
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where

MZi =
νT ν+%−1Γ(ν)

Γ(ν + %) − νT ν+%−1Γ(ν)`i
(i ∈ {2, 3}).

Therefore, it follows that the considered fractal-fractional system of COVID-19 model (1.4) is Ulam-
Hyers-stable. Next, by putting

MZi(εi) =
νT ν+%−1Γ(ν)εi

Γ(ν + %) − νT ν+%−1Γ(ν)`i
(i ∈ {1, 2, 3}),

with MZi(0) = 0, our given model satisfies the conditions for the definition of generalized Ulam-Hyers
stability. �

The Ulam-Hyers-Rassias stability for the given fractal-fractional system (1.4) will be proved.

Theorem 2.17. Assume that the condition (PR1) is satisfied, and that the following is true:
(PR2) There is a family of increasing functions Φi ∈ C(O,R) with corresponding constants ΩΦi > 0
(i ∈ 1, 2, 3) such that ∀ t ∈ O,

FFPI
%,ν
0,t Φi(t) < ΩΦiΦi(t) (i ∈ {1, 2, 3}). (2.18)

The Ulam-Hyers-Rassias stability of the fractal-fractional system (1.4) holds, which, in turn, implies
the generalized Ulam-Hyers-Rassias stability.

Proof. For any ε1 > 0 and ∀S ∗ ∈ Π such that∣∣∣∣FFPD%,ν
0,t S

∗(t) −Z1
(
t, S ∗(t), I∗(t),R∗(t)

)∣∣∣∣ < ε1Φ1(t),

we can obtain a function ζ1(t) satisfying

FFPD
%,ν
0,t S

∗(t) = Z1
(
t, S ∗(t), I∗(t),R∗(t))

)
+ ζ1(t),

with
∣∣∣ζ1(t)

∣∣∣ < ε1Φ1(t). This gives

S ∗(t) = S 0 +
ν

Γ(%)

∫ t

0
ϑν−1(t − ϑ)%−1Z1

(
ϑ, S ∗(ϑ), I∗(ϑ),R∗(ϑ)

)
dϑ

+
ν

Γ(%)

∫ t

0
ϑν−1(t − ϑ)%−1ζ1(ϑ) dϑ.

By exploiting Theorem 2.9, assume that S ∈ Π is the unique solution of the considered fractal-
fractional model (1.4). Then,

S (t) = S 0 +
ν

Γ(%)

∫ t

0
ϑν−1(t − ϑ)%−1Z1

(
ϑ, S (ϑ), I(ϑ),R(ϑ)

)
dϑ.

Then, from (2.18), we get

∣∣∣S ∗(t) − S (t)
∣∣∣ ≤ ν

Γ(%)

∫ t

0
ϑν−1(t − ϑ)%−1
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×
∣∣∣Z1

(
ϑ, S ∗(ϑ), I∗(ϑ),R∗(ϑ)

)
−Z1

(
ϑ, S (ϑ), I(ϑ),R(ϑ)

)∣∣∣ dϑ
+

ν

Γ(%)

∫ t

0
ϑν−1(t − ϑ)%−1Φ1(ϑ) dϑ

≤ ε1ΩΦ1Φ1(t) +
νT ν+%−1Γ(ν)

Γ(ν + %)
`1

∥∥∥S ∗ − S
∥∥∥.

Consequently, this gives ∥∥∥S ∗ − S
∥∥∥ ≤ ε1Γ(ν + %)ΩΦ1

Γ(ν + %) − νT ν+%−1Γ(ν)`1
Φ1(t).

If we let
M(Z1,Φ1) =

Γ(ν + %)ΩΦ1

Γ(ν + %) − νT ν+%−1Γ(ν)`1
,

then we find that ∥∥∥S ∗ − S
∥∥∥ ≤ ε1M(Z1,Φ1)Φ1(t).

Similarly, we have ∥∥∥I∗ − I
∥∥∥ ≤ ε2M(Z2,Φ2)Φ2(t)

and ∥∥∥R∗ − R
∥∥∥ ≤ ε3M(Z3,Φ3)Φ3(t),

where
M(Zi,Φi) =

Γ(ν + %)ΩΦi

Γ(ν + %) − νT ν+%−1Γ(ν)`i
(i ∈ {2, 3}).

Thus, the given fractal-fractional system (1.4) is Ulam-Hyers-Rassias-stable. Additionally, it can be
observed that, when εi = 1 for i ∈ 1, 2, 3, the given fractal-fractional system of the COVID-
19 model (1.4) satisfies the conditions for the definition of the generalized Ulam-Hyers-Rassias
stability. �

3. Approximation of solutions: Adams-Bashforth method

In this part, we numerically describe the dynamics of the system (1.4). We apply the Adams-
Bashforth fractional method, which involves using the two-step Lagrange polynomial technique, to
obtain the approximate solutions. To initiate this procedure, we introduce a method for computing the
fractal-fractional integral equations of (2.8) by utilizing a different approach for tn+1; specifically, we
discretized (2.8) with respect to t = tn+1; so, we have the following:

S (tn+1) = S 0 +
ν

Γ(%)

∫ tn+1

0
(tn+1 − ϑ)%−1λ1(ϑ) dϑ,

I(tn+1) = I0 +
ν

Γ(%)

∫ tn+1

0
(tn+1 − ϑ)%−1λ2(ϑ) dϑ,

R(tn+1) = S 0 +
ν

Γ(%)

∫ tn+1

0
(tn+1 − ϑ)%−1λ3(ϑ) dϑ,
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where 
λ1(ϑ) = ϑν−1Z1

(
ϑ, S (ϑ), I(ϑ),R(ϑ)

)
,

λ2(ϑ) = ϑν−1Z2
(
ϑ, S (ϑ), I(ϑ),R(ϑ)

)
,

λ3(ϑ) = ϑν−1Z3
(
ϑ, S (ϑ), I(ϑ),R(ϑ)

)
.

(3.1)

By approximating the above integrals, we get the following:

S (tn+1) = S 0 +
ν

Γ(%)

n∑
l=0

∫ tl+1

tl
(tn+1 − ϑ)%−1λ1(ϑ) dϑ,

I(tn+1) = I0 +
ν

Γ(%)

n∑
l=0

∫ tl+1

tl
(tn+1 − ϑ)%−1λ2(ϑ) dϑ,

R(tn+1) = R0 +
ν

Γ(%)

n∑
l=0

∫ tl+1

tl
(tn+1 − ϑ)%−1λ3(ϑ) dϑ.

In what follows, we approximate the functions λ1(ϑ), λ2(ϑ), λ3(ϑ), as defined by (3.1) on the interval
[tl, tl+1] through the use of the two-step Lagrange interpolation polynomials, by considering the step
size h = tl+1 − tl, as follows:

λ∗1,l(ϑ) ≈
ϑ − tl−1

h
tν−1
l Z1

(
ϑl, S l, Il,Rl

)
−
ϑ − tl

h
tν−1
l−1Z1

(
ϑl−1, S l−1, Il−1,Rl−1

)
,

λ∗2,l(ϑ) ≈
ϑ − tl−1

h
tν−1
l Z2

(
ϑl, S l, Il,Rl

)
−
ϑ − tl

h
tν−1
l−1Z2

(
ϑl−1, S l−1, Il−1,Rl−1

)
,

λ∗3,l(ϑ) ≈
ϑ − tl−1

h
tν−1
l Z3

(
ϑl, S l, Il,Rl

)
−
ϑ − tl

h
tν−1
l−1Z3

(
ϑl−1, S l−1, Il−1,Rl−1

)
.

Then, we have the following:

S (tn+1) = S 0 +
ν

Γ(%)

n∑
l=0

∫ tl+1

tl
(tn+1 − ϑ)%−1λ∗1,l(ϑ) dϑ,

I(tn+1) = I0 +
ν

Γ(%)

n∑
l=0

∫ tl+1

tl
(tn+1 − ϑ)%−1λ∗2,l(ϑ) dϑ,

R(tn+1) = R0 +
ν

Γ(%)

n∑
l=0

∫ tl+1

tl
(tn+1 − ϑ)%−1λ∗3,l(ϑ) dϑ.

By calculating the above integrals, we find the approximate solutions in relation to the fractal-
fractional system of the COVID-19 model (1.4) as follows:

S n+1 = S 0 +
νh%

Γ(% + 2)

n∑
l=0

[
tν−1
l Z1

(
tl, S l, Il,Rl

)
0(n,l) − tν−1

l−1Z1
(
tl−1, S l−1, Il−1,Rl−1

)
Ω(n,l)

]
,

In+1 = I0 +
νh%

Γ(% + 2)

n∑
l=0

[
tν−1
l Z2

(
tl, S l, Il,Rl

)
0(n,l) − tν−1

l−1Z1
(
tl−1, S l−1, Il−1,Rl−1

)
Ω(n,l)

]
,
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Rn+1 = R0 +
νh%

Γ(% + 2)

n∑
l=0

[
tν−1
l Z3

(
tl, S l, Il,Rl

)
0(n,l) − tν−1

l−1Z1
(
tl−1, S l−1, Il−1,Rl−1

)
Ω(n,l)

]
;

thus,

0(n,l) = (n + 1 − l)%(n − l + 2 + %) − (n − l)%(n − l + 2 + 2%),

Ω(n,l) = (n + 1 − l)%+1 − (n − l)%(n − l + 1 + %).

4. Approximation of solutions: Artificial neural networks

The first experiment in modeling a biological neuron was carried out by McCulloch and Pitts [44]
in 1943 by using a step function and signal refinement. In 1958, Rosenblatt [45] utilized a simple
multilayer perceptron to model a network of neurons. The components of this construction are the
hidden, input and and output layers, which are specified in Figure 1. Using this structure, such a
function can be formed as follows:

F : Ω ⊂ Rp → Rq, z 7→ zL, (4.1)

so that the following yields zL:

Through the input layer: z0 = z,

Through the hidden layers: z` = ρ(F`(z`−1)), ` = 1, . . . , L − 1,
Through the output layer: zL = FL(zL−1),

where F`(z) = A`z+ b`; (A`)L
`=1 ∈ R

N`×N`−1 and z`, b` ∈ RN` for N` ∈ N,N0 = p,NL = q and ` = 1, . . . , L;
also, ρ : R→ R is an activation function that acts componentwise, i.e.,

ρ(z1, . . . , zN`
) := (ρ(z1), . . . , ρ(zN`

)).

A` and b` are named the weights and biases, respectively. The construction of such a neural network is
determined by N0, . . . ,NL, along with the activation function ρ. All of these functions are represented
by the symbol NN .
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Figure 1. Graph of the artificial neural network architecture associated with the functions of
the set NN for N0 = 4,N1 = 7,N2 = 8,N3 = 8,N4 = 5,N5 = 3 and an activation function ρ.

The density property of these functions in the space of continuous functions is useful in the
approximation. The universal approximation theorems of NN demonstrate that neural networks can
represent a wide range of fascinating functions with suitable weights and biases, although they usually
do not offer a method for constructing these weights and only assert that such a method exists. Different
outcomes of this type of work have been presented. In 1989 [46], Cybenko applied the first theorem
of density to sigmoid activation functions. Hornik [47], in 1991, confirmed that it is not a specific
choice of activation function, but, rather, it is the multi-layered forward-propagation architecture itself
that gives neural networks the potential to be universal approximators. Leshno et al. [48], in 1993,
and, later, Pinkus [49], in 1999, proved that the universal approximation property is equivalent to
using a non-polynomial activation function. It should be noted that the papers mentioned above only
considered a single internal layer, which was found to be satisfactory.

Additionally, in the hidden layers, there were no restrictions placed on the number of neurons.
Subsequently, several findings have emerged on the appropriate number of neurons in a hidden layer
in order to demonstrate the density in numerous function spaces. We refer the readers to [50] for more
information. Furthermore, there exist several generalizations for other scenarios, such as discontinuous
activation functions [48], certified networks, non-compact domains [51] and other topologies and
architectures [52]. In this paper, and by applying our conditions, we utilize a new density theorem.

First, define the class of functions NNρ
p,q,k as the set of feedforward neural networks that maps Rp

to Rq, with an unspecified number of hidden layers, k neurons in each hidden layer, p neurons in the
input layer and q neurons in the output layer, all of which utilize the activation function ρ. Furthermore,
all neurons in the output layer possess an identity activation function.

Theorem 4.1. [51] Let ρ : R→ R be a non-affine continuous mapping and continuously differentiable
at a minimum of one point; let it also have a derivative that is not equal to zero at that specific point.
Also, assume that K ⊂ Rp is compact. Then, NNρ

p,q,p+q+2 is dense in C(K;Rq) under the supremum
norm.

The final theorem can be categorized as a form of the universal approximation theorem. By applying
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the density property to the solution φ of the operator equationGφ(z) = φ(z), whereG is defined by (2.9),
it holds that, for each ε > 0, there exists a function φh ∈ NN

ρ

1,3,6 satisfying

‖Gφh − φh‖2 < ε

so that h depends on the weights and biases.

The proposed algorithm:

• Choose ε > 0. Choose φh in NNρ

1,3,6 with ρ(z) =
1

1 + e−z
.

• Calculate Gφh.
• Evaluate e = ‖Gφh − φh‖2.
• If e ≤ ε, stop.
• If not, then the back propagation process can be used to adjust the weights and biases of the

function φh; see Figure 2.

Figure 2. Description of the artificial neural network method.

5. Numerical simulation

This part, using the obtained numerical solutions and introduced algorithms via the artificial neural
network method, presents simulations and discussions about the dynamics of our mathematical model
based on different values of the parameters µ = 0.15, β = 0.55, α = 0.45, γ = 0.25 and T = 50, along
with the initial values for the state functions:

S (0) = 80, I(0) = 40, R(0) = 20.

In view of the above data, we plotted various graphs to visualize the dynamics of the three functions
S , I,R by considering equal and different values of the fractional and fractal order and dimension; see
Figures 3–5.

The simulations allowed us to make accurate predictions concerning the spread of COVID-19 and
its effects on susceptible and infected groups over a short period of time. Figure 3 shows the effects
of the fractal dimensions and fractional orders for taking equal and different values; we note that the
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fractional order controls the dynamics of the disease. Specifically, it decreases, reaching the peak of
the epidemic, and reduces the number of infected people. In Figures 4 and 5, we respectively applied
equal and different values of the fractal dimensions and fractional orders and illustrate their influence
on the spread of the disease. In fact, it is obvious that they reduce the epidemic peak outbreak and the
final number of infected people.

Also, Figure 6 illustrates the graphs of functions S , I,R via Adams-Bashforth method and artificial
neural network method for % = ν = 0.80. The solutions plotted via the artificial neural network method
are illustrated as dashed lines in Figure 6. These lines overlap closely in both techniques. In view of
these graphs, we see that the artificial neural network method gives results that are close to the classical
Adam-Bashforth algorithm. Therefore, we can rely on its outcomes in terms of the analysis of many
fractal-fractional systems. Note that, because of the lack of data, our new method is validated by using
those data that are generated via the appropriate Gauss quadrature method.

Figure 3. Numerical simulation results for % = ν = 0.80 and % = 0.88, ν = 1.00.

Figure 4. Numerical simulation results for various fractal-fractional dimensions and orders:
% = ν = 0.85, 0.90, 0.95, 1.00.
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Figure 5. Numerical simulation results for various fractal-fractional dimensions and orders:
(%, ν) = (0.81, 0.82), (0.83, 0.86), (0.91, 0.95), (0.98, 1.00).

Figure 6. Numerical simulation results for fractal-fractional dimension and order % = ν =

0.80 via two approximation methods. For the artificial neural network method, we applied
the following: learning rate=0.001, optimizer = Adams, number of epochs = 30000.

Moreover, note that, the execution time of the Python program implementing the Adams-Bashforth
method totaled approximately 5 minutes and 46 seconds. This computation was conducted on a
machine with the following specifications:
∗ Processor: Intel(R) Core(TM) i5-4440 CPU @ 3.10GHz (3.10 GHz)
∗ Installed RAM: 4.00 GB
∗ System type: 64-bit operating system, x64-based processor.
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In contrast, when we employed the artificial neural networks, the computational process was notably
faster, taking only about 3 minutes and 7 seconds. The inherent intelligence of the artificial neural
networks allowed us to harness advanced programming tools and libraries that are readily available
within the deep learning domain, including platforms like Colab.

6. Concluding remarks

In this work, a fractional-order mathematical model for COVID-19 was presented in the context of
a three-compartment model. To establish the definition of the initial value problems in the considered
system, we have exploited the fractal-fractional operators in the form of a power law-type kernel.
In the study of this type of problem, we have generalized some existence and uniqueness results
by applying some conditions for special contractions. We were interested in the study of certain
types of stability: Ulam-Hyers, generalized Ulam-Hyers, Ulam-Hyers-Rassias and its generalized
version, where we showed that our fractal-fractional system is stable with respect to given hypotheses.
Regarding the Adams-Bashforth method, we used Lagrange polynomials and numerical solutions
derived from numerical algorithms to approximate some of the given fractal-fractional integrals. In
the end, we simulated the solutions by choosing various values for the fractional order and fractal
dimension to observe their stability and convergence.

The introduction of the use of artificial neural network techniques for infectious disease models
is another important contribution of the paper. The technique and algorithm are described and have
been applied to the SIR model. Given a set of parameters, the artificial neural network method found
the approximate solutions and successfully solved the SIR problem numerically. Both numerical
methods, i.e., the Adams-Bashforth and artificial neural network, yielded the same simulated numerical
solutions, as shown in Figure 6.

The presented SIR model can be upgraded so that it includes more compartments, such as
the exposed, symptomatic, asymptomatic, quarantine and hospitalized compartments, as well as a
compartment that represents the pathogen concentration in the environmental reservoir, such as the
concentration of droplets in confined areas. Such a model will be considered in future work.
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