Research article Special Issues

Novel solitary wave solutions of the (3+1)–dimensional nonlinear Schrödinger equation with generalized Kudryashov self–phase modulation

  • Received: 24 December 2024 Revised: 09 February 2025 Accepted: 18 February 2025 Published: 28 February 2025
  • MSC : 35Q55, 35Q60, 35Q61

  • This paper investigates the (3+1)-dimensional nonlinear Schrö dinger equation, incorporating cross-spatial dispersion and a generalized form of Kudryashov's self-phase modulation. Using the generalized Jacobi elliptic method, we systematically derive novel soliton solutions expressed in terms of Jacobi elliptic and Weierstrass elliptic functions, providing deeper insights into wave dynamics in nonlinear optical media. The obtained solutions exhibit diverse structural transformations governed by the parameter (n) known as full nonlinearity, encompassing optical bullet solutions, optical domain wall solutions, singular solitons, and periodic solutions. Furthermore, we discuss the potential experimental realization of these solitonic structures in ultrafast fiber lasers and nonlinear optical systems, drawing connections to recent experimental findings. To facilitate a comprehensive understanding of their physical properties, we present detailed three-dimensional (3D), two-dimensional (2D), and contour visualizations, highlighting the interplay among dispersion, nonlinearity, and self-modulation effects. These results offer new perspectives on soliton interactions and have significant implications for optical communication, signal processing, and nonlinear wave phenomena.

    Citation: Nafissa Toureche Trouba, Mohamed E. M. Alngar, Reham M. A. Shohib, Haitham A. Mahmoud, Yakup Yildirim, Huiying Xu, Xinzhong Zhu. Novel solitary wave solutions of the (3+1)–dimensional nonlinear Schrödinger equation with generalized Kudryashov self–phase modulation[J]. AIMS Mathematics, 2025, 10(2): 4374-4411. doi: 10.3934/math.2025202

    Related Papers:

  • This paper investigates the (3+1)-dimensional nonlinear Schrö dinger equation, incorporating cross-spatial dispersion and a generalized form of Kudryashov's self-phase modulation. Using the generalized Jacobi elliptic method, we systematically derive novel soliton solutions expressed in terms of Jacobi elliptic and Weierstrass elliptic functions, providing deeper insights into wave dynamics in nonlinear optical media. The obtained solutions exhibit diverse structural transformations governed by the parameter (n) known as full nonlinearity, encompassing optical bullet solutions, optical domain wall solutions, singular solitons, and periodic solutions. Furthermore, we discuss the potential experimental realization of these solitonic structures in ultrafast fiber lasers and nonlinear optical systems, drawing connections to recent experimental findings. To facilitate a comprehensive understanding of their physical properties, we present detailed three-dimensional (3D), two-dimensional (2D), and contour visualizations, highlighting the interplay among dispersion, nonlinearity, and self-modulation effects. These results offer new perspectives on soliton interactions and have significant implications for optical communication, signal processing, and nonlinear wave phenomena.



    加载中


    [1] A. Biswas, Theory of optical bullets- Abstract, J. Electromagnet. Wave., 16 (2002), 419–420. https://doi.org/10.1163/156939302X01254 doi: 10.1163/156939302X01254
    [2] A. Djazet, C. B. Tabi, S. I. Fewo, T. C. Kofane, Vector dissipative light bullets in optical laser beam, Appl. Phys. B, 126 (2020), 74. https://doi.org/10.1007/s00340-020-07422-7 doi: 10.1007/s00340-020-07422-7
    [3] K. S. Al-Ghafri, E. V. Krishnan, S. Khan, A. Biswas, Optical bullets and their modulational instability analysis, Appl. Sci., 12 (2022), 9221. https://doi.org/10.3390/app12189221 doi: 10.3390/app12189221
    [4] T. Vachaspati, Kinks and Domain Walls: An introduction to classical and quantum solitons, Cambridge: Cambridge University Press, 2006.
    [5] N. A. Kudryashov, Hamiltonians of the generalized nonlinear Schrödinger equations, Mathematics, 11 (2023), 2304. https://doi.org/10.3390/math11102304 doi: 10.3390/math11102304
    [6] N. A. Kudryashov, Mathematical model with unrestricted dispersion and polynomial nonlinearity, Appl. Math. Lett., 138 (2023), 108519. https://doi.org/10.1016/j.aml.2022.108519 doi: 10.1016/j.aml.2022.108519
    [7] N. A. Kudryashov, Mathematical model of propagation pulse in optical fiber with power nonlinearities, Optik, 212 (2020), 164750. https://doi.org/10.1016/j.ijleo.2020.164750 doi: 10.1016/j.ijleo.2020.164750
    [8] N. A. Kudryashov, A generalized model for description of propagation pulses in optical fiber, Optik, 189 (2019), 42–52. https://doi.org/10.1016/j.ijleo.2019.05.069 doi: 10.1016/j.ijleo.2019.05.069
    [9] N. A, Kudryashov, E. V. Antonova, Solitary waves of equation for propagation pulse with power nonlinearities, Optik, 217 (2020), 164881. https://doi.org/10.1016/j.ijleo.2020.164881 doi: 10.1016/j.ijleo.2020.164881
    [10] W. X. Qiu, Z. Z. Si, D. S. Mou, C. Q. Dai, J. T. Li, W. Liu, Data-driven vector degenerate and nondegenerate solitons of coupled nonlocal nonlinear Schrödinger equation via improved PINN algorithm, Nonlinear Dyn., 113 (2025), 4063–4076. https://doi.org/10.1007/s11071-024-09648-y doi: 10.1007/s11071-024-09648-y
    [11] K. L. Geng, D. S. Mou, C. Q. Dai, Nondegenerate solitons of 2-coupled mixed derivative nonlinear Schrödinger equations, Nonlinear Dyn., 111 (2023), 603–617. https://doi.org/10.1007/s11071-022-07833-5 doi: 10.1007/s11071-022-07833-5
    [12] D. S. Mou, Z. Z. Si, W. X. Qiu, C. Q. Dai, Optical soliton formation and dynamic characteristics in photonic Moiré lattices, Opt. Laser Technol., 181 (2025), 111774. https://doi.org/10.1016/j.optlastec.2024.111774 doi: 10.1016/j.optlastec.2024.111774
    [13] X. K. Wen, G. Z. Wu, W. Liu, C. Q. Dai, Dynamics of diverse data-driven solitons for the three-component coupled nonlinear Schrödinger model by the MPS-PINN method, Nonlinear Dyn., 109 (2022), 3041–3050. https://doi.org/10.1007/s11071-022-07583-4 doi: 10.1007/s11071-022-07583-4
    [14] J. G. Liu, W. H. Zhu, Multiple rogue wave, breather wave and interaction solutions of a generalized (3+1)-dimensional variable-coefficient nonlinear wave equation, Nonlinear Dyn., 103 (2021), 1841–1850. https://doi.org/10.1007/s11071-020-06186-1 doi: 10.1007/s11071-020-06186-1
    [15] G. Wang, X. Wang, T. Huang, Explicit soliton solutions of (3+1)-dimensional nonlinear Schrödinger equation with time variable coefficients, Optik, 275 (2023), 170628. https://doi.org/10.1016/j.ijleo.2023.170628 doi: 10.1016/j.ijleo.2023.170628
    [16] G. Wang, X. Wang, F. Guan, H. Song, Exact solutions of an extended (3+1)-dimensional nonlinear Schrödinger equation with cubic-quintic nonlinearity term, Optik, 279 (2023), 170768. https://doi.org/10.1016/j.ijleo.2023.170768 doi: 10.1016/j.ijleo.2023.170768
    [17] B. Gao, Y. Wang, Complex wave solutions described by a (3+1)-dimensional coupled nonlinear Schrödinger equation with variable coefficients, Optik, 227 (2021), 166029. https://doi.org/10.1016/j.ijleo.2020.166029 doi: 10.1016/j.ijleo.2020.166029
    [18] G. Wang, A novel (3+1)-dimensional sine-Gorden and a sinh-Gorden equation: Derivation, symmetries and conservation laws, Appl. Math. Lett., 113 (2021), 106768. https://doi.org/10.1016/j.aml.2020.106768 doi: 10.1016/j.aml.2020.106768
    [19] A. M. Wazwaz, M. Abu Hammad, S. A. El-Tantawy, Bright and dark optical solitons for (3+1)-dimensional hyperbolic nonlinear Schrödinger equation using a variety of distinct schemes, Optik, 270 (2022), 170043. https://doi.org/10.1016/j.ijleo.2022.170043 doi: 10.1016/j.ijleo.2022.170043
    [20] A. M. Elsherbeny, M. Mirzazadeh, A. H. Arnous, A. Biswas, Y. Yildirim, A. Dakova, A. Asiri, Optical bullets and domain walls with cross spatio-dispersion and having Kudryashov's form of self-phase modulation, Contemp. Math., 4 (2023), 505–517. https://doi.org/10.37256/cm.4320233359 doi: 10.37256/cm.4320233359
    [21] H. Ur Rehman, I. Iqbal, M. Mirzazadeh, M. S. Hashemi, A. U. Awan, A. M. Hassan, Optical solitons of new extended (3+1)-dimensional nonlinear Kudryashov's equation via $\phi^{6}$-model expansion method, Opt. Quantum Electron., 56 (2024), 279. https://doi.org/10.1007/s11082-023-05850-1 doi: 10.1007/s11082-023-05850-1
    [22] A. M. Elsherbeny, M. Mirzazadeh, A. H. Arnous, A. Biswas, Y. Yıldırım, A. Asiri, Optical bullets and domain walls with cross-spatio dispersion having parabolic law of nonlinear refractive index, J. Opt., 2023. https://doi.org/10.1007/s12596-023-01398-1
    [23] M. Ekici, A. Sonmezoglu, A. Biswas, Stationary optical solitons with Kudryashov's laws of refractive index, Chaos Soliton. Fract., 151 (2021), 111226. https://doi.org/10.1016/j.chaos.2021.111226 doi: 10.1016/j.chaos.2021.111226
    [24] H. Esen, A. Secer, M. Ozisik, M. Bayram, Analytical soliton solutions of the higher order cubic-quintic nonlinear Schrödinger equation and the influence of the model's parameters, J. Appl. Phys., 132 (2022), 053103. https://doi.org/10.1063/5.0100433 doi: 10.1063/5.0100433
    [25] A. T. Ali, New generalized Jacobi elliptic function rational expansion method, J. Comput. Appl. Math., 235 (2011), 4117–4127. https://doi.org/10.1016/j.cam.2011.03.002 doi: 10.1016/j.cam.2011.03.002
    [26] E. M. E. Zayed, M. E. M. Alngar, Optical solitons in birefringent fibers with Biswas–Arshed model by generalized Jacobi elliptic function expansion method, Optik, 203 (2020), 163922. https://doi.org/10.1016/j.ijleo.2019.163922 doi: 10.1016/j.ijleo.2019.163922
    [27] Z. Z. Si, Y. Y. Wang, C. Q. Dai, Switching, explosion, and chaos of multi-wavelength soliton states in ultrafast fiber lasers, Sci. China Phys. Mech. Astron., 67 (2024), 274211. https://doi.org/10.1007/s11433-023-2365-7 doi: 10.1007/s11433-023-2365-7
    [28] Z. Z. Si, Z. T. Ju, L. F. Ren, X. P. Wang, B. A. Malomed, C. Q. Dai, Polarization-induced buildup and switching mechanisms for soliton molecules composed of noise-like-pulse transition states, Laser Photon. Rev., 19 (2025), 2401019. https://doi.org/10.1002/lpor.202401019 doi: 10.1002/lpor.202401019
    [29] Z. T. Ju, Z. Z. Si, X. Yan, C. Q. Dai, Solitons and their biperiodic pulsation in ultrafast fiber lasers based on CB/GO, Chinese. Phys. Lett., 41 (2024), 084203. https://doi.org/10.1088/0256-307X/41/8/084203 doi: 10.1088/0256-307X/41/8/084203
    [30] Z. Z. Si, D. L. Wang, B. W. Zhu, Z. T. Ju, X. P. Wang, W. Liu, et al., Deep learning for dynamic modeling and coded information storage of vector-soliton pulsations in mode-locked fiber lasers, Laser Photon. Rev., 18 (2024), 2400097. https://doi.org/10.1002/lpor.202400097 doi: 10.1002/lpor.202400097
    [31] Z. Z. Si, C. Q. Dai, W. Liu, Tunable three-wavelength fiber laser and transient switching between three-wavelength soliton and Q-switched mode-locked states, Chin. Phys. Lett., 41 (2024), 020502. https://doi.org/10.1088/0256-307X/41/2/020502 doi: 10.1088/0256-307X/41/2/020502
    [32] Z. Z. Si, L. F. Ren, D. L. Wang, Z. T. Ju, X. P. Wang, Y. Y. Wang, et al., Generation and $\pi$-phase-induced oscillations of multi-soliton molecular complexes in ultrafast fiber lasers based on MOF-253@Au, Chem. Eng. J., 505 (2025) 159024. https://doi.org/10.1016/j.cej.2024.159024 doi: 10.1016/j.cej.2024.159024
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(49) PDF downloads(10) Cited by(0)

Article outline

Figures and Tables

Figures(15)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog