Both human immunodeficiency virus type 1 (HIV-1) and human T-lymphotropic virus type Ⅰ (HTLV-Ⅰ) are retroviruses that afflict CD4$ ^{+} $ T cells. In this article, the codynamics of within-host HIV-1 and HTLV-Ⅰ are presented via piecewise fractional differential equations by employing a stochastic system with an influential strategy for biological research. It is demonstrated that the scheme is mathematically and biologically feasible by illustrating that the framework has positive and bounded global findings. The necessary requirements are deduced, ensuring the virus's extinction. In addition, the structure is evaluated for the occurrence of an ergodic stationary distribution and sufficient requirements are developed. A deterministic-stochastic mechanism for simulation studies is constructed and executed in MATLAB to reveal the model's long-term behavior. Utilizing rigorous analysis, we predict that the aforesaid model is an improvement of the existing virus-to-cell and cell-to-cell interactions by investigating an assortment of behaviour patterns that include cross-over to unpredictability processes. Besides that, the piecewise differential formulations, which can be consolidated with integer-order, Caputo, Caputo-Fabrizio, Atangana-Baleanu and stochastic processes, have been declared to be exciting opportunities for researchers in a spectrum of disciplines by enabling them to incorporate distinctive features in various temporal intervals. As a result, by applying these formulations to difficult problems, researchers can achieve improved consequences in reporting realities with white noise. White noise in fractional HIV-1/HTLV-Ⅰ codynamics plays an extremely important function in preventing the proliferation of an outbreak when the proposed flow is constant and disease extermination is directly proportional to the magnitude of the white noise.
Citation: Hanan S. Gafel, Saima Rashid, Sayed K. Elagan. Novel codynamics of the HIV-1/HTLV-Ⅰ model involving humoral immune response and cellular outbreak: A new approach to probability density functions and fractional operators[J]. AIMS Mathematics, 2023, 8(12): 28246-28279. doi: 10.3934/math.20231446
Both human immunodeficiency virus type 1 (HIV-1) and human T-lymphotropic virus type Ⅰ (HTLV-Ⅰ) are retroviruses that afflict CD4$ ^{+} $ T cells. In this article, the codynamics of within-host HIV-1 and HTLV-Ⅰ are presented via piecewise fractional differential equations by employing a stochastic system with an influential strategy for biological research. It is demonstrated that the scheme is mathematically and biologically feasible by illustrating that the framework has positive and bounded global findings. The necessary requirements are deduced, ensuring the virus's extinction. In addition, the structure is evaluated for the occurrence of an ergodic stationary distribution and sufficient requirements are developed. A deterministic-stochastic mechanism for simulation studies is constructed and executed in MATLAB to reveal the model's long-term behavior. Utilizing rigorous analysis, we predict that the aforesaid model is an improvement of the existing virus-to-cell and cell-to-cell interactions by investigating an assortment of behaviour patterns that include cross-over to unpredictability processes. Besides that, the piecewise differential formulations, which can be consolidated with integer-order, Caputo, Caputo-Fabrizio, Atangana-Baleanu and stochastic processes, have been declared to be exciting opportunities for researchers in a spectrum of disciplines by enabling them to incorporate distinctive features in various temporal intervals. As a result, by applying these formulations to difficult problems, researchers can achieve improved consequences in reporting realities with white noise. White noise in fractional HIV-1/HTLV-Ⅰ codynamics plays an extremely important function in preventing the proliferation of an outbreak when the proposed flow is constant and disease extermination is directly proportional to the magnitude of the white noise.
[1] | World Health Organization (WHO), HIV and AIDS, 2023. Available from: http://www.who.int/mediacentre/factsheets/fs360/en/. |
[2] | H. Sato, J. Orensteint, D. Dimitrov, M. Martin, Cell-to-cell spread of HIV-1 occurs within minutes and may not involve the participation of virus particles, Virology, 186 (1992), 712–724. https://doi.org/10.1016/0042-6822(92)90038-q doi: 10.1016/0042-6822(92)90038-q |
[3] | D. S. Dimitrov, R. L. Willey, H. Sato, L. J. Chang, R. Blumenthal, M. A. Martin, Quantitation of human immunodeficiency virus type 1 infection kinetics, J. Virol., 67 (1993), 2182–2190. https://doi.org/10.1128/jvi.67.4.2182-2190.1993 doi: 10.1128/jvi.67.4.2182-2190.1993 |
[4] | A. Sigal, J. T. Kim, A. B. Balazs, E. Dekel, A. Mayo, R. Milo, et al., Cell-to-cell spread of HIV permits ongoing replication despite antiretroviral therapy, Nature, 477 (2011), 95–98. https://doi.org/10.1038/nature10347 doi: 10.1038/nature10347 |
[5] | C. R. M. Bangham, The immune control and cell-to-cell spread of human T-lymphotropic virus type 1, J. Gen. Virol., 84 (2003), 3177–3189. https://doi.org/10.1099/vir.0.19334-0 doi: 10.1099/vir.0.19334-0 |
[6] | C. R. M. Bangham, The immune response to HTLV-Ⅰ, Curr. Opin. Immunol., 12 (2000), 397–402. https://doi.org/10.1016/s0952-7915(00)00107-2 doi: 10.1016/s0952-7915(00)00107-2 |
[7] | P. Wu, H. Zhao, Dynamics of an HIV infection model with two infection routes and evolutionary competition between two viral strains, Appl. Math. Model., 84 (2020), 240–264. https://doi.org/10.1016/j.apm.2020.03.040 doi: 10.1016/j.apm.2020.03.040 |
[8] | P. Wu, S. Zheng, Z. He, Evolution dynamics of a time-delayed reactiondiffusion HIV latent infection model with two strains and periodic therapies, Nonlinear Anal.-Real, 67 (2022), 103559. https://doi.org/10.1016/j.nonrwa.2022.103559 doi: 10.1016/j.nonrwa.2022.103559 |
[9] | P. Wu, H. Zhao, Dynamical analysis of a nonlocal delayed and diffusive HIV latent infection model with spatial heterogeneity, J. Franklin. I., 358 (2021), 5552–5587. https://doi.org/10.1016/j.jfranklin.2021.05.014 doi: 10.1016/j.jfranklin.2021.05.014 |
[10] | C. Casoli, E. Pilotti, U. Bertazzoni, Molecular and cellular interactions of HIV-1/HTLV coinfection and impact on AIDS progression, AIDS Rev., 9 (2007), 140–149. |
[11] | M. T. Silva, O. de Melo Espíndola, A. C. C. B. Leite, A. Araújo, Neurological aspects of HIV/human T lymphotropic virus coinfection, AIDS Rev., 11 (2009), 71–78. |
[12] | C. Isache, M. Sands, N. Guzman, D. Figueroa, HTLV-1 and HIV-1 co-infection: A case report and review of the literature, IDCases, 4 (2016), 53–55. https://doi.org/10.1016/j.idcr.2016.03.002 doi: 10.1016/j.idcr.2016.03.002 |
[13] | M. A. Nowak, C. R. M. Bangham. Population dynamics of immune responses to persistent viruses, Science, 272 (1996), 74–79. https://doi.org/10.1126/science.272.5258.74 doi: 10.1126/science.272.5258.74 |
[14] | C. Mondal, D. Adak, N. Bairagi, Optimal control in a multi-pathways HIV-1 infection model: A comparison between mono-drug and multi-drug therapies, Int. J. Control, 94 (2021), 2047–2064. https://doi.org/10.1080/00207179.2019.1690694 doi: 10.1080/00207179.2019.1690694 |
[15] | X. Lai, X. Zou, Modeling HIV-1 virus dynamics with both virus-to-cell infection and cell-to-cell transmission, SIAM J. Appl. Math., 74 (2014), 898–917. https://doi.org/10.1137/130930145 doi: 10.1137/130930145 |
[16] | X. Wang, S. Tang, X. Song, L. Rong, Mathematical analysis of an HIV latent infection model including both virus-to-cell infection and cell-to-cell transmission, J. Biol. Dyn., 11 (2016), 455–483. https://doi.org/10.1080/17513758.2016.1242784 doi: 10.1080/17513758.2016.1242784 |
[17] | A. M. Elaiw, N. H. AlShamrani, Stability of a general CTL-mediated immunity HIV infection model with silent infected cell-to-cell spread, Adv. Differ. Equ., 2020 (2020), 355. https://doi.org/10.1186/s13662-020-02818-3 doi: 10.1186/s13662-020-02818-3 |
[18] | X. Ren, Y. Tian, L. Liu, X. Liu, A reaction–diffusion within-host HIV model with cell-to-cell transmission, J. Math. Biol., 76 (2018), 1831–1872. https://doi.org/10.1007/s00285-017-1202-x doi: 10.1007/s00285-017-1202-x |
[19] | W. Wang, X. Wang, K. Guo, W. Ma, Global analysis of a diffusive viral model with cell-to-cell infection and incubation period, Math. Method. Appl. Sci., 43 (2020), 5963–5978. https://doi.org/10.1002/mma.6339 doi: 10.1002/mma.6339 |
[20] | N. H. AlShamrani, M. A. Alshaikh, A. M. Elaiw, K. Hattaf, Dynamics of HIV-1/HTLV-Ⅰ co-infection model with humoral immunity and cellular infection, Viruses, 14 (2022), 1719. https://doi.org/10.3390/v14081719 doi: 10.3390/v14081719 |
[21] | A. Atangana, Extension of rate of change concept: From local to nonlocal operators with applications, Results Phys., 19 (2021), 103515. https://doi.org/10.1016/j.rinp.2020.1 doi: 10.1016/j.rinp.2020.1 |
[22] | A. Atangana, J. F. Gomez-Aguilar, Fractional derivatives with no-index law property: Application to chaos and statistics, Chaos Soliton. Fract., 114 (2018), 516–535. https://doi.org/10.1016/j.chaos.2018.07.033 doi: 10.1016/j.chaos.2018.07.033 |
[23] | F. Jarad, T. Abdeljawad, Z. Hammouch, On a class of ordinary differential equations in the frame of Atangana–Baleanu fractional derivative, Chaos Soliton. Fract., 117 (2018), 16–20. https://doi.org/10.1016/j.chaos.2018.10.006 doi: 10.1016/j.chaos.2018.10.006 |
[24] | M. Caputo, Linear models of dissipation whose Q is almost frequency independent-Ⅱ, Geophys. J. Int., 13 (1967), 529–539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x doi: 10.1111/j.1365-246X.1967.tb02303.x |
[25] | M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85. |
[26] | A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel: Theory and application to heat transfer model, Thermal Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A |
[27] | T. Abdeljawad, Q. M. Al-Mdallal, Discrete Mittag-Leffler kernel type fractional difference initial value problems and Gronwall's inequality, J. Comput. Appl. Math., 339 (2018), 218–230. https://doi.org/10.1016/j.cam.2017.10.021 doi: 10.1016/j.cam.2017.10.021 |
[28] | A. Kumar, S. Kumar, A study on eco-epidemiological model with fractional operators, Chaos Soliton. Fract., 156 (2022), 111697. https://doi.org/10.1016/j.chaos.2021.111697 doi: 10.1016/j.chaos.2021.111697 |
[29] | B. Ghanbari, S. Kumar, R. Kumar, A study of behaviour for immune and tumor cells in immunogenetic tumour model with non-singular fractional derivative, Chaos Solit. Fract., 133 (2020), 109619. https://doi.org/10.1016/j.chaos.2020.109619 doi: 10.1016/j.chaos.2020.109619 |
[30] | A. Atangana, S. I. Araz, New concept in calculus: Piecewise differential and integral operators, Chaos Soliton. Fract., 145 (2021), 110638. https://doi.org/10.1016/j.chaos.2020.110638 doi: 10.1016/j.chaos.2020.110638 |
[31] | A. Atangana, S. I. Araz, Deterministic-stochastic modeling: A new direction in modeling real world problems with crossover effect, Math. Biosci. Eng., 19 (2022), 3526–3563. https://doi.org/10.3934/mbe.2022163 doi: 10.3934/mbe.2022163 |
[32] | M. A. Qurashi, S. Rashid, F. Jarad, A computational study of a stochastic fractal-fractional hepatitis B virus infection incorporating delayed immune reactions via the exponential decay, Math. Biosci. Eng., 19 (2022), 12950–12980. https://doi.org/10.3934/mbe.2022605 doi: 10.3934/mbe.2022605 |
[33] | S. Rashid, M. K. Iqbal, A. M. Alshehri, R. Ashraf, F. Jarad, A comprehensive analysis of the stochastic fractal-fractional tuberculosis model via Mittag-Leffler kernel and white noise, Results Phys., 39 (2022), 105764. https://doi.org/10.1016/j.rinp.2022.105764 doi: 10.1016/j.rinp.2022.105764 |
[34] | A. M. Elaiw, N. H. AlShamrani, Modeling and analysis of a within-host HIV/HTLV-Ⅰ co-infection, Bol. Soc. Mat. Mex., 27 (2021), 38. https://doi.org/10.1007/s40590-021-00330-6 doi: 10.1007/s40590-021-00330-6 |
[35] | B. Zhou, D. Jiang, Y. Dai, T. Hayat, Threshold dynamics and probability density function of a stochastic avian influenza epidemic model with nonlinear incidence rate and psychological effect, J. Nonlinear Sci., 33 (2023), 29. https://doi.org/10.1007/s00332-022-09885-8 doi: 10.1007/s00332-022-09885-8 |
[36] | Y. M. Chu, S. Sultana, S. Rashid, M. S. Alharthi, Dynamical analysis of the stochastic COVID-19 model using piecewise differential equation technique, Comput. Model. Eng. Sci., 137 (2023), 2427–2464. https://doi.org/10.32604/cmes.2023.028771 doi: 10.32604/cmes.2023.028771 |
[37] | S. Rashid, F. Jarad, S. A. A. El-Marouf, S. K. Elagan, Global dynamics of deterministic-stochastic dengue infection model including multi specific receptors via crossover effects, AIMS Mathematics, 8 (2022), 6466–6503. https://doi.org/10.3934/math.2023327 doi: 10.3934/math.2023327 |
[38] | A. S. Perelson, D. E. Kirschner, R. De Boer, Dynamics of HIV infection of CD4$^{+}$ T cells, Math. Biosci., 114 (1993), 81–125. https://doi.org/10.1016/0025-5564(93)90043-a doi: 10.1016/0025-5564(93)90043-a |
[39] | D. S. D. S. Callaway, A. S. Perelson, HIV-1 infection and low steady state viral loads, Bull. Math. Biol., 64 (2002), 29–64. https://doi.org/10.1006/bulm.2001.0266 doi: 10.1006/bulm.2001.0266 |
[40] | H. Mohri, S. Bonhoeffer, S. Monard, A. S. Perelson, D. D. Ho, Rapid turnover of T lymphocytes in SIV-infected rhesus macaques, Science, 279 (1998), 1223–1227. https://doi.org/10.1126/science.279.5354.1223 doi: 10.1126/science.279.5354.1223 |
[41] | Y. Wang, J. Liu, L. Liu, Viral dynamics of an HIV model with latent infection incorporating antiretroviral therapy, Adv. Differ. Equ., 2016 (2016), 225. https://doi.org/10.1186/s13662-016-0952-x doi: 10.1186/s13662-016-0952-x |
[42] | A. S. Perelson, A. U. Neumann, M. Markowitz, J. M. Leonard, D. D. Ho, HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time, Science, 271 (1996), 1582–1586. https://doi.org/10.1126/science.271.5255.1582 doi: 10.1126/science.271.5255.1582 |
[43] | P. W. Nelson, J. D. Murray, A. S. Perelson, A model of HIV-1 pathogenesis that includes an intracellular delay, Math. Biosci., 163 (2000), 201–215. https://doi.org/10.1016/s0025-5564(99)00055-3 doi: 10.1016/s0025-5564(99)00055-3 |
[44] | A. S. Perelson, P. W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo, SIAM Rev., 41 (1999), 3–44. https://doi.org/10.1137/S0036144598335107 doi: 10.1137/S0036144598335107 |
[45] | M. Y. Li, A. G. Lim, Modelling the role of Tax expression in HTLV-1 persisence in vivo, Bull. Math. Biol., 73 (2011), 3008–3029. https://doi.org/10.1007/s11538-011-9657-1 doi: 10.1007/s11538-011-9657-1 |
[46] | Y. Wang, J. Liu, J. M. Heffernan, Viral dynamics of an HTLV-Ⅰ infection model with intracellular delay and CTL immune response delay, J. Math. Anal. Appl., 459 (2018), 506–527. https://doi.org/10.1016/j.jmaa.2017.10.027 doi: 10.1016/j.jmaa.2017.10.027 |
[47] | L. Wang, Z. Liu, Y. Li, D. Xu, Complete dynamical analysis for a nonlinear HTLV-Ⅰ infection model with distributed delay, CTL response and immune impairment, Discret Cont. Dyn.-B, 25 (2020), 917–933. https://doi.org/10.3934/dcdsb.2019196 doi: 10.3934/dcdsb.2019196 |
[48] | A. M. Elaiw, A. A. Raezah, A. S. Alofi, Effect of humoral immunity on HIV-1 dynamics with virus-to-target and infected-to-target infections, AIP Adv., 6 (2016), 085204. https://doi.org/10.1063/1.4960987 doi: 10.1063/1.4960987 |
[49] | L. Imhof, S. Walcher, Exclusion and persistence in deterministic and stochastic chemostat models, J. Differ. Equ., 217 (2005), 26–53. https://doi.org/10.1016/j.jde.2005.06.017 doi: 10.1016/j.jde.2005.06.017 |
[50] | X. Mao, Stochastic differential equations and applications, Chichester: Horwood Publishing, 1997. |
[51] | R. Khasminskii, Stochastic stability of differential equations, Heidelberg, Berlin: Springer, 2012. https://doi.org/10.1007/978-3-642-23280-0 |
[52] | R. S. Lipster, A strong law of large numbers for local martingales, Stochastics, 3 (1980), 217–228. https://doi.org/10.1080/17442508008833146 doi: 10.1080/17442508008833146 |